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Ground states and low-temperature phases of itinerant
electrons interacting with classical fields:
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We review, from a unified point of view, a general class of models of itinerant
electrons interacting with classical fields. Applications to thestatic Holstein,
Kondo, and Hubbard models are discussed. The ground state structure of the clas-
sical field is investigated when the electron band is half-filled. Some of the results
are also valid when there is a Hubbard interaction between spin up and spin down
electrons. It is found that the ground states are either homogeneous or period two
Néel configurations, depending on the geometry of the lattice and on the magnetic
fluxes present in the system. In the specific models, Ne´el configurations correspond
to Peierls, magnetic or superconducting instabilities of the homogeneous state. The
effect of small thermal and quantum fluctuations of the classical fields are reviewed
in the context of the Holstein model. Many of the results described here originate
from the work of Elliott Lieb and collaborators. ©1997 American Institute of
Physics.@S0022-2488~97!00104-7#

I. INTRODUCTION

In many systems one can often distinguish degrees of freedom which have to be t
quantum mechanically from others for which a classical description is reasonable; conside
the distinction between the treatment of electrons and nuclei in the Born–Oppenheimer the
molecules. For this reason many models used in condensed matter physics contain itineran
tum particles, usually electrons belonging to a conduction band, interacting with a classica
We shall call these models ‘‘semi-quantum.’’

A much-studied model of this sort is the Falicov–Kimball model, first introduced to exp
metal-insulator transitions in rare earth materials where electrons in a conduction band in
with electrons belonging to a band of localized orbitals.1 The model then consists of itineran
quantum particles interacting with ‘‘Ising spins’’ representing the presence or absence of a
ized particle. Many exact results exist for this model; we refer to Ref. 2 for a recent review

In this paper we analyze from a unified point of view a variety of models, namely, the s
Holstein, Kondo, and~the static approximations for the repulsive and attractive! Hubbard models.3

We also review what is known rigorously when thermal and quantum fluctuations of the ’’
sical’’ field are taken into account.

Let us describe briefly the physical context of these models:
The Holstein model was originally introduced to describe metal insulator transitions~Peierls

instabilities! in molecular crystals.4 A breathing mode of some large molecule is singled out a
modeled by Einstein oscillators coupled linearly to the electron density. The static Holstein m
obtained when the quantum fluctuations of the oscillators are neglected, has been the ob
many studies related to the occurrence of charge density waves, polarons, and bipolarons in
one-dimensional materials.5 Usually the electron band is assumed noninteracting but it is als
interest to add a Hubbard on-site interaction, between spin up and spin down electrons, in o
0022-2488/97/38(4)/2084/20/$10.00
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investigate the effect of electron correlations on the formation of polarons, bipolarons, and
spatial ordering.

The Kondo model concerns magnetic systems: itinerant electrons interact with magne
purities~quantum spins! localized at the sites of a lattice. If the localized moment of an impu
is large, it is reasonable to approximate it by a classical three-component unit vector attac
the sites of the lattice. The model obtained in this way is called the static Kondo model.~In the
literature the Kondo model refers to the situation with only one magnetic impurity. Here we
in mind the so called lattice Kondo model, and a more appropriate terminology would be ‘‘
lattice Kondo model.’’! One can also add a Hubbard interaction term between spin up and
down electrons.

The two other models covered by our study are closely related to the Hartree–Fock~HF! and
Bardeen–Cooper–Schriefer~BCS! mean field theories of the Hubbard model. In the repuls
case one gets a model of itinerant electrons whose spin is coupled to a classical three-com
vector field sitting at each lattice site. The amplitude of this vector field is variable~unlike the
Kondo case where it is a unit vector!. For the attractive case one finds a system of itiner
electrons interacting with a two-component vector field, whose amplitude can vary. There
associated ‘‘elastic energy’’ term appearing in the Hamiltonian of both models. These m
have been studied in great detail recently from a somewhat different point of view.6

In Sec. II we define a general class of models which contains all cases described ab
consists of itinerant spin up and down electrons that interact by an on-site Hubbard term a
also coupled to a classical matrix-valued field. The kinetic energy matrix of the electrons c
complex, which corresponds to the presence of an external magnetic flux. For a given con
tion of the classical field one can~in principle! integrate out the quantum degrees of freedom,
that the system is reduced to a classical system with a complicated temperature and d
dependent effective energy functional for the classical field. This functional can be interpre
the free energy of the electrons in an external potential associated with a given configuration
classical field.

The main subject of Sec. III is to find the classical configurations that minimize this f
tional. We review here the solution of this problem when the electron chemical potent
adjusted so that there is an average of one electron per site, i.e., when the electron b
half-filled. The case of the static Kondo model is the simplest one. On any bipartite lattice an
magnetic flux the ground state configuration is of Ne´el type: this is similar to what happens in th
Falicov–Kimball model.7,8 For the other models, where the amplitude as well as the directio
the vector field can vary, the situation is more complex. Indeed, depending on the geometry
underlying lattice and the presence of an external magnetic flux, we find that the minim
configuration is either of Ne´el type, or that it is homogeneous with the classical field vanishing
all sites of the lattice. In models of itinerant fermions it appears that the geometry of the lattic
the orbital coupling to a magnetic flux are important because they determine the structure
Fermi surface of the free electron Hamiltonian, which in turn can affect the ground state stru
This will be illustrated by comparing the cases of the square and hexagonal lattices.

When the Hubbard interaction between the electrons is absent, the energy functiona
given classical configuration can be expressed in terms of a one-particle Hamiltonian, and o
then use an inequality first derived by Kennedy and Lieb in the context of the Falicov–Kim
model.9 This method breaks down when spin up and down electrons interact because, eve
given configuration of the classical field, we do not have a one-particle Hamiltonian. Neverth
in his treatment of the flux phase problem, Lieb showed that one can use a reflection po
technique to get some information about the global minima of the energy functional. While
technique has been extensively used in the context of quantum and classical spin syste
bosonic systems, it was only recently extended by Lieb to models of interacting fermions.9 Lieb’s
ideas were extended further by Macris and Nachtergaele.10

A little studied problem is the stability of the ground states when thermal or quantum
J. Math. Phys., Vol. 38, No. 4, April 1997
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tuations of the classical fields are taken into account. Rigorous results, discussed in Sec. IV
been obtained so far only for the Holstein model. For the static model, at small temperatur
large coupling, there exist at least two phases corresponding to the period two ground stat
square lattice in the half-filled band.7,11 To deal with quantum fluctuations it is convenient
integrate out the phonon degrees of freedom. Then one is left with a system of fermions in
ing through a two-body potential, which is short ranged due to the quantum fluctuations.
spinless case, and at small electron–phonon coupling, such a system belongs to the univ
class of the Luttinger liquid and has been analyzed in one dimension in Ref. 12 by renormali
group methods. This analysis shows that, at least in the spinless case with small coupli
ground state will not be ordered, for all densities.

II. THE MODELS

In this section we introduce a general model which is then specialized to the cases of in
The setting is a finite latticeL,Rd containinguLu sites. The kinetic energy of the electrons
described by a hopping matrixT with elementstxy , x, yPL, connecting sites ofL. Boundary
conditions are either free or periodic, and are specified later. The lattice is said to be bipa
there are two disjoint sets of sitesA andB such thatL5AøB and txy50 if x,yPA or x,yPB.
Examples of bipartite lattices that will be considered later are the cubical and hexagonal one
hopping matrix can be complextxy5utxyu exp(iuxy), and the phaseuxy has the interpretation o
the line integraluxy5*x

yA.dl, whereA is a vector potential associated to an external magn
field. The sum of phases along an oriented closed circuit of the lattice is equal to the magne
FC threading the circuit,

(
^xy&PC

uxy5FC , mod 2p, ~2.1!

where the circuitC is a sequence of distinct bonds^xixi11& such thattxixi11
Þ 0, i51,...,k, and

xk115x1 . We shall be using units in whiche5c5\51.
The purely electronic contribution to the Hamiltonian is

Helec5 (
x,yPL,s5↑,↓

txycxs
† cys1U (

xPL
S cx↑† cx↑2 1

2D S cx↓† cx↓2 1

2D , ~2.2!

where we have included an on-site interaction of Hubbard type;U can be positive or negative
WhenU50 we setHelec5Hkin .

To each sitexPL we associate a 232 Hermitian matrix fieldF(x) with elements

Fab~x!5sab•f~x!5S f3~x! f1~x!2 if2~x!

f1~x!1 if2~x! 2f3~x!
D , ~2.3!

wherea,bP$↑,↓%, sab5~sab
1 ,sab

2 ,sab
3 ! is the vector of Pauli matrices andf5~f1,f2,f3!. In the

applications the matrix-valued fieldF(x) will play the role of the phonon field in the Holstei
model, the impurity spin in the Kondo model, and the mean field in the Hubbard model. We
for later use the identity~„s•f(x)…2!ab5uf(x) u2dab . The field has an isotropic elastic energ
@later on it will be convenient to view the elastic energy as a function ofuf(x) u2 instead ofuf(x) u#

Helas5 (
xPL

P„uf~x!u2…, ~2.4!

whereP(y) is a positive convex polynomial of the form
J. Math. Phys., Vol. 38, No. 4, April 1997
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P~y!5(
j51

N

aj ,y
j , y>0. ~2.5!

The interaction between the classical field and the electrons is on-site

H int5g(
xPL

(
a,b5↑,↓

cxa
† Fab~x!cxb , ~2.6!

and the coupling constantg can be positive or negative. For a given configurat
F5$F(x),xPL% of the classical field the total Hamiltonian of the system is

H~F!5Helec1Helas1H int . ~2.7!

The partition function is obtained by performing the trace over the electron Fock s
F 2„l

2(L)^C2
…, and by integrating over the classical field configurationsF,

ZL~b,m,h!5E )
xPL

dn„F~x!… Tr expF2bSH~F!2mN2 (
xPL

h–f~x! D G . ~2.8a!

The average value of a local observableA is given by

^A&L~b,m,h!5
1

ZL~b,m,h!
E )

xPL
dn„F~x!… Tr A expF2bSH~F!2mN2 (

xPL
h–f~x! D G .

~2.8b!

In ~2.8!, N 5 (x,scxs
† cxs and m and ]h are chemical potentials~or external fields!. The free

measuredn„F(x)… depends on the physical situation of interest~see later!.
Since the trace in~2.8! is always positive, it is natural to set

Tr expF2bSH~F!2mN2 (
xPL

h–f~x! D G5exp@2bF~F;b,m,h!#, ~2.9!

whereF can be interpreted as the effective interaction energy of the classical field, induced
itinerant electrons, or as the free energy of the electrons subjected to the external potentiaF(x).
The ground state energy of a configurationF is defined as the zero temperature limit ofF,

E~F;m,h!5 lim
b→`

F~F;b,m,h!. ~2.10!

The global minima of the functionalsE andF are studied in Sec. III. The appropriate space
configurationsF over which one should minimize is determined by the choice of the free mea
in ~2.8!.

The half-filled bandm50, h50: For a bipartite lattice, an electron-hole transformation for
and down spins,

cxs
† →excxs ,cxs→excxs

† , ex51, xPA, ex521, xPB,

transforms the Hamiltonian asH(F)→H(2F), where the bar denotes complex conjugatio
Hence

F~F;b,0,0!5F~2F;b,0,0!, E~F;0,0!5E~2F;0,0!. ~2.11!
J. Math. Phys., Vol. 38, No. 4, April 1997
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Since under the transformation,N→2uLu2N, we find that if the free measure is invariant und
F(x)→2F(x), then

^N&L~b,0,0!5
1

ZL~b,0,0! E )
xPL

dn„F~x!… Tr N exp@2bH~F!#52uLu2^N&L~b,0,0!,

~2.12!

so that the average number of particles^N&L(b,0,0) is equal to the number of sitesuLu for all b.
For this reason the casem50, h50 will be referred to as ‘‘the half-filled band.’’ The result
described in Secs. III and IV A are restricted to this case.

Let us now consider the special cases of~2.7! and ~2.8! which are of interest to us. We sta
with the Kondo model for which the discussion is the simplest.

A. Static Kondo model

The static Kondo model~model A! with interacting electrons (UÞ0) is defined by

HKondo5Helec12g(
xPL

S~x!•f~x!, ~2.13!

whereS(x) 5 1
2(a,b5↑,↓cxa

† sabcxb andf(x) is a unit vector inR3 representing an impurity spin
localized atx. The real Kondo Hamiltonian hasf(x) in ~2.13! replaced by a quantum spi
operatorSimp(x), with Simp

2 5\2s(s11). Presumably the static Kondo model is a reasonable
proximation in the semiclassical limit\→0, \s fixed.

This model is a special case of~2.8! with

dn„F~x!…5df1~x!df2~x!df3~x!d„uf~x!u221…. ~2.14!

The elastic term contributes only a constant so we can drop it.
The minimization of the corresponding functionalsE andF has now to be carried out over th

space

$F~x!,xPLuuf~x!u51%. ~2.15!

B. Static Holstein model

The static Holstein model~model B! with interacting electrons (UÞ0) is defined by

HHolstein5Helec1g(
xPL

~cx↑
† cx↑1cx↓

† cx↓21!f3~x!1 (
xPL

P„f3~x!2… ~2.16a!

and

ZL,Holstein5E )
xPL

df3~x!Tr exp@2bHHolstein#. ~2.16b!

Here f3(x) represents the position of the classical oscillator attached at sitex. In the usual
Holstein model one takesP(y)5 1

2y and the oscillator is quantized so that we have to add a t

2
1

2m2 (
xPL

]2

]f3~x!2

to the Hamiltonian~see Sec. IV!.
J. Math. Phys., Vol. 38, No. 4, April 1997
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ForL bipartite, the coupling term in~2.16a! transforms under the electron-hole transformat
cx↓
† →excx↓ , cx↓→excx↓

† , on down spins only, as

~cx↑
† cx↑1cx↓

† cx↓21!f3~x!→~cx↑
† cx↑2cx↓

† cx↓!f3~x!

and ~2.2! becomes

Helec→ (
x,yPL

txycx↑
† cy↑1 (

x,yPL
txycx↓

† cy↓2U (
xPL

S cx↑† cx↑2 1

2D S cx↓† cx↓2 1

2D .
Therefore fortxy 5 txy the partition function~2.16b! is equal to~2.8a! providedm50, h50, U is
replaced by2U, and

dn„F~x!…5df1~x!df2~x!df3~x!d„f1~x!21f2~x!2…. ~2.17!

Thus the static Holstein model is equivalent to the model defined by~2.8!–~2.17! as long as the
lattice is bipartite and the hopping matrix elements are real.

The minimization of the corresponding functionalsE andF has to be carried out over th
space

$F~x!,xPLuf1~x!5f2~x!50%. ~2.18!

Remark: An extended Falicov–Kimball model with interacting spin up and down electron
obtained if in Sec. II B we take

dn„F~x!…5df1~x!df2~x!df3~x!d„f1~x!21f2~x!2… 1
2 @d„f3~x!21…1d„f3~x!11…#

for the free measure. The usual Falicov–Kimball model has spinless fermions andU50.
The next two models lead to a variational problem forE andF that has recently been studie

in detail.6 We discuss them for completeness and also because the point of view presented
somewhat different.

C. Static approximation for the repulsive Hubbard model

The repulsive Hubbard Hamiltonian~model C! is given by ~2.2! with U.0. Using a path
integral formalism, the partition function can be represented as that of free fermions inter
with a vector valuedtime-dependentauxiliary Hubbard–Stratanovich field which is coupled to t
electron spin~see the Appendix and Ref. 13 for further details!. The static approximation is
obtained by retaining onlytime-independentconfigurations of this field. This procedure gives
model defined by~2.8! with h50 and,

H~F!5Hkin1Helas1H int , g5AU

3
, ~2.19a!

P„uf~x!u2…5 1
2uf~x!u2, ~2.19b!

dn„F~x!…5df1~x!df2~x!df3~x!. ~2.19c!

The minimization of the corresponding functionalsE andF has to be carried out over th
configuration space

$F~x!,xPLuf~x!PR3%. ~2.20!
J. Math. Phys., Vol. 38, No. 4, April 1997
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This variational problem is equivalent to the HF mean field theory for the Hubbard model
self-consistent equation of the mean field theory is obtained by setting the variation ofF with
respect to the classical field equal to zero. This gives~see the Appendix!

f~x!52AU

3
^S~x!&L~b,0,0!. ~2.21!

To go beyond Hartree–Fock theory one needs to investigate both the thermal and qu
fluctuations around the solutions of~2.21!. The model defined by~2.8! and~2.19! corresponds to
taking into account only the thermal fluctuations.

D. Static approximation for the attractive Hubbard model

The attractive Hubbard Hamiltonian~model D! is ~2.2! with U,0. In this case one represen
the partition function with the help of a complex-valuedtime-dependentHubbard–Stratanovich
auxiliary field which is coupled to the electron pseudospin~see the Appendix!. The static approxi-
mation is obtained by retaining onlytime-independentconfigurations of this field. This leads t
~we consider onlym50!

Z̃L5E )
xPL

df1~x!df2~x!Tr exp@2bH̃# ~2.22a!

with

H̃5Hkin1AU

2 (
xPL

~cx↑
† cx↓

†
„f1~x!1 if2~x!…1cx↓cx↑„f1~x!2 if2~x!…!

1
1

2 (
xPL

„f1~x!21f2~x!2…. ~2.22b!

For a bipartite lattice, making an electron-hole transformation on down spins only and p
f1(x)→exf1(x) andf2(x)→exf2(x), the coupling term in~2.22b! becomes

cx↑
† cx↓

†
„f1~x!1 if2~x!…1cx↓cx↑„f1~x!2 if2~x!…→cx↑

† cx↓„f1~x!1 if2~x!…

1cx↓
† cx↑„f1~x!2 if2~x!…

and

Hkin→ (
x,yPL

txycx↑
† cy↑1 (

x,yPL
txycx↓

† cy↓ .

We see that fortxy 5 txy the partition function~2.22a! is equal to~2.8!, whenm50, h50, with

H~F!5Hkin1Helas1H int , g5AU

2
~2.23a!

P„uf~x!u2…5 1
2uf~x!u2, ~2.23b!

dn„F~x!…5df1~x!df2~x!df3~x!d„f3~x!…. ~2.23c!

The minimization of the corresponding functionalsE andF has to be carried out in the spac
J. Math. Phys., Vol. 38, No. 4, April 1997
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$F~x!,xPLuf3~x!50%. ~2.24!

This variational problem is equivalent to the BCS mean field theory for the Hubbard model
self-consistent equation of the mean field theory is obtained by setting the derivative ofF equal to
zero. This yields~see the Appendix!

f1~x!2 if2~x!52AU

2
^cx↑

† cx↓&L~b,0,0!, ~2.25a!

f1~x!1 if2~x!52AU

2
^cx↓

† cx↑&L~b,0,0!. ~2.25b!

As in the repulsive case, the model~2.8!–~2.23! corresponds to taking into account on
thermal fluctuations around the solutions of~2.25!.

III. MINIMIZATION OF THE ENERGY FUNCTIONALS E AND F

We discuss now general theorems for the structure of the global minima of the functi
~2.9! and ~2.10!, for the half-filled band,m50 and h50. Results away from half-filling are
available for the ground states of the Falicov–Kimball2 and also for the structure of the loca
extrema ofE andF for the Holstein model.14,15We setF(F;b,0,0)5F(F;b), E(F;0,0)5E(F),
and ^—&L~b,0,0!5^—&L~b!.

A configurationF is called aNéel configurationif it has the form

Fab~x!5exwsab•n̂, ~3.1!

wheren̂5(n1 ,n2 ,n3) is any fixed unit vector, andw is a real number independent ofx. The main
result described in this section is that under appropriate conditions, in the half-filled ban
energy functionals attain their global minimum for configurations of the form~3.1!. For the static
Kondo model we necessarily havew51. For the other models it is evident that, when the coupl
between electrons and classical fieldg50, the homogeneous configuration corresponding tow50
is a ground state. WhengÞ0 this state may remain stable, or become unstable so thatw acquires
a nonzero value depending onb, g, andU. In the context of the Holstein model,wÞ0 is the
so-called Peierls instability, while for the static approximations to the attractive and repu
Hubbard models,wÞ0 means respectively that there is a superconducting or magnetic insta

A. Interacting electrons, UÞ0

For the Hamiltonian~2.7! with UÞ0 it turns out that one can adapt the reflection positiv
techniques, previously used for quantum spin or bosonic systems,16,17as was first shown by Lieb
for the Hubbard model.9

Some restrictions on the geometry of the lattice are needed, and instead of formulati
most general result we consider here three representative examples. These are:(a) one-
dimensional rings with an even number of sites, (b) the bipartite square (or cubic) lattice
periodic boundary conditions, and (c) the bipartite hexagonal lattice with periodic boun
conditions. Note that for all these cases the number of sites contained in any closed loop is
For such latticesL embedded inRd, consider a (d21)-dimensional hyperplaneP not containing
any vertex ofL, separatingL in two sets of vertices calledL ~‘‘left’’ ! andR ~‘‘right’’ !, so that
L5LøR. WhenL andR are related to each other by a geometric reflection acrossP, we say that
P is a reflection plane forL. For example, for the bipartite square lattice with periodic bound
conditions, all planes perpendicular to the two coordinate axis and not containing any vert
reflection planes.
J. Math. Phys., Vol. 38, No. 4, April 1997
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Given $txy%, txy5utxyu exp(iuxy), the flux configuration is called acanonical flux configura-
tion if (a) for one-dimensional rings,

(
^xy&PL

uxy5pS uLu
2

21D , mod 2p, ~3.2!

(b) for the bipartite square lattice on a torus,

(
^xy&PF

uxy5p, mod 2p, ~3.3a!

for all elementary square plaquettesF, and

(
^xy&PL i

uxy5pS uL i u
2

21D , mod 2p, i51,2, ~3.3b!

L i , i51,2, the two nontrivial loops of the torus along the coordinate axis; and(c) for the bipartite
hexagonal lattice on a torus,

(
^xy&PF

uxy50, mod 2p, ~3.4a!

for all elementary hexagonsF, and

(
^xy&eL i

uxy5pS uL i u
2

21D , mod 2p, i51,2, ~3.4b!

L i , i51,2, the two nontrivial loops of the torus along the coordinate axis.
For example a flux which is uniformly equal to zero~realized by taking alluxy50! is non

canonical for a cubical lattice, while it is canonical for the hexagonal one. We note that in a
above cases it is possible to choose a gauge~i.e., a choice of phases$uxy%! such that alltxy are
real. The following theorem ensures that under appropriate conditions the global minimumE
andF is attained among Ne´el configurations.

Theorem 1: Let L be one of the lattices~a!, ~b!, and~c!. Suppose that the flux configuratio
is canonical and that the moduli$utxyu% are invariant under geometric reflections through
reflection planesP of L. Then there exists at least one minimizer ofE(F) andF(F;b) which is
a Néel configuration~3.1!.

Remarks:~i! To apply the theorem to the four specific models described in Sec. II, one h
specify the space over which the minimization is carried out. For the static Kondo mode
space is~2.15! so that the minimizer hasw51 in ~3.1!. For the static Holstein and attractiv
Hubbard models the spaces are respectively~2.18! and~2.24! so that the minimizers have respe
tively n̂5(0,0,1) andn̂5(n1 ,n2,0). For the repulsive Hubbard model there is no constraint.

~ii ! We do not know of any general statement about the unicity of the minimum. All we k
is that there is at least one minimum of the form~3.1!, and if there is another one, we cann
exclude that it is outside the class of Ne´el configurations.

~iii ! Except for the case of the Kondo model A where the ground state is completely d
mined by Theorem 1, the value ofw will, in general, depend onb, g, U and$utxyu%. WhenU50,
w can be found explicitly in principle, because the Hamiltonian reduces to that of free electro
a period two potential~see Sec. III B!.

~iv! A straightforward application of reflection positivity also implies that given a reflec
planeP, then if r (x) is the reflection of a sitex throughP,
J. Math. Phys., Vol. 38, No. 4, April 1997
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^f~x!•f„r ~x!…&L~b!<0 ~3.5!

at any finite temperature. This inequality means that there is a tendency towards antiferrom
behavior but does not imply that there is long range order. Indeed it is valid for the
dimensional ring, where one does not expect long range order for any finite temperature.

A similar result for the case of the extended Falicov–Kimball model mentioned, after
II B was pointed out in Ref. 10. The proof given below is based on the methods of Ref. 9 an

Sketch of the Proof. Given a reflection planeP we introduce new creation and annihilatio
operators defined forall xPL5LøR,

dxs
† 5cxs

† eipNL, dxs5eipNLcxs , ~3.6!

whereNL 5 (xPL,s5↑,↓cxs
† cxs . The new operators commute ifxPL, yPR or if xPR, yPL, and

satisfy the canonical anticommutation relations ifxPL, yPL or if xPR, yPR. In terms of the
new operators the Hamiltonian~2.7! takes the same form with thecs replaced by theds. It can be
decomposed as

H~F!5HL~FL!1HR~FR!1H1 ~3.7!

with

HL/R~FL/R!5 (
x,yPL/R

txydxs
† dys1U (

xPL/R
S dx↑† dx↑2 1

2D S dx↓† dx↓2 1

2D
1g (

xPL/R
(

a,b5↑;↓
dxa
† Fab~x!dxb1 (

xPL/R
P~ uf~x!u2!, ~3.8!

H15 (
xPL,yPR

txydxs
† dys1 (

xPR,yPL
txydxs

† dys , ~3.9!

andFL/R5$F(x),xPL/R%. Because the flux configuration is canonical, it is always possibl
choose a gauge such that$txy% is real and moreovertuv52utuvu for the bonds^uv& that are
intersected by the reflection planeP. Then, performing an electron-hole transformation for t
sitesxPR only,

HL~FL!→HL~FL!, ~3.10a!

HR~FR!→HR~2FR!, ~3.10b!

H1→H̃152 (
xPL,yPR

utxyudxs
† dys

† 2 (
xPR,yPL

utxyudxsdys . ~3.10c!

The transformed HamiltonianH̃(F) obtained from~3.7! is given by the sum of the three terms o
the rhs of~3.10!:

H̃~F!5HL~FL!1HR~2FR!1H̃1 . ~3.11!

Form5h50, the trace in~2.9! is invariant under all the transformations performed above, so
H(F) and H̃(F) have the same ground state and effective energiesE(F) and F(F;b). The
Hamiltonian ~3.11! is reflection positive so that a direct application of the Dyson–Lieb–Sim
inequality16 or its ground state version18 implies that at least one of the two Hamiltonians,
J. Math. Phys., Vol. 38, No. 4, April 1997
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HL~FL!1HR~FL
r !1H̃1 , ~3.12a!

HL~2FR
r !1HR~2FR!1H̃1 , ~3.12b!

has a lower energy, whereFL/R
r is the configuration obtained by reflectingFL/R acrossP. There-

fore given a configurationF and a reflection planeP separatingFL andFR , E(F) andF(F;b)
are lowered whenF is replaced by one of the two new configurations formed byFL and2FL

r or
by2FR

r andFR . Iterating this inequality with respect to all reflection planes yields a lower bo
which is attained for a configuration of Ne´el type ~3.1!.

B. Noninteracting electrons, U50

ForU50, the HamiltonianHkin1H int in ~2.7! is the second quantized form of a one-partic
Hamiltonian

hxy,ab5txydab1gFab~x!dxy , ~3.13!

x, yPL, a, bP$↑,↓% which acts on wave functions inl 2(uLu)^C2. The trace over the electro
Fock space in~2.9! can be performed and form5h50 this leads to

F~F;b!52
1

b
tr ln cosh

b

2
Ah21 (

xPL
P~ uf~x!u2!, ~3.14!

and by taking the limitb→`

E~F!52
1

2
tr Ah21 (

xPL
P~ uf~x!u2!. ~3.15!

In ~3.14! and ~3.15! the trace is on the spacel 2(uLu)^C2.
The minimization of functionals of the type~3.14! and~3.15! was first achieved, in the case o

the Falicov–Kimball model, by Kennedy and Lieb7 for zero magnetic flux~on general bipartite
graphs! and by Lieb and Loss8 when the flux is present. The method presented below for
configurations which arecanonicalrelies on an application of Theorem 1, and is different than
Ref. 8. However, it breaks down if the flux isnoncanonical, so that in this respect the methods
Ref. 7 and 8 are more general.

Case of canonical flux configuration: Application of Theorem 1. In this paragraph we conside
the problem of determining the value ofw in ~3.1! for the models B–D. When the lattice and th
set of$txy% satisfy the hypothesis in Theorem 1, we know that a minimum of~3.14! and~3.15! is
attained in the class of Ne´el configurations~3.1!. For such configurations we have

h25T^121g2w21L ^12 , ~3.16!

where1n is the n3n identity matrix. Substituting~3.16! in ~3.14! and ~3.15! we see that the
problem is reduced to the minimization of functions of one variablew2,

f ~w2,b!52
2

b
tr ln cosh

b

2
AT21g2w21L1uLuP~w2!, ~3.17!

e~w2!52tr AT21g2w21L1uLuP~w2!. ~3.18!

In ~3.17! and ~3.18! the trace over the spin degree of freedom has been performed an
remaining one is over the spacel 2(L).
J. Math. Phys., Vol. 38, No. 4, April 1997
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Since f is a convex function ofw2, it has a unique minimizer, sayw0
2 It follows that

F0(x)5exw0s•n̂ is a minimizer forF(F;b) ~however, we cannot conclude thatF0 is unique!.
To computew0 we note that sinceP(w2) grows at least asw2 and the square root behaves asw
for w2→`, the only possibilities for the minimum of~3.17! are:

~i! w0
2 is a solution of the equationf 8(w0

2 ,b)50, i.e.,

P8~w0
2!5

g2

2uLu
trF ~T21g2w0

21L!21/2 tanh
b

2
AT21g2w0

21LG ~3.19!

if it exists.
~ii ! If ~3.19! has no solution, then the minimum off is attained at the boundary of the doma

of w2, i.e., forw050.
For the minimum of~3.18! the situation is analogous, with~3.19! replaced bye8(w0

2)50, i.e.,

P8~w0
2!5

g2

2
tr@~T21g2w0

21L!21/2#. ~3.20!

Let us now discuss the properties of Eqs.~3.19! and ~3.20!. We begin with the case of finite
temperatures. IfP has a harmonic term,a1.0, then forbg2,2a1 the minimizer isw050. Indeed
sinceP is convex,P8 grows, soP8(w2)>a1 . Moreover, using tanhx<x we have that

g2

2uLu
trF ~T21g2w21L!21/2 tanh

b

2
AT21g2w21LG< 1

4
bg2. ~3.21!

Hence~3.19! cannot be satisfied forbg2<2a1 . On the other hand, ifP has no harmonic term
a150, thenP8(w2) is monotone increasing from 0 tò. At the same time the right-hand side o
~3.19! is a positive monotone decreasing function ofw2 and~3.19! has therefore a unique solution
w0Þ0, for any temperature.

We discuss the case of zero temperature, in the infinite volume limituLu→`, where the
spectrume(k)2 of T2 plays a fundamental role. In the infinite volume limit~3.20! reduces to

P8~w0
2!5

g2

2 E
@2p, p#d

ddk
1

Ae~k!21g2w0
2
. ~3.22!

If P has no harmonic term,a150, P8(w2) is monotone increasing from 0 tò while the right-
hand side of~3.22! is positive and monotone decreasing. Therefore~3.22! has always a unique
solutionw0Þ0. On the other hand, ifP has a harmonic terma1.0, thenP8(w2)>a1 , so forg
small enough~3.22! will not have a solution unless the integral diverges wheng→0. Whether the
integral diverges depends on the geometry of the lattice and the flux configuration:

~a! One-dimensional ring: e(k)25 ~cosk!2 so that the integral diverges and~3.22! has a solution
w0Þ0. Here the flux plays no role.

~b! Cubical lattice with canonical flux: e(k)25( i51
d ~coski!

2, which vanishes for the points
~ki5p/2, i51,...,d! and therefore the integral in~3.22! is convergent even forg→0. There-
fore there existgc.0 such that, forg<gc , ~3.22! has no solution andw050, and forg>gc ,
~3.22! has a unique solutionw0Þ0.

~c! Hexagonal lattice in d52 with canonical flux: e(k)2 vanishes only at isolated points and th
situation is analogous to (b).

For m5h50 at zero temperature the energy levelse(k),0 are filled and those for which
e(k).0 are empty. The equation determining the Fermi surface ise(k)50. In cases~b! and ~c!
J. Math. Phys., Vol. 38, No. 4, April 1997
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whered>2 the Fermi surface consists of isolated points, and as a consequencew050 for g small
enough. In the context of the Holstein model this means that there is no Peierls instabil
g,gc .

When the flux is noncanonical and equal to zero the Fermi surface of the half-filled syste
a cubical lattice, is square shaped~see next paragraph! and this leads to a nonzero minimizer fo
all g.

Case of noncanonical flux configuration:When the flux configuration is not canonical, on
cannot rely on Theorem 1 and other methods have to be used. The main example of such
is the cubical lattice withtxy5t ~zero flux!. We rely on an inequality@~3.23! below# that was first
derived in the context of the Falicov–Kimball model.7

We just require the latticeL to be bipartite and for the moment no other specific hypothe
is made on$txy%. Then multiplication byex is a unitary transformation such thatT→2T. Thus
E(F)5E(2F) and concavity of the square root implies

E~F!5
1

2
E~F!1

1

2
E~2F!>2tr AT21g2F21 (

xPL
P~ uf~x!u2!, ~3.23!

whereF2 is theL3L matrix with elementsf(x)u2dxy . By expandingh2 one checks that the
equality is realized for Ne´el configurations~3.1!. Now we proceed to analyze the consequence
this inequality.

Kondo model A:There uf(x)u251 so that the minimum is attained for configurations~3.1!
with w51. This result is valid for any flux configuration and is similar to what happens for
Falicov–Kimball model.8

Models B, C, and D:In order to show that a Ne´el configuration is a minimizer ofE, we have
to check that the minimum of the rhs of~3.23! is itself a Néel configuration. The rhs of~3.23! is
a convex functional of$uf(x)2u% so that it has a unique minimizer$uf0(x) u

2%. It is given by the
solution of the following set ofuLu equations

P8~ uf0~x!u2!5
g2

2
^xu~T21g2F0

2!21/2ux&, xPL, ~3.24!

if such a solution exists~here we use the Dirac notation!. If there is no such solution, then
minimum of ~3.23! is attained on the boundary of the set$uf0(x)u

2>0, xPL%, in other words
f0(x)50 for at least one sitexPL.

Lemma:Suppose that$txy% is such that the minimizer of the rhs of~3.23! is translation
invariant, uf0(x)u

25w0
2, andw0Þ0. ThenE(F) has a unique minimizerF0(x)5exw0s•n̂.

Proof: From the hypothesis in the Lemma and~3.15!

E~F!>2tr AT21g2w0
21L1uLuP~w0

2!5E~F0!, ~3.25!

and thereforeF0 is a minimizer ofE. Suppose thatE has a second minimizerF1ÞF0.
Then

E~F0!5E~F1!>2tr AT21g2F1
21L1 (

xPL
P~ uf1~x!2u! ~3.26!

so thatuf1(x) u
2 is also a minimizer for the rhs of~3.23!. However, this is not possible since th

latter has a unique minimum by convexity.
As a concrete example let us consider the case of a square lattice withutxyu5t, and a flux

configuration equal to zero for all square plaquettes. Then it can be seen that the set of eq
~3.22! has a uniform solutionuf0(x)u

25w0
2, w0Þ0 for all gÞ0. Indeed the spectrum ofT2 is
J. Math. Phys., Vol. 38, No. 4, April 1997

16¬Feb¬2007¬to¬128.178.70.47.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://jmp.aip.org/jmp/copyright.jsp



e

ct
st for

nite
.

,

,

nd D.

when
s have
s
uantum

results

ve that

2097N. Macris and J. L. Lebowitz: Low temperature phases of itinerant electrons

Downloaded¬
e(k)25(( i51
d coski)

2, thus forg→0 the integral~3.22! has a logarithmic singularity due to th
square shaped Fermi surfacee(k)50. We remark that the solution exists for all polynomialsP.

For an arbitrary flux configuration the spectrum ofT is a very complicated set and we expe
that the structure of the minimizers as a function of the flux is also more complicated, at lea
models B and C.

For the finite temperature functionalF(F,b), the analog of inequality~3.23! is

F~F;b!>2
2

b
tr ln cosh

b

2
AT21g2F21 (

xPL
P~ uf~x!u2!. ~3.27!

Some consequences of~3.27! are the following:
Kondo model A:Equation~3.27! implies as before that the unique minimum ofF is ~3.1! with

w51. This holds for an arbitrary bipartite lattice and any$txy%.
Models B, C, and D:The case of the Holstein model was analyzed in Ref. 11 on an infi

square lattice withtxy5t. The results which also holds for models C and D are the following
~i! If P has no harmonic term,a150, then for anyb andgÞ0, F attains its minimum for the

Néel configurations,F0(x)5exw0s•n̂ wherew0
2Þ0 is the solution of the equation

P8~w0
2!5

g2

2 E
@2p, p#d

ddkE~k!21 tanhFb2 E~k!G , ~3.28!

with E(k)5[4t2(( i51
d cos,i)

21g2w0
2] 1/2.

~ii ! If P has a harmonic term,a1.0, then givengÞ0 there existbc,` such that~3.28! has
a solutionw0Þ0 only for b.bc. For b.bc the Néel configurations are the only minimizers
while for b<bc , F0(x)50 is the only minimizer.

We conclude this section with the following theorem.
Theorem 2: Let L and$txy% be arbitrary. Suppose thatP is a polynomial of orderN, N>1,

all of whose coefficients are strictly positive,aj.0, j51,...,N. Then for models B, C, and D
there exists a positive numberc such that forbg2,c, F(F;b) is a strictly convex functional.
Since it is even it attains its unique minimum atF(x)50, all xPL.

The proof for the Holstein model can be found in Ref. 11 and also works for models C a
A consequence of this theorem is the absence of long range order forbg2,c ~see Sec. IV A!.

IV. THERMAL AND QUANTUM FLUCTUATIONS

In this section we address the question of stability of the ground states found in Sec. II
thermal or quantum fluctuations of the classical field are taken into account. Rigorous result
been obtained so far only for the Holstein model withU50, and we will restrict ourselves to thi
case. We first consider thermal fluctuations alone, in two and three dimensions, and then q
fluctuations at zero temperature for the one-dimensional system.

A. Thermal fluctuations in d52,3

From ~2.8! and ~2.18! we have for the partition function

ZL~b,0,0!5E )
xPL

df3~x!expF2
1

2 (
xPL

f3~x!212 tr ln cosh
b

2
A~T1gF3!

2G . ~4.1!

In ~4.1! F3 is theuLu3uLu matrix with elementsf3(x)dxy , and the trace is overl
2(uLu). The factor

2 in front of the trace comes from the spin degree of freedom and has no influence on the
~the spin becomes crucial when quantum fluctuations are taken into account, see Sec. IV B!. From
now on, we assume that the boundary conditions are periodic. As in Theorem 2 one can pro
J. Math. Phys., Vol. 38, No. 4, April 1997
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12a

2 (
xPL

f3~x!212 tr ln cosh
b

2
A~T1gF3!

2 ~4.2!

is a convex functional of$f3(x)% for bg2!1 if a,1. It then follows from the Brascamp–Lie
inequalities that

„^f3~x!f3~y!&L~b!…x,yPL<a21/21L ~4.3!

as quadratic forms. This implies that the Hilbert–Schmidt norm of the matrix on the left-hand
is bounded bya21 for all uLu,

1

uLu (
x,yPL

u^f3~x!f3~y!&L~b!u2,a21, ~4.4!

and clearly this is not compatible with the existence of long range order.
Remark:The same result can be proven also for the models C and D.
In situations where there are two antiferromagnetic ground states, it can be shown tha

exist two corresponding low-temperature phases for a large enough couplingg. More precisely if
L is a square lattice withutxyu5t and a uniform flux equal top or to 0 in all plaquettes, there exis
a fixed numberd . 0 such that forg andb/g sufficiently large we have

6w02d<^exf3~x!&6~b!<6w01d, ~4.5!

wherew0 is the amplitude of the ground state, and^2&6 ~b! are expectations in the Gibbs stat
corresponding to the ordering on the different sublattices. They are obtained as infinite v
limits with appropriate boundary conditions.

The proof of ~4.5! is based on a Peierls argument for continuous spins.11 The argument is
quite involved because the ‘‘classical Hamiltonian’’ in~4.1! is not explicit, and relies on method
developed by Kennedy and Lieb7 for the case of the Falicov–Kimball model wheref3(x) takes
values61, combined with an idea of Ref. 19 to take into account the ‘‘small’’ and ‘‘large’’ fie
configurations.

For the other three models discussed in this paper, the ground state breaks a con
symmetry and therefore Peierls type arguments do not work. It is expected that there is long
order for dimensions greater or equal to three but a rigorous proof is lacking.

B. Quantum fluctuations in one dimension

The effect of quantum fluctuations has been analyzed12 so far only for the one-dimensiona
spinless Holstein model with a dispersion term

H52
t

2 (
xPL

~cx
†cx111cx11

† cx!1g(
xPL

S cx†cx2 1

2Df3~x!

1m (
xPL

cx
†cx1 (

xPL
S 2

1

2m2

]2

]f3~x!2
1
1

2
f3~x!21b„f3~x!2f3~x11!…2D . ~4.6!

It is shown in Ref. 12 that in the limit of zero temperature, for any fixed density of elect
0,r,1, andg small enough~depending onm, m21Þ0!,

^cx
†cy&'2

sin pF~x2y!

pux2yu112h~g! , ux2yu→`, ~4.7!
J. Math. Phys., Vol. 38, No. 4, April 1997
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with pF5pr and the anomalous exponenth(g) analytic as a function ofg. The exponent is
nonvanishing as soon asgÞ0 and the lowest nonvanishing order isO(g6) for b50 andO(g4) for
bÞ0. Thus forgÞ0 the electrons form a Luttinger liquid, and their momentum distribution
no jump discontinuity atp5pF . Of course forg50 the Fermi liquid behavior is recovered.

This behavior holds in particular form50 wherer51
2 andpF5p/2, and is completely differ-

ent than in the casem2150 ~note that in the half-filled case one does not have to adjust
chemical potential as a function ofg to maintainr51

2!. Indeed whenm
2150, a Peierls instability

occurs and the ground state for the static phonons isf3(x)5exw0 , w0Þ0 for all gÞ0. Therefore
the electrons see a period two potential and their spectrum is split into two bands, the low
being filled, and the upper one empty so that~at zero temperature!

^cx
†cy&'e2A~g!ux2yu, ux2yu→`, ~4.8!

whereA(g) is the energy gap separating the two bands atpF5p/2.
Thus as soon asm21Þ0, for small enough coupling, the Peierls instability occuring atr51

2 in
the static case, disappears. We emphasize that these results are limited to small coupling
at large enough coupling the Peierls instability is probably stable against the qua
fluctuations.20

Since the phonon field is harmonic and its coupling to the electrons is linear, one can
integrate it out, and then one is left with a one-dimensional interacting fermionic system. In
of Grassmanian anticommuting variablesc̄(x,t), c(x,t), (x,t)PL3[0,b], the partition function
becomes

ZL~b,m!5E Pb~dc!expF2m (
xPL

E
0

b

c̄~x,t !c~x,t !2
g2

8 (
x,yPL

E
0

b

dsE
0

b

dt

3v~x2y,t2s!S c̄~x,t !c~x,t !2
1

2D S c̄~y,s!c~y,s!2
1

2D G , ~4.9!

wherePb(dc) is the Grassmanian integral with propagator

1

buLu (
eik0b521

(
eikL51,uku,p

e2 ik0~ t2s!2 ik~x2y!

2 ik01cospF2cosk
~4.10!

andv(x2y, t2s) is the effective potential between fermions that is induced by the phonon

v~x2y,t2s!5
1

buLu (
eik0b51

eik0~ t2s!2 ik~x2y!

m2k21112b2~12cosk!
. ~4.11!

Form21Þ0 fixed,b50 andb,L→`, v(x2y,t2s)'dxy(2m)
21 exp(2m21ut2su). We see that

the effective interaction generated by the quantum fluctuations of the phonons is a two-bod
range potential in the time direction and has zero range in the spatial direction. WhenbÞ0 the
situation is similar except that there is a more complicated short range interaction in the s
direction. The behavior~4.7! is obtained by rigorous renormalization group methods develope
Ref. 21 for the one-dimensional spinless Fermi gas with short range interactions.

On the other hand, forb, L fixed andm21→0, we getv(x2y,t2s)'b21, so that the
effective interaction induced by static phonons is an infinite range potential of mean field ty
this situation the Luttinger liquid behavior breaks down and a Peierls instability occurs.
J. Math. Phys., Vol. 38, No. 4, April 1997
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V. CONCLUSION: SOME OPEN PROBLEMS

~i! In the static models one would like to analyze the low-temperature behavior when th
a continuous rotational symmetry~models A, C, and D!. In situations where the ground states a
of Néel type and break the symmetry, we expect that for dimensions greater or equal to thre
is long range order. For example in the case of the static Kondo model withU50, an expansion
of ~2.10! in powers ofg21 for largeg gives, to first non-vanishing order, the classical Heisenb
Hamiltonian with a coupling constant proportional tog22. Therefore it is reasonable to expe
long range order at largeb andbg22. However, in the case of the usual Heisenberg model
only known way to prove the existence of LRO is through the use of reflection positivity t
niques, but here~unlike the case of zero temperature in Sec. III A! it is not clear how to proceed
because the interaction is on-site. Analogous problems arise for the static approximations
Hubbard model, where one also has to deal with the fact that the amplitude of the vector fi
variable. We hope that the analysis of the Holstein model is a first step toward the solution
problem.

~ii ! We would like to understand the effect of spin, when quantum fluctuations are swi
on. One can again perform the integration over the phonons and this leads to a two body po
which is attractive between spin up and down electrons. From the rigorous point of view
analysis of this case is still open even in one dimension. It is expected that in the half-filled
the ground state is ordered and has period two for all values ofg,20 in contrast to the spinless cas
where this is not so for smallg. An important problem is also the effect of quantum fluctuatio
in two or three dimensions; in this connection the techniques developed in Refs. 22 and 23
be useful for the strong coupling case. Let us mention that Freericks and Lieb have proven t
the Holstein model on a connected finite lattice, when the Hamiltonian is real, for any
number of electrons, the ground state is unique and has zero total spin24 ~see also Ref. 25 for a
similar statement obtained previously by Lieb for the attractive Hubbard model!.

~iii ! A popular semi-quantum model, not covered by the present review, used to descri
polyacetylene chain, is the Su–Schrieffer–Heeger model~SSH!. There thep-electrons are itiner-
ant and hop on the chain, whereas thes-electrons contribute to the effective elastic energy of
chain, which is modeled by a classical displacement field. The hopping amplitude o
p-electrons is a function of the displacements and this leads to an interaction between the c
and the quantum degrees of freedom. In order to investigate the effect of electron correlatio
may also add a Hubbard interaction. For an extensive review of this model the reader can
Ref. 26. It is proved in Ref. 27 and 18 that, in one dimension at half-filling, the ground
configuration of the displacements is either homogeneous or it has period two as predicted
theory of the Peierls–Frohlich instability. Similar models and results have been discussed
dimensions.28–30In the SSH model it is expected, but there is no proof, that the Peierls insta
persists when the quantum fluctuations of the positions of the atoms are taken into accoun31
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APPENDIX: THE STATIC APPROXIMATION

We give some details on the derivation of the static approximations to the Hubbard m
and show their relationship to the HF and BCS theories. For simplicity we considerm50, h50.

Let us start with the repulsive model (U.0) with Hamiltonian~2.2!. Using the identity

~cx↑
† cx↑2

1
2!~cx↓

† cx↓2
1
2!52 2

3S~x!21 1
4, ~A1!
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whereS(x) 5 1
2(a,b5↑,↓cxa

† sabcxb is the electron spin operator, the Hamiltonian becomes~up to a
constant term!

Helec5 (
x,yPL

txycxs
† cys2

2U

3 (
xPL

S~x!2. ~A2!

In terms of Grassman anticommuting variables for each spin componentc̄s(x,t), cs(x,t)
(x,t)PL3[0, b], the partition function is given by13

ZHubbard5E Pb~dc!expFU6 E
0

b

dt(
xPL

S (
a,b5↑,↓

c̄a~x,t !sabcb~x,t ! D 2G , ~A3!

wherePb(dc) is the Grassmanian integral with the appropriate propagator@analogous to~4.10!#.
The next step is an application of the Gaussian identity

E )
i51

3
df i~x,t !

A2p
expF2

1

2
uf~x,t !u21AU

3
f~x,t !• (

a,b5↑,↓
c̄a~x,t !sabcb~x,t !G

5expFU6 S (
a,b5↑,↓

c̄a~x,t !sab5↑,↓cb~x,t ! D 2G , ~A4!

wheref(x,t) is a time-dependentauxiliary field coupled to the electron spin. We get the form
expression

ZHubbard5E Df exp@Seff~f!#, ~A5!

whereSeff~f! is the effective action of the time-dependent field, and

exp@Seff~f!#5expF2
1

2 E
0

b

dt(
xPL

uf~x,t !u2G3E Pb~dc!

3expFAU

3 E
0

b

dt(
xPL

f~x,t !•(
a,b

c̄a~x,t !sabcb~x,t !G . ~A6!

It is at this point that we make the static approximation. We replace the auxiliary field by astatic
onef(x). Then~A6! becomes equal to

expF2
b

2 (
xPL

uf~x!u2G E Pb~dc!expFAU

3 (
xPL

(
a,b5↑,↓

c̄a~x,t !Fab~x!cb~x,t !G
5Tr expF2bSHcin1H int1

1

2 (
xPL

uf~x!u2D G5exp@2bF~F;b!#, ~A7!

whereH int is given by~2.6! with g 5 AU/3. We have thus obtained model~2.19!
To recover the HF mean field theory from the path integral formalism one evaluates the

integralDf in ~A5! by means of the saddle point approximation. The saddle point is the sol
of

d

df i~x,t !
Seff~f!50, i51,2,3. ~A8!
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If one looks for static solutions of~A8!, the equation reduces to

d

df i~x!
F~F;b!50, i51,2,3, ~A9!

which yields ~2.21!. Therefore the Hartree–Fock approximation is equivalent to the variati
problem of finding the global minimum ofF.

In the case of the attractive model~2.2! with U,0, we use the identity

~cx↑
† cx↑2

1
2!~cx↓

† cx↓2
1
2!5S18~x!21S28~x!22 1

4, ~A10!

whereS18(x) andS28(x) are the components of the electron pseudospin operator

S18~x!5
1

2
~cx↑

† cx↓
† 1cx↓cx↑!, S28~x!5

i

2
~cx↑

† cx↓
† 2cx↓cx↑!. ~A11!

The Hamiltonian becomes up to a constant term

Helec5 (
x,yPL

txycxs
† cys2uUu (

xPL
„S18~x!21S28~x!2…. ~A12!

We then proceed in a way similar to the repulsive case, by applying another Gaussian ide

exp
uUu
4

@@c̄↑~x,t !c̄↓~x,t !1c↓~x,t !c↑~x,t !#
22@c̄↑~x,t !c̄↓~x,t !2c↓~x,t !c↑~x,t !#

2#

5E P i51
2 df i~x,t !

A2p
expF2

1

2
~f1~x,t !

22f2~x,t !
2!1AuUu

2
c̄↑~x,t !c̄↓~x,t !@f1~x,t !

1 if2~x,t !#1AuUu
2

c↓~x,t !c↑~x,t !@f1~x,t !2 if2~x,t !#G , ~A13!

wheref1(x,t), f2(x,t) is a time-dependentauxiliary field coupled to the electron pseudospin.
before the static approximation consists in replacing it by astatic classical fieldf1(x), f2(x)
which then gives~2.22!.
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