We consider a random Schrödinger operator in an external magnetic field. The random potential consists of delta functions of random strengths situated on the sites of a regular two-dimensional lattice. We characterize the spectrum in the lowest N Landau bands of this random Hamiltonian when the magnetic field is sufficiently strong, depending on N . We show that the spectrum in these bands is entirely pure point, that the energies coinciding with the Landau levels are infinitely degenerate and that the eigenfunctions corresponding to energies in the remainder of the spectrum are localized with a uniformly bounded localization length. By relating the Hamiltonian to a lattice operator we are able to use the Aizenman–Molchanov method to prove localization.