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We review, from a unified point of view, a general class of models of itinerant
electrons interacting with classical fields. Applications to #tatic Holstein,
Kondo, and Hubbard models are discussed. The ground state structure of the clas-
sical field is investigated when the electron band is half-filled. Some of the results
are also valid when there is a Hubbard interaction between spin up and spin down
electrons. It is found that the ground states are either homogeneous or period two
Neel configurations, depending on the geometry of the lattice and on the magnetic
fluxes present in the system. In the specific model®| Menfigurations correspond

to Peierls, magnetic or superconducting instabilities of the homogeneous state. The
effect of small thermal and quantum fluctuations of the classical fields are reviewed
in the context of the Holstein model. Many of the results described here originate
from the work of Elliott Lieb and collaborators. @997 American Institute of
Physics[S0022-24887)00104-7

I. INTRODUCTION

In many systems one can often distinguish degrees of freedom which have to be treated
quantum mechanically from others for which a classical description is reasonable; consider e.g.,
the distinction between the treatment of electrons and nuclei in the Born—Oppenheimer theory of
molecules. For this reason many models used in condensed matter physics contain itinerant quan-
tum particles, usually electrons belonging to a conduction band, interacting with a classical field.
We shall call these models “semi-quantum.”

A much-studied model of this sort is the Falicov—Kimball model, first introduced to explain
metal-insulator transitions in rare earth materials where electrons in a conduction band interact
with electrons belonging to a band of localized orbifalBhe model then consists of itinerant
guantum particles interacting with “Ising spins” representing the presence or absence of a local-
ized particle. Many exact results exist for this model; we refer to Ref. 2 for a recent review.

In this paper we analyze from a unified point of view a variety of models, namely, the static
Holstein, Kondo, andthe static approximations for the repulsive and attragtiebbard models.

We also review what is known rigorously when thermal and quantum fluctuations of the "clas-
sical” field are taken into account.

Let us describe briefly the physical context of these models:

The Holstein model was originally introduced to describe metal insulator transifReierls
instabilities in molecular crystalé.A breathing mode of some large molecule is singled out and
modeled by Einstein oscillators coupled linearly to the electron density. The static Holstein model,
obtained when the quantum fluctuations of the oscillators are neglected, has been the object of
many studies related to the occurrence of charge density waves, polarons, and bipolarons in quasi-
one-dimensional materiafsUsually the electron band is assumed noninteracting but it is also of
interest to add a Hubbard on-site interaction, between spin up and spin down electrons, in order to
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investigate the effect of electron correlations on the formation of polarons, bipolarons, and their
spatial ordering.

The Kondo model concerns magnetic systems: itinerant electrons interact with magnetic im-
purities (quantum spinslocalized at the sites of a lattice. If the localized moment of an impurity
is large, it is reasonable to approximate it by a classical three-component unit vector attached to
the sites of the lattice. The model obtained in this way is called the static Kondo nisdéie
literature the Kondo model refers to the situation with only one magnetic impurity. Here we have
in mind the so called lattice Kondo model, and a more appropriate terminology would be “static
lattice Kondo model.J One can also add a Hubbard interaction term between spin up and spin
down electrons.

The two other models covered by our study are closely related to the HartreeHi€)cand
Bardeen—Cooper—SchriefédBCS) mean field theories of the Hubbard model. In the repulsive
case one gets a model of itinerant electrons whose spin is coupled to a classical three-component
vector field sitting at each lattice site. The amplitude of this vector field is variaivlke the
Kondo case where it is a unit vecjoiFor the attractive case one finds a system of itinerant
electrons interacting with a two-component vector field, whose amplitude can vary. There is an
associated “elastic energy” term appearing in the Hamiltonian of both models. These models
have been studied in great detail recently from a somewhat different point ofview.

In Sec. Il we define a general class of models which contains all cases described above. It
consists of itinerant spin up and down electrons that interact by an on-site Hubbard term and are
also coupled to a classical matrix-valued field. The kinetic energy matrix of the electrons can be
complex, which corresponds to the presence of an external magnetic flux. For a given configura-
tion of the classical field one cam principle) integrate out the quantum degrees of freedom, so
that the system is reduced to a classical system with a complicated temperature and density-
dependent effective energy functional for the classical field. This functional can be interpreted as
the free energy of the electrons in an external potential associated with a given configuration of the
classical field.

The main subject of Sec. Il is to find the classical configurations that minimize this func-
tional. We review here the solution of this problem when the electron chemical potential is
adjusted so that there is an average of one electron per site, i.e., when the electron band is
half-filled. The case of the static Kondo model is the simplest one. On any bipatrtite lattice and any
magnetic flux the ground state configuration is ofeNgpe: this is similar to what happens in the
Falicov—Kimball modef® For the other models, where the amplitude as well as the direction of
the vector field can vary, the situation is more complex. Indeed, depending on the geometry of the
underlying lattice and the presence of an external magnetic flux, we find that the minimizing
configuration is either of Na type, or that it is homogeneous with the classical field vanishing for
all sites of the lattice. In models of itinerant fermions it appears that the geometry of the lattice and
the orbital coupling to a magnetic flux are important because they determine the structure of the
Fermi surface of the free electron Hamiltonian, which in turn can affect the ground state structure.
This will be illustrated by comparing the cases of the square and hexagonal lattices.

When the Hubbard interaction between the electrons is absent, the energy functional for a
given classical configuration can be expressed in terms of a one-particle Hamiltonian, and one can
then use an inequality first derived by Kennedy and Lieb in the context of the Falicov—Kimball
model® This method breaks down when spin up and down electrons interact because, even for a
given configuration of the classical field, we do not have a one-particle Hamiltonian. Nevertheless,
in his treatment of the flux phase problem, Lieb showed that one can use a reflection positivity
technique to get some information about the global minima of the energy functional. While this
technique has been extensively used in the context of quantum and classical spin systems and
bosonic systems, it was only recently extended by Lieb to models of interacting feriricetss
ideas were extended further by Macris and Nachtergdele.

A little studied problem is the stability of the ground states when thermal or quantum fluc-
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tuations of the classical fields are taken into account. Rigorous results, discussed in Sec. IV, have
been obtained so far only for the Holstein model. For the static model, at small temperatures and
large coupling, there exist at least two phases corresponding to the period two ground states on a
square lattice in the half-filled barid! To deal with quantum fluctuations it is convenient to
integrate out the phonon degrees of freedom. Then one is left with a system of fermions interact-
ing through a two-body potential, which is short ranged due to the quantum fluctuations. In the
spinless case, and at small electron—phonon coupling, such a system belongs to the universality
class of the Luttinger liquid and has been analyzed in one dimension in Ref. 12 by renormalization
group methods. This analysis shows that, at least in the spinless case with small coupling, the
ground state will not be ordered, for all densities.

Il. THE MODELS

In this section we introduce a general model which is then specialized to the cases of interest.
The setting is a finite latticd CRY containing|A| sites. The kinetic energy of the electrons is
described by a hopping matrik with elementst,,, X, y € A, connecting sites of\. Boundary
conditions are either free or periodic, and are specified later. The lattice is said to be bipartite if
there are two disjoint sets of sitésandB such thatA = AUB andt,,=0 if x,ye A or X,y e B.
Examples of bipartite lattices that will be considered later are the cubical and hexagonal ones. The
hopping matrix can be complex, = |txy| exp(i f,,), and the phasé,, has the interpretation of
the line integralé,,= [¥A.dl, whereA is a vector potential associated to an external magnetic
field. The sum of phases along an oriented closed circuit of the lattice is equal to the magnetic flux
d, threading the circuit,

> 6y=®,, mod 2, (2.1)
(xy)e?
where the circuitZz” is a sequence of distinct bondgx;, ;) such thattxi><i+1 # 0,i=1,...k, and
Xk+1=X1. We shall be using units in whick=c=7%=1.
The purely electronic contribution to the Hamiltonian is

1 1
T t T
Helec x,yeAE,a:T,i thCXO'Cy(T ngA (CxTCxT 2)<Cxlcx1 2)' (2 2)
where we have included an on-site interaction of Hubbard typean be positive or negative.
When U = 0 we SetH elec:Hkin .

To each sitexe A we associate a*22 Hermitian matrix field®(x) with elements

$3(X) h1(x)—i d’z(x))
b1(X) +i¢a(X) — ¢3(X) '

wherea,Be{1,1}, 0,5=(045.0%5.05p) is the vector of Pauli matrices anpl=(¢;,¢,¢s). In the
applications the matrix-valued field(x) will play the role of the phonon field in the Holstein
model, the impurity spin in the Kondo model, and the mean field in the Hubbard model. We note
for later use the identit)(((r-¢(x))2)aﬁ=|¢(x)|25aﬁ. The field has an isotropic elastic energy
[later on it will be convenient to view the elastic energy as a functio(x) |2 instead ofl ¢p(x)|]

q)aﬁ(x):(raﬁ‘(ﬁ(x):( (23)

He.as=X§A P(|p(x)|?), (2.4

whereP(y) is a positive convex polynomial of the form
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N
P(y)zjzl ajyl, y=0. (2.5

The interaction between the classical field and the electrons is on-site

Hi=02 2  Cl®a.s(X)Ces, (2.6
xeA a,B=1,]

and the coupling constany can be positive or negative. For a given configuration
d={P(x),xe A} of the classical field the total Hamiltonian of the system is

H(®)=Heject Helas™ Hint - (2.7

The partition function is obtained by performing the trace over the electron Fock space
7_(1’(A)®C?), and by integrating over the classical field configuratidns

ZA(ﬂ,,u,h)zf Xfe[A dv(d(x)) Tr exp[—ﬁ . (2.83

H((D)_MN_XZA h-¢(x))

The average value of a local observaBlés given by

(Aa(Bp,h)= I1 dv(@(x) TrA exp[—ﬁ(H(CI’)—MN—XEA h'¢(X)”-

o
ZA(B,u,h) ) xea
(2.8b

In (2.9, N = Ex,aCIng and  and ;h are chemical potentialéor external fields The free
measuredv(®(x)) depends on the physical situation of interese latey.
Since the trace i1i2.8) is always positive, it is natural to set

Tr exp[ —ﬁ( H(CI’)—MN—XEA h-(x) | | =exd — BF(®;B,u,h)], (2.9

whereF can be interpreted as the effective interaction energy of the classical field, induced by the
itinerant electrons, or as the free energy of the electrons subjected to the external pdtéxtial
The ground state energy of a configuratibnis defined as the zero temperature limitFaf

E(®;u,h)=lim F(®;8,u1,h). (2.10
B—o

The global minima of the functionalE andF are studied in Sec. lll. The appropriate space of
configurationsb over which one should minimize is determined by the choice of the free measure
in (2.9).

The half-filled bandu=0, h=0: For a bipartite lattice, an electron-hole transformation for up
and down spins,

c;aeexcxg,cxgaexclg, e=1,xeA, e=—1xeB,
transforms the Hamiltonian ad(®)—H(—®), where the bar denotes complex conjugation.
Hence

F(®;8,00=F(-9;800, E(P;0,0=E(-®;0,0. (2.11
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Since under the transformatioN— 2|A|—N, we find that if the free measure is invariant under
P (x)— —P(x), then

1
(N)A(B,0,0= Z.(5.0.0 J XIJA dv(®(x)) Tr N exp — BH(®)]=2|A|—(N)A(8,0,0),
(2.12

so that the average number of partic{®$ , (8,0,0) is equal to the number of sitgs| for all .
For this reason the case=0, h=0 will be referred to as “the half-filled band.” The results
described in Secs. Il and IV A are restricted to this case.

Let us now consider the special casegaf) and (2.8 which are of interest to us. We start
with the Kondo model for which the discussion is the simplest.

A. Static Kondo model

The static Kondo moddimodel A) with interacting electrons #0) is defined by

H kondo=Helect 2gx§A S(x)- p(x), (2.13

whereS(x) = %Eaﬁﬂ'lc:[aaaﬁcxﬁ and ¢(x) is a unit vector inR® representing an impurity spin
localized atx. The real Kondo Hamiltonian hag(x) in (2.13 replaced by a quantum spin
operatorSy,,(x), with Szmp=hzs(s+ 1). Presumably the static Kondo model is a reasonable ap-
proximation in the semiclassical limit—0, % s fixed.

This model is a special case (£.8) with

du(P(x))=de1(X)do(X)db3(x) 8(| p(x)|*—1). (2.14

The elastic term contributes only a constant so we can drop it.
The minimization of the corresponding function&l@ndF has now to be carried out over the
space

{®(x).xe Al[(x)]=1}. (2.19

B. Static Holstein model

The static Holstein moddlmodel B with interacting electronsl # 0) is defined by

Hutoisteir=Hetect 2 (G Cx1+Cx G = 1) ba(¥) + 2, P(¢(x)?) (2.163
and
ZA,HoIstein: f XHA d¢3(X)TI’ exd — IBHHoIsteirJ- (2.16b

Here ¢5(x) represents the position of the classical oscillator attached atxsite the usual
Holstein model one takeB(y) =3y and the oscillator is quantized so that we have to add a term

1 9?
2m? Eh dp(x)?

to the Hamiltonian(see Sec. V.
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For A bipartite, the coupling term if2.163a transforms under the electron-hole transformation
CL—>EXCXL, Cyx|— €xCx| , ON down spins only, as

(chiex ] e — 1) da(X) = (CfiCxy =€) €y ) (%)

and(2.2) becomes

— 1 1
Helec—’xjéA tyCxi Cy1 +X,é[\ LxyCx Cy| ~ ngz\ Cx1Cxy— E) ( Cyx Cx|— E) .
Therefore fort,, = a, the partition function(2.16b is equal to(2.8a providedu=0, h=0, U is
replaced by—U, and

du(®(x))=dp1(X)dbo(X)dh3(X) 8(1(X)+ $2(X)?). (2.17)

Thus the static Holstein model is equivalent to the model define@8y—(2.17) as long as the
lattice is bipartite and the hopping matrix elements are real.

The minimization of the corresponding function&isand F has to be carried out over the
space

{®(x),xe Al $1(x) = $a(x)=0}. (2.18

Remark An extended Falicov—Kimball model with interacting spin up and down electrons is
obtained if in Sec. 1l B we take

du(®(x))=dB1(X)dbo(X)dp3(X) S(h1(X)?+ $2(X)?) 7 [8(h3(X)— 1)+ 8(pa(x) +1)]

for the free measure. The usual Falicov—Kimball model has spinless fermiord -afd

The next two models lead to a variational problemHBEoandF that has recently been studied
in detail® We discuss them for completeness and also because the point of view presented here is
somewhat different.

C. Static approximation for the repulsive Hubbard model

The repulsive Hubbard Hamiltoniafmodel Q is given by(2.2) with U>0. Using a path
integral formalism, the partition function can be represented as that of free fermions interacting
with a vector valuedime-dependerduxiliary Hubbard—Stratanovich field which is coupled to the
electron spin(see the Appendix and Ref. 13 for further detail§he static approximation is
obtained by retaining onlyime-independentonfigurations of this field. This procedure gives a
model defined by2.8) with h=0 and,

H(®)=HyntHeast Hine, 9= \/ga (2.193
P((x)|5)=3(x)|%, (2.199
dv(®(x))=dep1(X)dda(X)db3(X). (2.199

The minimization of the corresponding function&sand F has to be carried out over the
configuration space

{®(x),xe A|p(x) e R%}. (2.20
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This variational problem is equivalent to the HF mean field theory for the Hubbard model. The
self-consistent equation of the mean field theory is obtained by setting the variatlorwih
respect to the classical field equal to zero. This gileee the Appendix

U
¢<x>=2\[§<8<x>>A<ﬁ,o,0>. (2.20

To go beyond Hartree—Fock theory one needs to investigate both the thermal and quantum
fluctuations around the solutions (#.21). The model defined by2.8) and(2.19 corresponds to
taking into account only the thermal fluctuations.

D. Static approximation for the attractive Hubbard model

The attractive Hubbard Hamiltonidmodel D) is (2.2) with U<0. In this case one represents
the partition function with the help of a complex-valugche-dependentubbard—Stratanovich
auxiliary field which is coupled to the electron pseudogpie the Appendix The static approxi-
mation is obtained by retaining onlyme-independentonfigurations of this field. This leads to
(we consider onlyu=0)

Z\= f x1;[A depy(X)dho(X) Tr exd — BH] (2.223

with
S u t ot , .
H=Hj,+ \/; ng (CxCx  (D1(X) +i6ha(X))+Cy Cyy (D1(X) —i (X))

1
T35 2 (41007+ $2(0)?). (2.22

For a bipartite lattice, making an electron-hole transformation on down spins only and putting
P1(X)— €,01(X) and ¢p,(x) — €,¢,(x), the coupling term i(2.22H becomes

cl el (h2(X) i Ba(X))+ Cx O (B1(X) =i (X))l €y (2(X) +i (X))
+¢ i (d1(X) —i (X))

and
T  Af
Hkin_’ E txnyTCyT+ E txycxlcyi .
X,yeA X,yeA

We see that fot,, = @ the partition function2.223 is equal to(2.8), whenu=0, h=0, with

H(®)=HyntHelast Hine, 9= \/g (2.233
P((x)|5)=3p(x)|%, (2.230
dv(P(x))=de1(X)da(X)dp3(X) 5(p3(X)). (2.239

The minimization of the corresponding function&sandF has to be carried out in the space
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{®(x),xe A|ds(x)=0}. (2.24

This variational problem is equivalent to the BCS mean field theory for the Hubbard model. The
self-consistent equation of the mean field theory is obtained by setting the derivakveopfal to
zero. This yieldqsee the Appendjx

U
1) =i dy(x)=2 \@ (chica)a (8,00, (2.253

)
¢1(X)+i¢2(x):2\/;(CLCn)A(ﬂ,O,O)- (2.25h

As in the repulsive case, the mod@.8—(2.23 corresponds to taking into account only
thermal fluctuations around the solutions(2f25.

[ll. MINIMIZATION OF THE ENERGY FUNCTIONALS E AND F

We discuss now general theorems for the structure of the global minima of the functionals
(2.9 and (2.10, for the half-filled band,u=0 and h=0. Results away from half-filling are
available for the ground states of the Falicov—Kimbalhd also for the structure of the local
extrema ofE andF for the Holstein model*®We setF (®;3,0,0)=F(®; ), E(P;0,0)=E(d),
and(—)»(8,0,0=(—=)x(B).

A configurationd is called aNeel configurationif it has the form
q)aﬁ(X):EXWO'QIB-ﬁ, (3.1

wheren=(n,n,,n3) is any fixed unit vector, and is a real number independentxafThe main

result described in this section is that under appropriate conditions, in the half-filled band, the
energy functionals attain their global minimum for configurations of the f(8rh). For the static
Kondo model we necessarily hawe=1. For the other models it is evident that, when the coupling
between electrons and classical figkd 0, the homogeneous configuration corresponding +c0

is a ground state. Wheg+ 0 this state may remain stable, or become unstable satlaguires

a nonzero value depending ¢ g, andU. In the context of the Holstein modelN# 0 is the
so-called Peierls instability, while for the static approximations to the attractive and repulsive
Hubbard modelsy# 0 means respectively that there is a superconducting or magnetic instability.

A. Interacting electrons, U#0

For the Hamiltonian(2.7) with U #0 it turns out that one can adapt the reflection positivity
techniques, previously used for quantum spin or bosonic sysfethas was first shown by Lieb
for the Hubbard model.

Some restrictions on the geometry of the lattice are needed, and instead of formulating the
most general result we consider here three representative examples. Theqa) aoge-
dimensional rings with an even number of sites, (b) the bipartite square (or cubic) lattice with
periodic boundary conditions, and (c) the bipartite hexagonal lattice with periodic boundary
conditions Note that for all these cases the number of sites contained in any closed loop is even.
For such lattices\ embedded irRY, consider a @— 1)-dimensional hyperplan@ not containing
any vertex ofA, separating\ in two sets of vertices calle (“left” ) andR (“right” ), so that
A=LUR. WhenL andR are related to each other by a geometric reflection adPosge say that
P is a reflection plane foA. For example, for the bipartite square lattice with periodic boundary
conditions, all planes perpendicular to the two coordinate axis and not containing any vertex are
reflection planes.
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Given{t,}, ty,= |txy| exp(i 6,), the flux configuration is called eanonical flux configura-
tion if (a) for one-dimensional rings

A
D Oy= w(u— 1), mod 2, (3.2)
(xyye A 2
(b) for the bipartite square lattice on a torus
> 6y=m, mod 2 (3.39
(xy)eF

for all elementary square plaquettés and

A
Y Oy u—l), mod 27, =12, (3.3b
() eA; 2
A;,1=1,2, the two nontrivial loops of the torus along the coordinate axisyenfbr the bipartite
hexagonal lattice on a torys
0y,=0, mod 27, (3.43
(xy)eF
for all elementary hexagoris, and
_ (1A -
Y by=m|——1|, mod2r, =12, (3.4b
(XyyeA; 2
A;,1=1,2, the two nontrivial loops of the torus along the coordinate axis.

For example a flux which is uniformly equal to zefi@alized by taking allb,,=0) is non
canonical for a cubical lattice, while it is canonical for the hexagonal one. We note that in all the
above cases it is possible to choose a gdiige a choice of phas€g,,}) such that alt,, are
real. The following theorem ensures that under appropriate conditions the global minimam of
andF is attained among Mg configurations.

Theorem 1 Let A be one of the lattice&), (b), and(c). Suppose that the flux configuration
is canonical and that the moduljt,,|} are invariant under geometric reflections through all
reflection plane® of A. Then there exists at least one minimizetsgfP) andF(®;B8) which is
a Neel configuration(3.1).

Remarksi(i) To apply the theorem to the four specific models described in Sec. I, one has to
specify the space over which the minimization is carried out. For the static Kondo model this
space is(2.195 so that the minimizer hasr=1 in (3.1). For the static Holstein and attractive
Hubbard models the spaces are respectif2l¥8 and(2.24) so that the minimizers have respec-
tively n=(0,0,1) andn=(n,,n,,0). For the repulsive Hubbard model there is no constraint.

(i) We do not know of any general statement about the unicity of the minimum. All we know
is that there is at least one minimum of the fo(®1), and if there is another one, we cannot
exclude that it is outside the class of &leonfigurations.

(iii) Except for the case of the Kondo model A where the ground state is completely deter-
mined by Theorem 1, the value wof will, in general, depend o, g, U and{|txy|}. WhenU =0,

w can be found explicitly in principle, because the Hamiltonian reduces to that of free electrons in
a period two potentialsee Sec. Il B.

(iv) A straightforward application of reflection positivity also implies that given a reflection

planeP, then ifr(x) is the reflection of a site throughP,
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(D(X)- &(r(x)))a(B)=<0 3.9

at any finite temperature. This inequality means that there is a tendency towards antiferromagnetic
behavior but does not imply that there is long range order. Indeed it is valid for the one-
dimensional ring, where one does not expect long range order for any finite temperature.
A similar result for the case of the extended Falicov—Kimball model mentioned, after Sec.
I B was pointed out in Ref. 10. The proof given below is based on the methods of Ref. 9 and 10.
Sketch of the ProofGiven a reflection plan® we introduce new creation and annihilation
operators defined faall xe A=LUR,

dr=Cr€ ™, dyo=e'™ey,, (3.6
whereN, = EXEL,(,:MCL,CX(,. The new operators commutextL,ye Rorif xeR,yelL, and
satisfy the canonical anticommutation relationx &L, yeL or if xeR, ye R. In terms of the
new operators the Hamiltonig@.7) takes the same form with thes replaced by thés. It can be
decomposed as

H(®)=H (P )+Hg(Pr)+H; (3.7

with

1 1
_ + 1 +
HL/R((I)L/R)_X’ EL/R tyydxodyot UXEEL/R (dedXT_ E) ( dy Oy, — 5)

ye
+g 2 2 A Dap(0dgt 2 P03, (3.9
xel/R a,B=1;] xeL/R
H,= 2 txydladyo'l' 2 txydladyov (3.9
xel,yeR xeRyel

and® g={P(x),xeL/R}. Because the flux configuration is canonical, it is always possible to
choose a gauge such that,} is real and moreovet,,=—|t,,| for the bonds(uv) that are
intersected by the reflection plaf® Then, performing an electron-hole transformation for the
sitesxe R only

H (P )—H (D)), (3.103

Hr(Pr) —Hg(=PR), (3.10h

Hi—Hi=— > Jtyldldlo— > |tyldedy,. (3.100
xelL,yeR xeR,yel

The transformed Hamiltonialﬁ(CD) obtained from(3.7) is given by the sum of the three terms on
the rhs of(3.10:

H(®)=H (@) +Hg(~®r)+H,, (3.19)
For u=h=0, the trace in2.9) is invariant under all the transformations performed above, so that
H(®) and H(®P) have the same ground state and effective enefgi{@s) and F(®;B). The

Hamiltonian (3.11) is reflection positive so that a direct application of the Dyson-Lieb—Simon
inequality'® or its ground state versidhimplies that at least one of the two Hamiltonians,
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Hy(®L)+Hg(®f)+Hy, (3.123
Hy(— ®R)+Hp(—®g)+Hy, (3.129

has a lower energy, wherk| , is the configuration obtained by reflectidy ,r acrossP. There-

fore given a configuratiod and a reflection planP separatingb, and®, E(®) andF(P;3)

are lowered whew is replaced by one of the two new configurations formedbpyand — ®| or

by —®} and®y. Iterating this inequality with respect to all reflection planes yields a lower bound
which is attained for a configuration of Betype (3.1).

B. Noninteracting electrons, U=0

For U=0, the HamiltoniarH ;,+H;, in (2.7) is the second quantized form of a one-particle
Hamiltonian

th,aﬁ:th(SaB+g(I)aB(X) 5xya (313

X, ye A, a, Be{1,|} which acts on wave functions if(|A|)® C2. The trace over the electron
Fock space if2.9) can be performed and for=h=0 this leads to

F(P;8)=— % trIn coshg Jh+ EA P(|(x)]?), (3.19
and by taking the limi{3—co
1
E(®)=— 5 tr Jh?+ 2 P(|$(x)[?). (3.19

In (3.14 and(3.15 the trace is on the spa¢&(|A|)®C2

The minimization of functionals of the tyg®.14) and(3.15 was first achieved, in the case of
the Falicov—Kimball model, by Kennedy and Lfefor zero magnetic fluon general bipartite
graphs and by Lieb and Lo$swhen the flux is present. The method presented below for flux
configurations which areanonicalrelies on an application of Theorem 1, and is different than in
Ref. 8. However, it breaks down if the flux mncanonicglso that in this respect the methods of
Ref. 7 and 8 are more general.

Case of canonical flux configuration: Application of Theorennithis paragraph we consider
the problem of determining the value wfin (3.1 for the models B—D. When the lattice and the
set of{t,,} satisfy the hypothesis in Theorem 1, we know that a minimur(8df4) and(3.19 is
attained in the class of N configurationg3.1). For such configurations we have

h?=T®1,+g°w?1,®1,, (3.19

where 1,, is the nXn identity matrix. Substituting3.16 in (3.14 and (3.15 we see that the
problem is reduced to the minimization of functions of one variatle

2
f(w?,B8)=— 3 tr In coshg T2+ 02w, + | A|P(W?), (3.17
e(w?)=—tr VT?+g?w?1, +|A|P(W?). (3.18

In (3.17) and (3.18 the trace over the spin degree of freedom has been performed and the
remaining one is over the spatdA).
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Since f is a convex function ofw?, it has a unique minimizer, saw3 It follows that
®y(X) = e,Woor-n is a minimizer forF(®;B8) (however, we cannot conclude th@y is unique.
To computew, we note that sinc®(w?) grows at least as and the square root behavesvas
for w>— o, the only possibilities for the minimum ¢B.17) are:

(i) w3 is a solution of the equatiofi (w3,8)=0, i.e.,

2
P’ (W)= 2?A| tr| (T2+g2w31,) 2 tanh T2+ g?w21, (3.19

if it exists.

(i) If (3.19 has no solution, then the minimum bfs attained at the boundary of the domain
of w?, i.e., forwy,=0.

For the minimum of3.18 the situation is analogous, witB.19 replaced by’ (w3)=0, i.e.,

2
P’ (W3)= % [ (T?+ g?w31,) ~ 2. (3.20

Let us now discuss the properties of E¢19 and (3 20. We begin with the case of finite
temperatures. IP has a harmonic terna, >0, then for3g?< 2a, the minimizer isvg=0. Indeed
sinceP is convex,P’ grows, soP’(w?)=a,. Moreover, using tank<x we have that

2

%t rl(T?+g?w?1,) 1’2'[anh JT2+g2w?1, |< (3.2

Hence(3.19 cannot be satisfied fqﬁgzs 2a;. On the other hand, iP has no harmonic term,
a;=0, thenP’(w?) is monotone increasing from 0 to. At the same time the right-hand side of
(3.19 is a positive monotone decreasing functiomdfand(3.19 has therefore a unique solution,
wo# 0, for any temperature.

We discuss the case of zero temperature, in the infinite volume |ikhit:co, where the
spectrume(k)? of T2 plays a fundamental role. In the infinite volume lin® 20 reduces to

9 d 1

dK ——. (3.22
[-m =9 \e(k)®+g?w}

If P has no harmonic terng; =0, P’(w?) is monotone increasing from 0 to while the right-
hand side 0f(3.22 is positive and monotone decreasing. Theref@&22 has always a unique
solutionwy# 0. On the other hand, ® has a harmonic terra;>0, thenP’(w?)=a,, so forg
small enough3.22 will not have a solution unless the integral diverges when0. Whether the
integral diverges depends on the geometry of the lattice and the flux configuration:

P’ (WO) =

(@ One-dimensional ring: &)2= (cosk)? so that the integral diverges at®122) has a solution
wy# 0. Here the flux plays no role.

(b) Cubical lattice with canonical flux: g)2==9_,(cosk;)?, which vanishes for the points
(ki=/2,i=1,...d) and therefore the integral {183.22) is convergent even fa— 0. There-
fore there exisg.>0 such that, fog<g,, (3.22 has no solution and/,= 0, and forg=g.,
(3.22 has a unique solution,#0.

(c) Hexagonal lattice in & 2 with canonical flux: €¢k)2 vanishes only at isolated points and the
situation is analogous tdyj.

For u=h=0 at zero temperature the energy leve(&) <0 are filled and those for which
e(k)>0 are empty. The equation determining the Fermi surfa@k¥=0. In casegb) and(c)
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whered=2 the Fermi surface consists of isolated points, and as a consequgadefor g small
enough. In the context of the Holstein model this means that there is no Peierls instability for
9<dc-

When the flux is noncanonical and equal to zero the Fermi surface of the half-filled system, on
a cubical lattice, is square shapgste next paragrapland this leads to a nonzero minimizer for
all g.

Case of noncanonical flux configuratiod’hen the flux configuration is not canonical, one
cannot rely on Theorem 1 and other methods have to be used. The main example of such a case
is the cubical lattice with,,=t (zero fluy. We rely on an inequality(3.23 below] that was first
derived in the context of the Falicov—Kimball model.

We just require the latticA to be bipartite and for the moment no other specific hypothesis
is made on{t,,}. Then multiplication bye, is a unitary transformation such that-—T. Thus
E(P)=E(—®P) and concavity of the square root implies

1 1
E(CD)ZE E(CI))+§E(—(I))>—tr T°+g°® +X§A P(|p(x)|?), (3.23

where ®? is the AXA matrix with elementsg(x)|3,,. By expandingh® one checks that the
equality is realized for Nel configurationg3.1). Now we proceed to analyze the consequences of
this inequality.

Kondo model AThere|¢(x)|?=1 so that the minimum is attained for configuratid8sl)
with w=1. This result is valid for any flux configuration and is similar to what happens for the
Falicov—Kimball modef

Models B, C, and DIn order to show that a Ng configuration is a minimizer dg, we have
to check that the minimum of the rhs (8.23 is itself a Nesl configuration. The rhs of3.23 is
a convex functional of|¢(x)?} so that it has a unique minimizéidy(x)|%. It is given by the
solution of the following set ofA| equations

2
P'(|o(x)[) = - (XI(T?+g03)x),  xeA, (3.24

if such a solution existshere we use the Dirac notatiprf there is no such solution, then a
minimum of (3.23 is attained on the boundary of the gbbo(x)|>=0,xe A}, in other words
¢do(x)=0 for at least one sitge A.

Lemma: Suppose thaft,,} is such that the minimizer of the rhs ¢8.23 is translation
invariant, |¢(x)|?=w3, andwy#0. ThenE(®) has a unique minimizedy(x)= e wyo-N.

Proof: From the hypothesis in the Lemma a(8115

E(®)=—tr yT?+g?wil, +|A|P(W3)=E(dy), (3.25

and thereforeb, is a minimizer ofE. Suppose thaE has a second minimizepb,#d,.
Then

E(®o)=E(Py)=—tr T2+ 92‘1>§1A+X§A P(|1(%)%) (3.26

so that|¢p;(x)|? is also a minimizer for the rhs aB.23. However, this is not possible since the
latter has a unique minimum by convexity.

As a concrete example let us consider the case of a square latticgtyyjtat, and a flux
configuration equal to zero for all square plaquettes. Then it can be seen that the set of equations
(3.22 has a uniform solutioneo(x)|2=w3, w,#0 for all g+#0. Indeed the spectrum af? is

J. Math. Phys., Vol. 38, No. 4, April 1997

Downloaded-16-Feb-2007-t0-128.178.70.47.-~Redistribution-subject-to-AlP-license-or-copyright,~see=http://jmp.aip.org/jmp/copyright.jsp



N. Macris and J. L. Lebowitz: Low temperature phases of itinerant electrons 2097

e(k)?= (=", cosk;)?, thus forg—0 the integral(3.22 has a logarithmic singularity due to the
square shaped Fermi surfaggk) =0. We remark that the solution exists for all polynomiRls

For an arbitrary flux configuration the spectrumTofs a very complicated set and we expect
that the structure of the minimizers as a function of the flux is also more complicated, at least for
models B and C.

For the finite temperature functionB(®,B), the analog of inequality3.23 is

F(D;:B)=— % trIn coshg VT2 + g2c1>2+XZA P(|(x)|?). (3.27

Some consequences (.27 are the following:

Kondo model AEquation(3.27) implies as before that the unique minimumFofs (3.1) with
w=1. This holds for an arbitrary bipartite lattice and gy, }.

Models B, C, and DThe case of the Holstein model was analyzed in Ref. 11 on an infinite
square lattice with,,=t. The results which also holds for models C and D are the following.

(i) If P has no harmonic terna; =0, then for anyB andg+ 0, F attains its minimum for the
Néel configurations®,(x) = e,wo0r-i Wherew3+ 0 is the solution of the equation

1 (2 — g° d -1 ,‘{'3 }
P'(wg)=—+ d°kE(k) ™ * tanh = E(Kk) |, (3.28
2 [—a, a9 2

with E(k)=[4t2(2%, cos,)?+ g?w3] *2

(i) If P has a harmonic terma;>0, then giverg+ 0 there exisi{3. <« such that3.28 has
a solutionwy# 0 only for 8> B.. For 8> 8. the Neel configurations are the only minimizers,
while for B=<pB., ®y(x)=0 is the only minimizer.

We conclude this section with the following theorem.

Theorem 2: Let A and{t,,} be arbitrary. Suppose th&is a polynomial of ordeN, N=1,
all of whose coefficients are strictly positive;>0, j=1,...N. Then for models B, C, and D,
there exists a positive numbersuch that forBg?<c, F(®;B) is a strictly convex functional.
Since it is even it attains its unique minimumd{x)=0, all xe A.

The proof for the Holstein model can be found in Ref. 11 and also works for models C and D.
A consequence of this theorem is the absence of long range ordggfstc (see Sec. IV A

IV. THERMAL AND QUANTUM FLUCTUATIONS

In this section we address the question of stability of the ground states found in Sec. Il when
thermal or quantum fluctuations of the classical field are taken into account. Rigorous results have
been obtained so far only for the Holstein model with- 0, and we will restrict ourselves to this
case. We first consider thermal fluctuations alone, in two and three dimensions, and then quantum
fluctuations at zero temperature for the one-dimensional system.

A. Thermal fluctuations in  d=2,3

From (2.8) and(2.18 we have for the partition function

1
zA(ﬁ,o,0)=f XE[A d¢3(x)exp{—§X§A d3(x)2+21tr In coshg U(T+gdy)2|. (4.0

In (4.1) @ is the|A|x|A| matrix with elementsp3(x) 3,y , and the trace is ovéf(|A|). The factor
2 in front of the trace comes from the spin degree of freedom and has no influence on the results
(the spin becomes crucial when quantum fluctuations are taken into account, see Sed&idhB
now on, we assume that the boundary conditions are periodic. As in Theorem 2 one can prove that
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l;—a > ba(x)2+21tr In Coshg V(T+gdy)? (4.2

xeA

is a convex functional of ¢5(x)} for Bg®<1 if a<1. It then follows from the Brascamp-Lieb
inequalities that

(ba(X¥) p3(V)A(BDxyer=a 1, (4.3

as quadratic forms. This implies that the Hilbert—Schmidt norm of the matrix on the left-hand side
is bounded bya ! for all |A],

1
[A] (2, (850085 (B)P<a”™, (4.4

and clearly this is not compatible with the existence of long range order.
Remark:The same result can be proven also for the models C and D.
In situations where there are two antiferromagnetic ground states, it can be shown that there
exist two corresponding low-temperature phases for a large enough cogplingre precisely if
A is a square lattice withxy| =t and a uniform flux equal ter or to 0 in all plaquettes, there exist
a fixed numbertd > 0 such that forg and 8/g sufficiently large we have

— 6<(€x3(X)) " (B)<=*Wo+4, (4.5

wherew, is the amplitude of the ground state, afie))™ (8) are expectations in the Gibbs states
corresponding to the ordering on the different sublattices. They are obtained as infinite volume
limits with appropriate boundary conditions.

The proof of (4.5 is based on a Peierls argument for continuous spifiie argument is
quite involved because the “classical Hamiltonian” (1) is not explicit, and relies on methods
developed by Kennedy and Liekor the case of the Falicov—Kimball model whegg(x) takes
values=1, combined with an idea of Ref. 19 to take into account the “small” and “large” field
configurations.

For the other three models discussed in this paper, the ground state breaks a continuous
symmetry and therefore Peierls type arguments do not work. It is expected that there is long range
order for dimensions greater or equal to three but a rigorous proof is lacking.

B. Quantum fluctuations in one dimension

The effect of quantum fluctuations has been analzed far only for the one-dimensional,
spinless Holstein model with a dispersion term

t
H:_E EA ! CX+1+Cx+1CX)+gz (C Cx— )¢3(X)

Xe

32 1
"’ME c Cx+2 ( 2m2 93(x)2 Eq’>3(x)2+b(q’>3(x)—¢3(x+1))2 . (4.9

xeA

It is shown in Ref. 12 that in the limit of zero temperature, for any fixed density of electrons
0<p<1, andg small enoughdepending orm, m~1+0),

Sin pe(X—y)
@W“‘m, Ix—y[|—e, (4.7)
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with pe=p and the anomalous exponen{g) analytic as a function of). The exponent is
nonvanishing as soon gs=0 and the lowest nonvanishing orded$g®) for b=0 andO(g*) for
b+#0. Thus forg#0 the electrons form a Luttinger liquid, and their momentum distribution has
no jump discontinuity ap=pg . Of course forg=0 the Fermi liquid behavior is recovered.

This behavior holds in particular fat=0 wherep=3 andpg= /2, and is completely differ-
ent than in the casen '=0 (note that in the half-filled case one does not have to adjust the
chemical potential as a function gfto maintainp=3). Indeed whemm™ =0, a Peierls instability
occurs and the ground state for the static phonors(x) = e,w,, wy# 0 for all g# 0. Therefore
the electrons see a period two potential and their spectrum is split into two bands, the lower one
being filled, and the upper one empty so tlettzero temperatuye

(cleyy~e AP x—y| oo, (4.9

whereA(Qg) is the energy gap separating the two bandpat /2.

Thus as soon as ™ 1#0, for small enough coupling, the Peierls instability occuring=at in
the static case, disappears. We emphasize that these results are limited to small coupling and that
at large enough coupling the Peierls instability is probably stable against the quantum
fluctuations®

Since the phonon field is harmonic and its coupling to the electrons is linear, one can easily
integrate it out, and then one is left with a one-dimensional interacting fermionic system. In terms
of Grassmanian anticommuting variabkééx,t), #(x,t), (x,t) e AX[0,8], the partition function
becomes

B— 2 B B
Zy(Bop) = f Pﬁ<dw>exr{—uX§A fo ORIy f olsfo dt

8 x,yeA JO

— 1) (— 1
XU(X_y,t_S)< ‘ﬂ(xat)l/f(xvt) - E ( w(yvs) (/l(yvs)_ E) }1 (49)

whereP g(dy) is the Grassmanian integral with propagator

1 e—iko(t—s)—ik(x—y)

(4.10

BIA[ gikgb= _y gkt “Tjy<, —iKo+COSpPE—Cosk

andv(x—y, t—s) is the effective potential between fermions that is induced by the phonons

1 eiko(t—s)—ik(x—y)

BIA| eikOEﬁzl m?k?+ 1+ 2b?(1—cosk) (4.17

v(X—y,t—s)=

Form™'#0 fixed,b=0 andB,A—x», v(X—y,t—s)~ &,,(2m) "' exp(—m~*|t—s|). We see that
the effective interaction generated by the quantum fluctuations of the phonons is a two-body short
range potential in the time direction and has zero range in the spatial direction. Wh@rthe
situation is similar except that there is a more complicated short range interaction in the spatial
direction. The behaviof4.7) is obtained by rigorous renormalization group methods developed in
Ref. 21 for the one-dimensional spinless Fermi gas with short range interactions.

On the other hand, foB, A fixed andm™1—0, we getv(x—y,t—s)~B~ %, so that the
effective interaction induced by static phonons is an infinite range potential of mean field type. In
this situation the Luttinger liquid behavior breaks down and a Peierls instability occurs.
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V. CONCLUSION: SOME OPEN PROBLEMS

(i) In the static models one would like to analyze the low-temperature behavior when there is
a continuous rotational symmet(gnodels A, C, and I In situations where the ground states are
of Neel type and break the symmetry, we expect that for dimensions greater or equal to three there
is long range order. For example in the case of the static Kondo modelUwith, an expansion
of (2.10 in powers ofg ! for largeg gives, to first non-vanishing order, the classical Heisenberg
Hamiltonian with a coupling constant proportional 4o2. Therefore it is reasonable to expect
long range order at larg8 and Bg~2. However, in the case of the usual Heisenberg model the
only known way to prove the existence of LRO is through the use of reflection positivity tech-
niques, but heréunlike the case of zero temperature in Sec. llliAis not clear how to proceed
because the interaction is on-site. Analogous problems arise for the static approximations to the
Hubbard model, where one also has to deal with the fact that the amplitude of the vector field is
variable. We hope that the analysis of the Holstein model is a first step toward the solution of this
problem.

(i) We would like to understand the effect of spin, when quantum fluctuations are switched
on. One can again perform the integration over the phonons and this leads to a two body potential
which is attractive between spin up and down electrons. From the rigorous point of view the
analysis of this case is still open even in one dimension. It is expected that in the half-filled band
the ground state is ordered and has period two for all valugs?®fn contrast to the spinless case
where this is not so for smad). An important problem is also the effect of quantum fluctuations
in two or three dimensions; in this connection the techniques developed in Refs. 22 and 23 could
be useful for the strong coupling case. Let us mention that Freericks and Lieb have proven that for
the Holstein model on a connected finite lattice, when the Hamiltonian is real, for any even
number of electrons, the ground state is unique and has zero tot&! &me also Ref. 25 for a
similar statement obtained previously by Lieb for the attractive Hubbard model

(iii) A popular semi-quantum model, not covered by the present review, used to describe the
polyacetylene chain, is the Su—Schrieffer—Heeger m@@8H. There thewr-electrons are itiner-
ant and hop on the chain, whereas thelectrons contribute to the effective elastic energy of the
chain, which is modeled by a classical displacement field. The hopping amplitude of the
mr-electrons is a function of the displacements and this leads to an interaction between the classical
and the quantum degrees of freedom. In order to investigate the effect of electron correlations one
may also add a Hubbard interaction. For an extensive review of this model the reader can consult
Ref. 26. It is proved in Ref. 27 and 18 that, in one dimension at half-filling, the ground state
configuration of the displacements is either homogeneous or it has period two as predicted by the
theory of the Peierls—Frohlich instability. Similar models and results have been discussed in two
dimensiong€8-%|n the SSH model it is expected, but there is no proof, that the Peierls instability
persists when the quantum fluctuations of the positions of the atoms are taken into dtcount.
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APPENDIX: THE STATIC APPROXIMATION

We give some details on the derivation of the static approximations to the Hubbard models
and show their relationship to the HF and BCS theories. For simplicity we congidér h=0.
Let us start with the repulsive moddU¢0) with Hamiltonian(2.2). Using the identity

T 1 T n__ 2 2,1
(CxCx1 = 2)(Cx Cx  —2) = —3S(X) "+ 3, (A1)
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whereS(x) = %Ea'B:TYLCla(TaBCXB is the electron spin operator, the Hamiltonian becofapgo a
constant term

2U
Helec: 2 txyclacya_? 2 S(X)Z- (AZ)
X,yeA xe A

In terms of Grassman anticommuting variables for each spin compoﬁe(m,t), U (X,1)
(x,t) e AX[0, B], the partition function is given by

U (s — 2
ZHubbard:f Pﬁ'(dw)exr{gf th (aﬂZTl l//a(xit)oaﬂlrljﬁ(xit)) :|1 (AS)

0 xeA

whereP 5(dy) i§ the Gras':sm.anian integral Wi'Fh the appropriate propadatmlogous td4.10].
The next step is an application of the Gaussian identity

2 dei(x,b) 1 \F _
| N exn[—§|¢<x,t>|2+ ERAU NP ERTER

U e 2
:exi{g (a,,BE—T,l wa(x!t)o-aﬁ:Tvlwﬁ(Xlt)) :|l (A4)

where ¢(x,t) is atime-dependerduxiliary field coupled to the electron spin. We get the formal
expression

Zuwwars~ | 7 XSl D], (A5)

whereS.«(¢) is the effective action of the time-dependent field, and

1 (8
exp[seﬁ<¢)]:ex;{—§ [fat 3 tooxnl|x [ Pyay

. (AB)

U (s T

It is at this point that we make the static approximation. We replace the auxiliary fieldstatia
one ¢(x). Then(A6) becomes equal to

exp[—EgA |$(0)I?

=Tr ex;{—,@

whereH;, is given by(2.6) with g = yU/3. We have thus obtained mod&l19

To recover the HF mean field theory from the path integral formalism one evaluates the path
integral Z¢ in (A5) by means of the saddle point approximation. The saddle point is the solution
of

U N
f Pﬁ(dwexp[ \ﬁ 2 2 Y00 gx)

XeA a,B=1,

=exd — BF(P;8)], (A7)

1
Hont Hint 5 2 |¢(x>|2)
xeA

) .
W Seff( ¢) =0, | = 1,2,3. (A8)
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If one looks for static solutions qfA8), the equation reduces to

P -
W F(CD,,B)=O, |—l,2,3, (Ag)

which vyields (2.21). Therefore the Hartree—Fock approximation is equivalent to the variational
problem of finding the global minimum d¥.
In the case of the attractive mod@.2) with U<0, we use the identity

(C%1Cx — D)€} 6 — D =S1(0) >+ S5(x) >~ §, (A10)
whereS;(x) andS;(x) are the components of the electron pseudospin operator
’ 1 Tt AT ’ i T AT
Si(x)= > (CxiCx +Cx(Cxp)y  Sp(X)= > (Cx1Cx; —Cx|Cx1)- (A11)

The Hamiltonian becomes up to a constant term

He.ec=xy2A txycl(,cya—lwxEA (S{(X) 2+ S5(x)?). (A12)

We then proceed in a way similar to the repulsive case, by applying another Gaussian identity

ul — — — —
exp% (L1 (0%, 06 0+ (60 106D 12 = [y (0 1 (1) = 1y (X, 1) (X, D)]7]

17y dehi(x,) 1 , , W_ _
=) T O 2 (AT DD F N g (e (Dl dax)

: (A13)

U
+tiga(x,t) ]+ \/% P (X O P (X D[ h1(X,1) =T a(X,1)]

wheregq(Xx,t), ¢,(X,t) is atime-dependerduxiliary field coupled to the electron pseudospin. As
before the static approximation consists in replacing it bstatic classical fieldg,(Xx), @»(x)
which then giveq2.22.
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