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The Nature of the Spectrum for a Landau 
Hamiltonian with Delta Impurities 
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We consider a single-band approximation to the random Schr6dinger operator 
in an external magnetic field. The random potential consists of delta functions 
of random strengths situated on the sites of a regular two-dimensional lattice. 
We characterize the entire spectrum of this Hamiltonian when the magnetic field 
is sufficiently high. We show that the whole spectrum is pure point, the energy 
coinciding with the first Landau level in the absence of a random potential 
being infinitely degenerate, while the eigenfunctions corresponding to energies in 
the rest of the spectrum are localized. 

KEY WORDS:  Quantum Hall effect: Landau Hamiltonian; localization: 
localization length: delta impurities. 

1. I N T R O D U C T I O N  

The study of random Schr6dinger operators with magnetic fields is impor- 
tant for the theory of the quantum Hall effect and is also of intrinsic mathe- 
matical interest. A basic picture that is widely used in the theories of the 
quantum Hall effect is the following. In each Landau band, all eigen- 
energies except for one energy, E, say, in the center of the band, corre- 
spond to exponentially localized wave functions and the localization length 
~(E) diverges like IE-E,.I-", with v > 0, at E,.. This picture is supported 
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by field-theoretic approaches and also by the so-called network model. 
Much effort has been devoted to the numerical calculation of the exponent, 
and at least for models restricted to the first Landau band, it is found that 
v~  2.3, in agreement with experiment, quite independently of the micro- 
scopic details of the randomness. We refer to the recent review ~1 for more 
information on these matters. 

Mathematical proofs that the wavefunctions are localized, and thus 
the spectrum is pure point, at the edges of the Landau bands have been 
achieved recently, c-" 61 However very little is known about the nature of the 
spectrum in the interior of the band. Avishai et al. ~7~ have shown that in the 
model studied in this paper there is an extended generalized eigenfunction 
at the first Landau energy. 

In earlier works 189~ it was assumed that there exist localized states at 
the band edges. With this assumption it was deduced from the fact that the 
Hall conductivity is nonvanishing that if all states are finitely degenerate, 
then the localization length diverges somewhere in the middle of the band. 
However, there are various possibilities for the spectrum which are com- 
patible with this statement. One possibility is a continuous spectrum, but 
it was already suggested by Thouless ~~ that the spectrum in the center of 
the band might be singular. In this paper we prove, for the model con- 
sidered, that the situation is in fact as follows. The whole spectrum is pure 
point, but there is a single eigenvalue, corresponding to the first Landau 
level, which is infinitely degenerate. We do not prove exponential decay, 
but the decay that we obtain is sufficient to show that the eigenstates other 
than the ones corresponding to the Landau levels do not contribute to the 
conductivity and thus that the conductivity is entirely due to the infinite 
degeneracy. 

We consider a two-dimensional infinite system of noninteracting elec- 
trons moving in a uniform magnetic field of strength B and a random 
potential V. In the symetric gauge the vector potential is given by A ( x ) =  
( - �89 �89 ), x = (x~, x2)  ~ g~2, and the Hamiltonian is 

H = ( - i V - A ( x ) ) 2 +  V(x )  (1.1) 

The effect of the random potential is to broaden the Landau levels into 
bands. When the potential is not too strong compared to the magnetic 
field, these bands do not overlap. The random potential consists of point 
scatterers, delta functions, situated on the sites of a regular lattice. The 
strengths of the scatterers are random; they are independent, identically 
distributed variables with a bounded probability distribution. The precise 
hypotheses on the probability distribution are stated in Section 2. When 
the magnetic field is strong, it is reasonable to consider only the projections 
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of the Hamiltonian onto each Landau level and to neglect the cross terms. 
The Hamiltonian restricted to the nth level is 

H,  = B(2n + 1) P,,+P,, VP, (].2) 

where P,, denotes the projection onto the level. The term B(2n+ 1)P,, 
comes from the decomposition of the purely kinetic part of (I.1) and can 
be dropped, as it modifies the energy only by a constant. Note that the 
resulting Hamiltonian is a random integral operator instead of a differential 
operator and that the kernels of P,, are known explicitly. For simplicity, in 
this paper we restrict ourselves to the case n = 0, but the case n # 0 can be 
treated similarly. 

This model has been the subject of many numerical calculations, lead- 
ing, among other things, to the exponent v/I"1Lt2~ (In refs. l l  and 12 the 
strength takes only two values _+ V.) Our aim is to investigate the validity 
of the physical picture outlined in the first paragraph. 

The results obtained in this paper are valid in the regime when the 
magnetic field is large compared to the density of scatterers. We prove that 
there exists an infinitely degenerate eigenenergy which coincides with the 
first Landau level in the absence of a random potential. This is implied in 
the work of Avishai et al. c7~ But the main contribution of this paper is to 
show that the whole spectrum is pure point and to prove that the eigen- 
functions corresponding to energies not coinciding with the first Landau 
level are localized. Our estimate on the localized wavefunctions show, that 
for every 0 < y < 1, if the magnetic field is sufficiently high depending on y, 
they decay faster than e x p ( - m  Ix] r) for all m > 0 ,  independent of the 
energy. Note that this result does not exclude exponential decay nor the 
possibility that the (exponential) localization length diverges. 

We expect that at least in the strong magnetic field regime considered 
here the results will be unchanged in a more general model where the 
Hamiltonian is not restricted to the first Landau band and the position of 
the scatterers is random. 

The paper is organized as follows. In Section 2 we set up precisely the 
model Hamiltonian and study the eigenspace corresponding to the lowest 
Landau level. The proof that the spectrum is pure point for all energies 
relies on the'general theorem of von Dreifus and Klein/13) In Section 3 we 
prove the two basic hypotheses of this theorem for all energies: (i) that 
with high probability the Green function decays in some large box; and (ii) 
the nonresonance condition. In ref. 4 we adapted the von Dreifus and Klein 
theorem to the magnetic continuum case for another type of random 
potential. The necessary modifications needed here are briefly sketched in 
Section 4. 
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2. THE HAMILTONIAN AND ITS NULL SPACE 

Let ~o,,, n e Z[i]-= {n, +#22: (nl, nz)~7/2}, the Gaussian integers, be 
i.i.d, random variables. We shall assume that their distribution is given 
by an absolutely continuous probability measure p whose support is a 
compact interval X =  [a, b] c R containing the origin and whose density p 
is bounded. We let s  ztq and p=r - I , ,~ t~ ]p .  For m ~ g [ i ]  let r,,, be 
the measure-preserving automorphism of O defined by 

(r,,,co),, = o9,,_,,, (2.1) 

The group {%,: m ~ Z[i]} is ergodic for the probability measure P. 
Let Yr. =L2(C) and let Wo be the eigenspace corresponding to the 

lowest eigenvalue (first Landau level) of the kinetic part of the Hamiltonian 
defined in (1.1) and let Po be the orthogonal projection onto Jfo. The 
Hamiltonian for our model is the operator on ~ given formally by 

H(~) =~-~KPoV(., ~)=-~KPoV(. ,  ~ ) P o  (2.2) 

where x = B/4, a~ ~ t2, and 

V(z, co)= ~, co,,6(z-n) (2.3) 
.~g[ i]  

Note that H coincides with Ho in (1.2) up to the term BP o and a multi- 
plicative constant. The projection Po is an integral operator with kernel 

Po(z, z') = 2x exp[ - x  Iz - z'l 2 - 2ixz ^ z'] (2.4) 
7[ 

where ZAZ'  - ' ~ ' = ~.~Jz - J _ ~ . z ,  ~.z and J z  being the real and imaginary 
parts of z, respectively. Note that if qJ e J r ,  then ~ e :~o if and only if 
~0(z)=f(z) exp( -K [2) where f(z)  is entire. Using (2.4), we can write the 
Hamiltonian in the form 

n =  E 
, , ~ [ i ]  

where, for ne~_[i] ,  

) rc = ~ e x p [ 2 x 6 z _ x ( i n l 2 + l z ] 2 ) ]  f , ( z  = ~ x  Po(z, n) (2.5) 
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Note  that  IIf,,ll = 1 ,  ( f , , ,J; , , )=(~z/2K)~/2f , , , (n) and that  H is an integral 
opera tor  with kernel 

H ( z , z ' ) =  ~ co, , f , , (z) f , , (z ' )  (2.6) 
- s Z [ i ]  

We first obtain a bound  on H(z ,  z ' )  which implies that  H is bounded.  The 
following is proved in the Appendix. 

Lemma 2 .1 .  For  s, t > O and z, z' ~ C 

e -"  I . . . .  l: e - ,  I . . . .  'l-' <~ K(s  + t) e - [.,,/I., +, ~] I: - --'l 2 
n E z C i ]  

where 

The above lemma implies that  IH(z,  z')l is bounded  above by 

2MK K(2x)  e -I.-n~ I: ---'l: (2.7) 

where M = m a x ( l a [ ,  Ibl). Therefore  H is bounded and IIH[I ~<4MK(2K). 
Note  that  the heat kernel is 

1 e_(i/2t)lz_z,12 P,(_-, z') = ~-~ 

and the corresponding opera tor  has unit norm. 
Let  { U :  z ~ C} be the family of  uni tary opera tors  on 3r correspond-  

ing to the magnetic translations: 

Then for n E 7/[ i] 

( U : f ) ( z ' )  = e 2'~-- ^ : ' f ( z  + z ')  (2.8) 

Note  that  [Po ,  U_.] = 0  for all z ~ C ,  so that  U:3 foC:Jg  o. Also U~, U..,= 
[ exp(2 ixz2  ^ z t ) ] U~, + ~,_. The  ergodicity of  { r,,, : in e 7/[ i] } and Eq. (2.9) 
together  imply that  the spectrum o f / / ( c o )  and its components  are non- 
r andom (see, for example, ref. 14, Theorem V.2.4); it is easy to prove that  
almost  surely the spectrum of  H(co) contains X: 

U,,H(co) U,7 ' = H(z,,co) (2.9) 
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Lemma 2.2. With probability one 

Zc o'(H(co)) 

Proof. It is sufficient to prove that for each E e  [a, b] and for all 
fi > 0, there exists s with P ( O ' ) >  0 and ~, e ~-o with [l~'ll = 1 such that for 
alI co ~ (2', I[(H(co)- E) @ [[ < ft. Choose R such that ]~l,,I ~> g e x p ( -  x In[ 2) < 
5/3M, where M=m ax( l a [ ,  ]hi), and let 

~2' = {oJ: Ico , , -  El < 5/3, max 1o9,,,I K(h) < 5/3} 
[ml < R. m ~ 0  

Since E and 0 are in the support of p, P(s  0. We have 

( H i ; . -  Ef.)(z) = x ~  ~ O)l,f,,(z) J~)(n) -- E f t (z )  
~f 

=(co o-  )J;.(z)+ . ~ ~ , , f , ( z ) f . ( n )  
n V = 0 

Therefore, since ~,,~[i] exp(-K Inlh ~< KKK), for ~oe~'. 

Ilgf.-EJ~)ll <~ I~o,,-El + Y, Io~,,I. I f .(n)l  
t* # 0 

Inl < R 

+M 2 IJi.(n)l<5 II 
I>~R 

In the rest of this section we examine the null space of H, Jt/'(H). 
We characterize it and show that it is infinite dimensional for large K. Let 
.Hi be the closure of the span of {Ji,:ne7/[i]} and J l 0 = J / ~  -. Clearly 
.#oc~,i/'(H). We shall prove that . # . = . 4 / ' ( H )  and that ./~)is infinite 
dimensional. 

l e m m a  2.3. There exists h 'o>0 such that for x>h 'o ,  with prob- 
ability one, ,H, = ..g'(H) and og~) is infinite dimensional. 

Proof. If ~e~(~,  then for all n~Z[i] ,  ~k(n)=(Po~b)(n)=(2K/rc) I/z 
(Ji,, q~). Therefore ~k e o,/~)if and only if for all n e 7/[ i], ~b(n)= 0. Suppose 
Hff = 0; we want to show that i f (n)=  0 for all n e 7/[i]. We have 

. e ~ _ [ i ]  
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where 

~,, = ~o,,r 

Thus 

/ 

I IH$  II" = lim ( X 
R ~ ':"- \ I . I  < R 

I~,,I-' + L 
I . I  < R 
Iml < R 
. # m 

0L,~,,,(f,,, f,,,)) 

f> lim (2 L I~,,I 2 -  
R ~ r Z  I.'d < R I.'d < g 

Im l  < R 

Io~,,I. Io~,,,I e -~1 ...... I-~) (2.10) 

Now 

y. 
I - I  < R 
Im l  < R 

Io~,,I . Io~,,,l e - "  l . . . . . .  I; 

= ~.. e-'"2 ~ I=,,I-I,x,,+,.I ~<K(,,)  ~ I=,,I 2 (2.11) 
r e  E [ i ]  I '1 < R I '1 < R 

I-+, '1 < R  

Thus 

0=l lH~l l2~(2-g(x))  ~ I~,,I -~ (2.12) 
. e E [ i ]  

and so if K is large enough, then ~,,~,z[;] I~,l==0. Since almost surely 
o9,, # 0 for all n e Z[ i ] ,  ~b(n)= 0 for all n e E[i] ,  with probability one. Thus 
we have proved that J/o = ~4r(H) almost surely. Let 

n :~ 0 

(2.13) 

It follows from the theory of entire functions (see ref. 15, 2.10.1) that 
there exists A > 0  such that Iff0(z)l~<exp(A 1:12). Let (~k(z)=z~~o(z) 
e x p ( - x  Izl 2) for k>~l; then if x > A ,  the ~b k are in J/o. Moreover if 
Z ,  u , ak~bk, = 0, then E~'=, akj z'~ = 0 for z r Z[i] .  Therefore, EN=, akjz ~; -- 0 
and thus the ak, are zero, implying that the ~b k are independent. I 

R e m a r k s .  (i) There exists K~>0 such that supl_l=Rl~bo(z)l>~ 
exp(x~R 2) (cf. ref. 15, 2.5.11). 



854 Dorlas e t  al.  

(ii) I t  is possible to give a character iza t ion  of the elements of  Jr .tT) 
If  ~ J ~ ) ,  then r  where f and ~b are entire 
and ~b has simple zeros at all n ~ 7 / [ i ]  and no other  zeros. Then,  since, 
Y' .~o(1/ln[ -~) converges by H a d a m a r d ' s  factorizat ion theorem (see ref. 15, 
2.7.1) there is an entire function h such that  

~(z)  = zeh':)~o(Z ) 

Therefore  

~9(z) = f ( z )  zeh('-)Oo(Z ) e - "  I:l-' = zg(z )  ~bo(Z ) e -~ I:t-' 

where g(z )  is entire. 

(iii) We feel that  we should make  some commen t s  abou t  a paper  by 
Thouless  (t6) on the Wannier  functions. Thouless  pointed  out  that  if ~,, = 
( - 1 )"' + i,_, +,,~,,_., where n~ = ,~n and n 2 = .fill and a" = n/2, then 

)-" ~ , , f , , ( z )  - 0 
n ~ ~ [ i ]  

We first note that  this does not  contradic t  L e m m a 2 . 3 ,  since our  result 
holds only for large x. Also, it does not  imply that  the f ,  are not linearly 

if x" u independent  even for K = n/2, that  is, ~ j =  ~ ~if,,,(z) = 0 with N < oo, then 
0 9 = 0 for j = 1 ..... N, as can be seen f rom the following argument .  We have 

0 =  ~ e J , , ( z ) =  ckz  t, e-.-I:l-" 
. [ =  I k 0 

where 

(2K)k N 
c~.= k! E ~di~. e -~-,,!,, '= (2X)*k! d/ff~ 

. 1 = 1  j = l  

with 

ay = ~ j e  -i,. i ,ql  z 

Let ~O0(z) be as in (2.13) and for n ' e T / [ i ] ,  n' r let 

n  214, 
I t  ~ D, I I '  
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The functions O,,,(z) are entire and 

{--~ 
O,,,(n) r  

Let 

if n ~ n '  

if n = 17' 

~,, .(z)= ~ b,,,kz ~ 
k = 0  

* = 0 for k = 0, 1, 2 ..... we have for 1 = 1,..., N, Since Z~'=l ajnj 

a,g. , , , (n,I  = Y .  b,,,k = 0 
j = I k = 0 j = I 

and therefore ~ / =  0 for al l  l = 1,..., N. 

(2.15) 

3. THE S P E C T R U M  OF H 

In this section we prove that the whole spectrum of H is pure point 
with probability one. We prove also that almost surely the eigenfunctions 
corresponding to nonzero eigenvalues are localized in the sense that they 
decay like e x p ( -  lzl ~') with 0 < y < 1. To do this we use the decomposition 
Y~ = ./1r | J/~ to write H in the form 

H=OGHt (3.1) 

where H~ is the restriction of H to ,,/6, and then study the spectrum of HI. 
We have that 

H , =  ~ o),,f,,| (3.2) 
, ,~Z[ i ]  

The main result of this section is the following theorem. 

T h e o r e m  3.1. Let 0 < 7 < 1 .  There exists xl(y) such that for 
x > h , ( 7 ) ,  almost surely, the spectrum of H, is pure point and the 
generalized ~igenfunctions of HI satisfy 

In [~b(z)[ 
lim - -  - o o  

. . . .  I - I "  

The generalized eigenfunctions of H~ are elements of a conuclear space ~'l 
containing d//~, which will be defined after Lemma 3.7. To prove this 
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theorem we use the method of ref. 13, but we also exploit the fact that for 
large x, H L is almost diagonal since the inner products I(f,,,f,,)l<~ 
exp( -h" In - m[ 2). For this purpose we define an orthonormal basis spanning 
.,//~ which approximates the set off , ,  for large x. Let 2: Z[ i ]  --, N be any 
ordering of the elements of Z[ i ] .  Let { g,,:n E 7/[i] } be the orthonormal 
basis of ,J/t~ obtained by the Gram-Schmidt  procedure: 

g o  ~ f o  

(3.3) 

g,=D,7'."2 { f , -  }" (g,,,,f,,)g,,,} 
2(h i )  < 2In} 

where 

D,,= 1 -  y' I( g,,,, f ' , ) l  2 (3.4) 
21 m ) .< 2( n ) 

From now on. for any operator A, we shall write (hi  A pn)  for the inner 
product (g., Ag.,). If A is a subset of Z[i], let 

/ ~ , =  ~ o~,,f,,Qf,, (3.5) 
st ~ /I 

Let P.~ be the projection onto the space spanned by { g,,: n e A}, that is, 

P . , =  }-'. g,,| (3.6) 
it E z| 

and let 

IIA=P.,I:I ,P.,=p, ~. ~,,f',| (3.7) 
I t  E . ' |  

and 

G :,(E) = ( E -  H.~) -l (3.8) 

Let us assume that there exist 0 < y < 1, A > 0, and R > 0 such that for all 
n, m E •[i],  

I K n l f l . ,  l m > l ~ < A e  - '~j  . . . . . .  I~' 

lIB.., IL ~< A 
(3.9) 
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and 

I(nl B.~,,.lm)l < ~ A e  - R ' a ' ' ' ' ' ' ' ~ ' + a '  ....... '"'~" 

for all A c Z [ i ] .  These bounds will be proved in Lemma 3.7. We now fix 
numbers s, Yo, fl, P, and q satisfying 1/2 < s < 1, 0 < 7o < 7s, 0 < fl < 7oS, 
p > 2, and q > 4p + 12. These are fixed throughout the rest of the paper. We 
need the following definitions to state the main theorem, which is used in 
the proof of Theorem 3.1. 

For n~7 / [ i ]  let 

Ac(n ) = {m: m ~ Z[i],  I.~.(n -- m)l < L/2, IJ (n  -- m)l < L/2} 

Defini t ion.  If r > 0  and E e l ,  we shall say that a square AL(n), 
with n e Z[i],  is (r, E)-regular if: 

(RA) d(E, a(H..o.~,,))) > �89 LI1 

(RB) We have 

I<nl G,rL~,,~(E)Im>l < e  ,.L~',, 

for all in cOAL(n)c~ Z[i],  where OAL(n)= Ac(n) \A~(n)  a n d / ,  = L -  L". 
If Ac(n) is not (r, E)-regular, we shall say that AL(n) is (r, E)-singular. 

We shall say that the condition (PI)  is satisfied if: 

(P l) There exists q > 0 such that, for all n e Z[ i ] ,  for all L >1 Lo and 
all E ~ ( E o - q ,  Eo+tl) ,  we have 

P{d(E, a(H.tL~,,~)) < e  -LIt} < L  -q  (3.10) 

and we shall say that the condition (P2) is satisfied if: 

(P2) There exists r > 0  such that, for all neY_[i], 

P{AL,,(n) is (r, Eo)-regular} /> 1 - - L o  ~' (3.11) 

Under assumption (3.9) the following theorem is proved in Section 4. 

Theorem 3.2. There exists L,(s ,y ,  7o, fl, p , q , A , R )  such that if for 
some Eo~ R and for some Lo>  L, both conditions (P1) and (P2) above 
are satisfied, then there is a z / > 0  so that almost surely a(H,)c~ 
( E o -  z/, Eo + A) is in the pure point spectrum and if ~b is an eigenfunction 
of H t with eigenvalue in (Eo - zl, Eo + A), then for all 0 < y' < 70 

In Ir 
lim Izl ~ . . . .  oo (3.12) 
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We shall now proceed to check that  the condi t ions  of  the theorem are 
satisfied for all Eo e R, for all 0 < 5' < 1, 1/2 < s < 1, 0 < ~'o < 7s, 0 < fl < 7os, 
with p = 3 and q = 24, when x is sufficiently large, depending on all these 
numbers  except Eo. Theo rem 3.1 then follows. First  we need to establish 
some propert ies  of  the g , .  For  the p roo f  of  the next lemma,  see the 
Appendix.  

Lemma 3.3.  For  5' e (0, 1 ), there exists Co(5') > 0 such that  for ~ > 1 

e-~l l  . . . . .  I~+ k' .... PI ~< Co(5,) e - ~  I : -  :'1~ (3.13) 
m �9 ~[ i] 

We now use the preceding result to obta in  bounds  on the coefficients 
in the expansion of the g .  in terms of the f . .  

Lemma 3.4.  For  0 < ) , <  1, there exists x(~,) such that  for all 
x > h'(5,) and all n e Z [ i ] ,  

g,, = ~ c;:,e-,~.'4,1 . . . . . .  I~f,,, (3.14) 
i ( m )  <~ 2(n) 

where I<;,I < 1 for 2(m) < 2(n) and 1 <~c',',<~ 1 + e  - ' /~. 

P r o o f .  We use induction on 2(n). By the induction hypothesis,  if 
2(m) ~< 2(n), then 

(g , , , ,  f , , , )  = ~,, (;;'e ,,,v4, I . . . . . .  I ~'(j, , f , "  ) 
2(u) ~<i(m) 

Thus  

(g , , , , J i , . )g , , ,  
1Ira) ~ ~,(n} 

= E E 
Aiml~<A(n) ,;,(u)<~,;,(nD A(r)<~A(m) 

= Z E E 
2(r) ~ i ( t : )  ,;,(u) ~< i(n) i ( I t }  >~ Aim) >~ max(A(u).A(v)) 

x e - ix~4) i  . . . . . .  ["( j,r f ~ / )  .f;, 

Therefore,  if 2(n ')  = 2(n) + 1, by (3.3), 

( m c . t  e - (x /4 ) Im - . V  e -U,'/4) I m -  ~'1~'( f / '  
. - , , -  - . . . . .  . , , ,  L 

( m c m  # - (av'4) Im - .V  
H - -  c - -  

g, , = ~" c f  e-,~:/4, t,,' ,vj;. 
i(e) ~< ;,{n') 
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It' where c , , ,=D,71/2> 1 by (3.4) and for 2(v) < 2(n'), 

it' c,, = --D,7 , /2  E Z 
1(I, ~) ~ 21H) 2(11) ~ 211;I) ~ IIlaX(~.(lr 

x e ,~-/4, I . . . . .  l;'elX/411'/-,F(f., f , . )  

- m  m - ( . , . - / 4 ) l m - , l  i' r Cv e 

Therefore  

Ic;'.'l <~4D,7 '/'- Z Z e ,,,-/4,1 ...... p 
lOt) <~ lot) ,;.{hi >~ ) . (m)  > / m a x l A l u ) . i l r ) )  

x e -  i,,..'4~ I . . . . .  .pel,,-/4, I , , ' - , . p  I ( J ; , ,  J ; , . ) l  

<~ 4D ,;:1"2 " , �9 t~,,tT; ~ e ,,.-.4 I . . . .  .pe,..,4, I.' ,.p' I(f,,, f,,')l 
,;,( u ] ~< ,~.( n ) 

by Lemma 3.3. We have, for l u - n ' l  ~> 1, 

I ( .s  = e  - ~ E  . . . . .  'l-~ 

= e o, ' /4l l- .'1-" e (h"21 lu - - ' 1 2  e - i h ' / 4 )  lu # l  2 

e - O , - / 4 )  l u - . ' 1 2 e  ,.-/2 e - ( K J 4 ) i . - . , 1 > '  

Also Iz,t~'+ Iz2l"> Iz, +--21q thus 

Ic',!'l ~ 4D,7 t"2Co(7) e -,,-,2 ~ e-~-/4) i . . . . .  '1-" ~< 4D,7 t '2Co(7 ) K(x/4) e -~.,.2 

Therefore  if x is sufficiently large so that  8Co(7)K(x /4)e  ....... 2 <  1, then 
t_r ) -  ~.,2 B u t  Ic',','l ~< 2- , , '  �9 

I(g,,,, J;,,)l ~<2 ~ e o,./411 . . . . .  I;' I(s L,.)I ~ < 2 e - ' ' ' 4 '  f ...... 'PK(3K/4) 
~.(u) <~ )4m) 

Thus 

I(g,,,,J,,.)l-.~4K(3x/4)2e " / 4 E e - ' " 4 ' l  . . . . . .  q~~<e .... ~s<3/4 
�9 ;.loll < 21n'} m 

if h" is large enough. Then  D , , , > l / 4 ,  so that ]c','.']~<l for 2 (v )<2 (n ' ) .  
Using ( 1 - e ) - l ' e < l + e  for e < 1 / 2  and D , , , > l - e  ,,-/s, we get also 

n' C h'/8. c,,.~< 1 + II 
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This last lemma allows us to obtain bounds on Ig,,(z)l and on the 
inner products  (g,,,, J;,). We first obtain a bound  on Ig,,(z)l. 

C o r o l l a r y  :3.5. Fo r  x sufficiently large 

-^V32 e -(,,/12) I . . . .  I;' -t- ~ e - "  I,, :1; I g,,(-)l ~< C V ~  

Proof. We have 

Ig,,(z)- f,,(z)l ~ (c',',- 1)Is + 

Now 

(3.15) 

I f,,(-)l _--k/~_ e-~ I . . . .  I: 

% / ~  e-O""12) In zl;GOc/12) l----P'e ~" I- : t  2 

2x/~ ~<< e-(^'/121 I , t -  zl'eA/12 

since Iz12> - ~ + a  Izl" for 0<a<  I. Therefore 

(c',',- I) I f,,(z)l ~ e-~'-4 ~ e I V 

In the sum (3.16), I n - m l  >i 1, so that 

K In-mlY+K Im-zl  2 

/r K 
> 6 + ] 2  In-ml" + ~ Im-zl2 

a- a- . K K , x z[ 2 >~+-~ In-zl'--~ I ra-z l"+ 5 l ,n -z l -+  5 l in-  

K K K 

> ~ + ] 5  I n - z l " + ~  Im-zl'- 

}-" [c',:,] e -'^/4)' ...... P' [f,,,(z)[ (3.16) 
;din) <2(.)  
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Therefore  for K sufficiently large 

Z 
,;,(m ) < 2(n) 

Thus 

Ici:,l e-( ' /4)  I ...... P Is ~ e ~/'6e-(K/=2' I . . . .  P 

I g , , (z)  - f , ( z ) [  ~ e - ' / 32e  -(^-/12, i . . . .  i i' 

and therefore 

Ig,,(z)] ~ e - t " / 3 2 e  - ( x /12) l  . . . .  P'-I- e - ~ l  . . . .  12 II 

The bound  on I(g,,,, Ji,)l now follows very easily. 

Corollary 3.6.  Fo r  h- sufficiently large 

l( g,,,, f,,)l ~< 4e -~,-,4, I . . . . .  p 

Proof. By L e m m a  3.4 

I ( g , , , , / ; , ) 1  ~<2 y,  e - '~ /4~  I . . . . . .  P I ( f , , ,  ] ; , )1  
2(tt)<~J.(m) 

<~2 

We first establish the bounds  at the beginning of  Theo rem 3.2. 

L e m m a  3.7. 
K such that  

-~- -,,I ~ 2e--(K/4)] . . . . . .  P'K(3h'/4) Z e-(a/411,-  - -I;' e l- -' 

2(u) ~< a(m) 

and 

for all A c 77[i]. 

861 

(3.17) 

For  x large enough there exists A > 0 independent  of  

I ( n l / ~ , ,  Im>l  < ~ A e  -~ - / s~ l  . . . . . .  P" 

Ilgr.~, II ~<A 
(3.18) 

I(nl ~ A '  Im>l ~ h e  -'^/~"'''''''''~'+''c ....... '"'~" 
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Proof. We have 

I(nl n. ,  Im)l = ~ co.(g,,,f,,)(f., g.,) 
It  E . '|  

~< M' ~ e --(h'/41 lu-,Ve-(X/4) I---,I;' 
. e Z [ i ]  

where M ' = 1 6 M .  Let S be the operator on J/~ with (hi S i r e ) =  
e-lh-/4)l . . . . . .  V. Then 11/-7,11 ~< M'Co(~,) IISII. Finally, 

I(nl/4., ,  Im)l = Z co.(g, , . f , , )( f , ,  g,,,) 
II  ~ /|G 

<~ M'  ~ e- (h /4)  I. ,,1~ e --(h'/4) lu-ml;  

t l  ~ , | l  

<~ M ' e  -Ih's~l'R''''l'-l;+'/(m'l')~! ~ e-lh/8~l"-"V e-~h./s) l- i,,I; 
t l  ~ .  | '  

<~M'Co(),)e ~"~ldl,,..~'~'+dlm..~'~ | 

Let 8'* be the set of functions on C of the form 

~b(z)= Z a,,g,,(z) (3.19) 
. e z [ i ]  

where la,,l(1 + lnl)- '  is bounded for some t ~ N. Then ,g* is the dual of the 
nuclear space ,g~ consisting of functions on C of the same form with 
la,,I. Inl' bounded for all t e l l ,  equipped with the seminorms I1'11,, t ~ ,  
defined by 

II~bll~ = ~ Z la,,I 2 Inl -~'' 
t'=O .~Z[ i ]  

This is a nuclear space since ~,,  ~ ~[i~ (11 g,,ll ,/11 g,,ll ,,) converges for t ' > t +  2 
(ref. 17, p. 62). Lemma 3.7 gives the bound 

I<nl Ht [m)}[ <~Ae -~/8~t ...... I~ 

This implies that H~ maps gi continuously onto itself, which allows us to 
define H~ on g* by duality as the adjoint map. The generalized eigenfunc- 
tions of HI are then in ,g* and therefore polynomially bounded, that is, 
[a,, I < C( 1 + In[ ),.,4~ 
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The next l emma  will be used in p rov ing  that  (P1)  and (RA) of (P2) 
in T h e o r e m  3.2 are satisfied. 

L e m m a  3.8 .  If x~ ..... x,, are i.i.d, r a n d o m  variables with density p 
bounded  by Po, then /~, the density of  Z ~ =  i ~r CCk > 0 ,  k = 1 ..... n, is 
bounded  by po/max ~q.. 

Proof. We have 

/)(Yt)=0c--~ \ ct I / \ ct~ / " ' p  \ 0c,,_l / 

x p ( ~,, ) y'' dY--z- " " or,, 

Y n  d y 2  d Y n  

-P~ I p(z2)p(z3)...p(z,,)dz2...dz,,=P~ II 
O~ I O~ I 

We can write H..I in the form 

H. . ,=  ~ x ....... ,g,,,| 
m .  i~1' E ,I 

where x,,,,,,, = Y~ ..... i co,,(g,,,, f , ,)(/; , ,  g,,,.). Since 

x ...... = ~ co,, I(g,,,,f,,)l 2 
It E . I  

by the preceding l emma x ...... has a density bounded  by Po/l(g,,,,f,,,)l 2, 
where Po is the upper  bound  for the density of  the co,,. Now,  using 
L e m m a  3.4, we have 

I(J;,,, g,,,)l 2 = D,,, = (c',;;) -2 > (1 + e - ' / 8 )  --~ > 1/2 

for x sufficiently large. Thus  x ...... has a density bounded  by 2po. Fo r  Borel 
subsets B of R let a;],(B) = ( m l  E ~(B) Ira) ,  were E,~(B) are the spectral  
projections of  H.a. Then by L e m m a  VIII.1.8 in ref. 14 (in ref. 14 the l emma 

S22,87, 3-4-26 
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is proven for real matrices, but one can easily check that it extends to the 
present situation where only the diagonal elements are real), 

A I IF. . . . . . . . . .  cr,,,(B) < 2po dx 
B 

and therefore 

A I ~:a,,,(B) < 2p0 dx 
B 

As in Proposition VIII.4.11 of ref. 14, it then follows that for all E e  R and 
~ > 0 ,  

P(d(E, e(H..,)) < s) < 4poe IAI 

The next lemma will be used in proving that (RB) of (P2) in 
Theorem 3.2 is satisfied. Let 

/2,,= Z co,,g,,| 
It e z| 

and G,,(E)=(E--FI,)- ' .  If d(E, {co,,: neA}  )>s ,  then we have 

1 
l<nl (~.,(E)Im>l ~<-5 ...... 

8 

Lemma 3.9. Given e > 0 ,  i f d ( E , { o % : n e A } ) > e  and if h-is large 
enough so that e-~"32 < e/2, then 

I<nl G.,,(E) Im>l ~< e - 1 ( 5  ...... + e-~*/s~M ...... I~) 

Proof. Let 5H.~=HA--BA. If n # m ,  then I<nl /~A lm>[ =0;  there- 
fore by Corollary 3.6 and Lemma 3.3, for x large enough, 

I<nl 6H,, I,n>l =[ ~ ~,,(g,,,J;,)(f,,, g,,,) 
I I  �9 , I  

M' ~ e-~14) I.-.%-(~.14) I,,-.,I; 

<~ M' Co(),) e-"/Se-C"/s) I ...... I;' 
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On the other hand, 

I<nl 6HA I n > l  : y' o0,, I(f,,, g,,)12-o2,, 
tt ~ ,'| 

<MZ I(f . ,  g,,)l 2 + M(1 -- I(f , ,  g,,)]2) 

= M ~ ](f,,, g.)12+M ~ ](f,,, g,,)l  2 
u 4 : .  2~ u ) < ),( n } 

~ M  ~ l(f., g . ) [2+M Y'. I(f., g . ) [ 2  
tt ~ it it ~i ~ ta 

<~2M' ~ e -0"/2~1''- '1;" 

it :~ n 

<~ 2 M '  e ..... '~ 

Therefore for K large enough 

Z --(3A'/8)I-I; e 

. ~ z [ i ]  

I(nl ~H,I Im)l < e-"/'%-c"/s~l . . . . . .  I; 

Thus 

I<nI(~,(E) 3H A l m > l = l E - ~ o , , I - '  ]<n l~H, ]m>l~<e  'e ~/'6e-' '/sll ...... I;' 

By using Lemma 3.3 we can then deduce that 

I <nI((~A(E) 6HA) k Im)l ~ ( C o ( y ) ? - '  a-ke-k" / '6e  -~-/s,I ...... I~' 

~ - k c - k K / 3 2  e {h'/8) ]Jr-mli '  ~ ~ e - 0 r  I n - m l r  ~< 

From the resolvent identity we get 

G.,(E).= G.,(E) + O.,(E) 6H,G. . , (E)  = ~ (G.,(E) 0H.,) k (~.,(E) 
k = 0 

if the series converges. Let T be the operator with (n[ T i m ) =  
exp[ - (K/8 )  In-mlY 1. Then 

[[(C.~,(E) fiHA)k]] ~<~k ][T]I 
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and therefore the series converges. Thus 

I<nl G.,(E)Im>l~<e-'(fi ...... + e  -'~/8'1 ...... t~') 

Dorlas et  al.  

We are now ready to show that the conditions of Theorem 3.2 are 
satisfied. We have proved that there is xo > 0 such that for all x > tco and 
for all A c 77[i], the following are satisfied: (1) 

I(nl/-Tr~ Im)l ~< Ae-~"'/8~ I ...... I, 

IIB..,II ~ A  

and 

I<nl f-l.,, Im>l • Ae -~''/8~"l~'''j''~' +ac'''''''~'~ 

(2) For all E e R  and e > 0 ,  

P(d(E, a(H,)) <e)  <4poe  IAI 

(3) Ifd(E,  {co,,:n~A})>e and e-~/32<e/2, then 

I(n[ G,j(E)Im)l ~<e-t(6 ...... + e  -1~-''/8~1 ...... I~) 

From (2) we have that, for all E~g~ and for all L > 0 ,  

P(d(E, a(H,ul,,~)) < e-ty) < 4poe-tYL2 

so that if we take L o sufficiently large, for all L>Lo,  (P1) is satisfied for 
any q > 0. Also the probability that (RA) of (P2) is satisfied is greater than 
1 _ •  

2 ~  . 

Now let L~ be as in Theorem 3.2 and choose Lo > Lt such that 

L6e-~,,/8~L,,- L;,p' < e -(h'~ 

and 

( Z~2~-g~ "~ L'~ --2L~l 1 1 - - - : - )  > 1---L~ 

Then from (3), by putting e = l / L ~ ,  we see that if x > x ~ =  
max(x o, 32 ln(2L6)), then (RB) of (P2) is satisfied with probability greater 
than 1 - 1 / L ~ +  1/(2Lg). Thus the probability that (RA) and (RB) are 
satisfied is greater than 1 -  1/L~; that is, (P2) holds with p = 3. 
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4. THE PROOF OF THEOREM 3.2 

This short section deals with the proof of Theorem 3.2. Our proof is 
based on the paper of von Dreifus and Klein c ~3~ as adapted, in our paper, ~4~ 
to infinite-range operators, that is, operators that couple points within a 
region to points outside the region. Here we give only the modifications 
that have to be made to the method of ref. 4 to fit the present situation; this 
section should be read in conjunction with Sections 4, 6, and 7 in that 
paper. Some simplification occurs because in this paper we require less 
than exponential decay. Theorem 3.2 is the analogue of Theorem 4.1 in 
ref. 4. As before, this theorem can be split up into two parts: one in which 
condition (P2) is iterated to pairs of larger and larger blocks (Theorem 4.9) 
and one in which the iterated condition is shown to imply the required 
decay of the eigenfunctions (Theorem 4.1). The following theorem is the 
analogue of Theorem 4.2 in ref. 4. However, the proof is much simpler than 
that of the latter and therefore we give it. 

Theorem 4.1. Let 0<~"<) ,o  and let I c R  be an interval. Let 
1 <o~<min(2s,),oS/fl,),o/y'), r > 0 ,  and L o >  1. Define Lk+~ =-L~., 
k = 0 ,  1,2 ..... Suppose that for all k = 0 ,  1,2 .... and all n , m ~ Z [ i ]  with 
[n-m[~_ >iLk + 1, 

P{3E~I such that ALk(n) and ALk(m) are both (r, E)-singular} < L --~p 

Then, with probability one, the generalized eigenfunctions of H~ corre- 
sponding to generalized eigenvalues in I satisfy 

In I(g,,, ~P)[ 
lim inl,., - - ~  (4.1) 

Note that the last inequality together with Corollary 3.5 implies that 

In Iq4z)l 
lim [z[~,, - oo  (4.2) 

We need the following two lemmas, the analogues of Lemma 6.3 in ref. 4, 
which we state without proof. We find it more convenient here to give 
estimates for the two operators which occur in the proof of Theorem 4.1 
than a general estimate as in ref. 4. Throughout the rest of this section R 
is as in (3.9). 

/ e m m a  4.2. Let ~ be a generalized eigenfunction of H~ with eigen- 
value E and therefore polynomially bounded, that is, there exist K >  0 and 
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te N such that I(g,,, 4')[ ~<K(1 + lnl)'. If AL(no) is (r, E)-regular for some 
r >  0, then there exists a constant A~ such that 

I(g ..... GA,.~,,,,~(E) HI P..,,.~,,,,~, 4' )I 

<~A l {(L+lnol)'e-RL~/2+e -'U" ~,, 
n E . ' |2L(/III) 

for L large enough. 

L e m m a  4.3. Let 4' be a generalized eigenfunction of H~ with eigen- 
value E. If AL(no) is (r, E)-regular for some r > 0 ,  then there exist A 2 > 0  
and Q_, such that for L > Qz 

I(g,,, 4')[} (4.3) 

I(g ..... G.,,.,,,,,,(E) lC1,,,,,,,,,P.,,.,,,,,,4')1 <~Aze ,'L>',, ~" I(g,,', 4')1 
n '  E , ' I2L(t l l ) )  

(4.4) 

We now give the proof of Theorem 4.1. 

Proof of Theorem 4.1. Define Ak+ t(no)-A2L~+,(no)\A2L~(no) and 
let g~.(n,) be the set of o9e12 for which there exists neAk+t(no) such 
that ALe(no) and ALe(n) are both (r,E)-singular for some E e L  By the 
Borel-Cantelli Lemma we may assume that for all no~Y_[i], the set 
{k: co egk(no)} has a finite number of elements. Now let 4' be a generalized 
eigenfunction of H~ with eigenvalue E and choose noeZ[i] such that 
I(g,,,, 4')1 4:0. By the resolvent identity, 

I(g,,,, 4')1 ~< I(g,,,, G ,, , , (E)H,  P.,,.~,,,,,,' 4')1 

+ I(g,,,,, G.t,, ,,,~(E) fl,,.~(,,,,vP.,,.,.(,,,,~4')l (4.5) 

Suppose that AL~(no) is (r, E)-regular. Then, using Lemmas 4.2 and 4.3, the 
last inequality implies that 

I(g,,,,, 4')1 ~A,(L,:+ Inol)'e ,,..z, RL~' 

+(A,+A,_) e-'L~" ~. L(g,,., 4')1 (4.6) 
It' ~ d 2Lk(tt() ) 

If this were to hold for infinitely many k's, we could take the limit k --* oo 
and find that [(g,,,, 4')1 =0 ,  which is a contradiction. We conclude that 
there exists k t such that for all k>>.k~, Ac~.(no) is (r, E)-singular. This 
implies that if coet2o = Us t ~fk(no), then there exists k_, >~kl such that for 
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k/> k_,, ALk(n) is (r, E)-regular for all n e Ak + ,(no). The above inequality 
with n o replaced by n then yields 

I(g,,, ~)1 ~ A ,(Lk + Inl )' e - '  ,/=~R/-~ 

+ (A, + A _, ) e - ,-t_p y, 
, l '  E: ,'121_~( ,'l ) 

<~ Ce ,-' I,,Vo" 

I(g.., qJ)l 

(4.7) 

where r ' < r ,  since In-nol <~Lk+, =L~.. | 

The next three lemas are the analogues of Lemma 7.4 of ref. 4. The first 
two are equivalent to proving the inequalities 7.27 and 7.32 in Lemma 7.4 
and are sufficiently close to the these inequalities that they do not require 
a proof here; the third one is significantly different and warrants a proof. 
The difference is mainly due to the fact that we do not require exponential 
decay. As a result the parameter r in the regularity condition can be fixed 
for all scales. We first need to define the following two conditions. 

Let I c 0~ be a fixed interval. 
R(L,r'): For all 17, m~77[i]  with [n-m[_, >~L+I, 

P{3EeI: At_(n) and AL(m) are both (r', E)-singular} < L  -~p 

K(Lo): For  all L>~Lo, all E e ~  with d(E,I)<~�89 and all 
n~ 7/[ i], 

P{d(E, (x(HAL,,,I)) < e  -Lp} <L -q 

Lemma 4.4. Let 1>1 and L=U.  Assume that A/(n) cA~(no) is 
(r, E)-regular. Then, if l is large enough, there exist constants Ct and .4~ 
such that for m eOAL(no), 

I<n[ GAL~,,,,)(E) Im> ~< C, exp[ - �88 y'] +.4,1" + 'e -m'' 

x {e '~/' A sup I<n'l GAL,,,,,~(E)Im>]} 
. '  e At'(.) 

(4.8) 

where [ =  I + 1" + 1. 

Lemma 4.5. Let l'>~I and L=U.  Suppose that Ar(n,)cAL(no) 
and that Ar(n,) and AL(no) satisfy the regularity condition (RA). Then 
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there exist constants C2 and A2 such that for l large enough, n ~Av(n l), 
and meOAL(no), 

I<nl G.,,.~,,,,,(E) Im>l 

sup 
Jt'e A / ( t q l \ M T ' l n  I ) 

I<n'l GAL~,,,,~(E)Im>l (4.9) 

where l" = l' - l". 

Lernma 4.6. Let J~[~  be given and no~Z[i  ]. There exists Q'>~I 
such that if I>~Q' and L = I  ~, then (i)-(iii) below imply that AL(no) is 
(r, E)-regular: 

(i) At(no) satisfies (RA). 

(ii) Ar(n') satisfies (RA) for all 

l ' e  {], z+/'+ 1,..., ](1+ [+ 1)} - ~  

and all n' e A1_(no) such that Ar (n') c Ac(no). 

(iii) There are at most J squares Al(ni)cAr.(no), i =  1 ..... D ~<J, such 
that d(ni, n i) >/ l+  1 for i # j  which are (r, E)-singular. 

Proof. Choose a maximal set of singular squares A/(n,), i =  1 ..... 
D~<J, in A r_(no) as in (iii). Then if A/ (n)~  Ar_(no) and d(n, n~)>>,/+1 for 
all i, Al(n) is regular. There exist squares AicAr_(no) with !]~ ~-7, j =  1 ..... 
t<~D, such that A I n A I , = ( ~  for i t  j, Z~=t l~<~J(l+[+ I), and 

r 0 [9 A,+i+ t(n,) c Ai, 
i = 1  , / = 1  

I fnCA~ for any j =  1 ..... t and Al(n)c  Atz(no), then d(n, ni)>~l+ 1 because 
d(n,A~)<~�89 and d(ni, A~)>~( l+[+l ) ,  which implies that Tn-n/l>~ 
�89 l +  1 ) - �89 = l +  1. Therefore A,(n) is regular. By Lemma 4.4, if A/(n) 
is regular, then (4.8) is satisfied. On the other hand, if Ai(n) is singular but 
A/(n)cAr(no),  then In-ni l~<l+l .  This implies that heAl+/+,(hi) for 
some i and therefore n e Ab for some j. Thus by Lemma 4.5, 

I(n] GA,.(,,,)(E) Im>l 

<~ Cze-lR/4)l;'++ 712(ie I] sup 
,,' ~ Aij\A~ 

I(n'] GAu,,.,(E) Im)[ (4.10) 
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Since n' CAT,, A/(n') is regular provided At (n ' )~  A~(no). We can therefore 
use (4.8) to write 

~ I~ 1<,71 GAj.I,,,,>(E)Im>l ~ C~_e-IR/411~"+A2!ie/'J{C,e-~n/4)F' 
+ AI eS+ l e  -riCh sup 

n' ~ AiOF) 
,,' �9 Aij\A~ 

[<n"[ GA,.,,,,~(E)Ira>I} 

<<.C3e-~r/811r"+�89 sup i<n"l G.,,_I,,I(E)Ira> (4.11) 
It" ~ , ' l i ln ' l  

, , '  ~ ,  I( l \ , ' l  ~ 

for I large enough, depending on J. Note that we have used !J <~ 2Jl, Yo > ft. 
We now want to iterate (4.8) and (4.11) starting at n=no :  This can be 
done until we reach OAL(no). Suppose we can perform N iterations. Then 
we can write 

I(nol G.,,.%~(E)Im>l 

t N-2 1 <~ Ce -Im4~t~'' 1 + Z(no) ~. Z (n t ) . . .  Z(nk) 
k = 0  

+ Z ( n o ) " "  Z ( n N  - i) e t'/' (4.12) 

where 
J 

if At(n) is (r, E)-singular 
Z ( n ) =  Atl.~+,e_,+ . if At(n) is regular 

Suppose we encounter a singular box N,. times. The maximum distance 
traveled in those N., steps is equal to the size of J boxes, that is, 
J(l + 3[+1)._ On the other hand, since d(n o, OAt(no))= +(L_ - L") = ~L,t ~ we 
can make at least N,. = N-N., .  regular steps, where 

^ 

N , ~ + J  1 3[  1 �9 (+~ +1)>~(/~-/) 

or 

Nr L - J ( 2 1 + 3 [ + 2 ) > l  _l~,._ t i) -; ( U -  l - 8 J -  2 J l -  
l ~"2 
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Therefore  

Z ( n o ) " " "  Z ( n N -  I) 

( 2  I I s+  I e --rrfil)Nr 

~<exp [ l n 2 t + ( s + l ) l n l ] - r l Y " ~ - - ~ - l ~ " - ~ - l O J  

But )'o + 0~ - 1 > 0cy o, because ),o(~ - 1 ) < ~ - 1, since )'o < 1. We can there- 
fore write 

Z(no)... Z(nN_, ) <~ �89 -,.1~',,~ = �89 -,L~',, 

The first te rm of (4.12) is bounded  by 

2 C e  -IR/4) li's < 5_el -H;o 

for l a rge / ,  since )'o < ~,s. | 

The  next two lemmas  are the analogues of  L e m m a s  7.5 and 7.1, 
respectively, in ref. 4. 

L e m m a  4.7.  Let I c l ~  be an interval. Let L o > l  and suppose 
that  K(Lo) holds. Let lj > 12~> lo and let A/, and A z, be disjoint squares. 
Then 

l 2 
P{ d(a ' (H,l~) ,  a '(HA,,)) < e -/~} < ' 1  

- 1~ 
(4.13) 

where 

a '(HA,) = tr(HA) n {E: d(E, I) < �89 -III} 

L e m m a  4.8.  Let 1 < ~ < min(2s, )'oS/fl, p/2). Then there exists Q 
such that  if l>Q and R(l,r) holds and K(L) holds for all L>~I, then 
R(L, r) holds with L=U.  

Finally, we have the following result. 

Theorem 4.9. Let e be as in the preceding lemma.  Then  there 
exists Qo >~ 1 such that  if for some L o >/Qo, the condi t ions  R(L  o, ro) and 
K(Lo) hold, then R(Lk, ro) holds for all k = 0, 1, 2 ..... where Lk+ i = L~_. 
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APPENDIX,  CONVOLUTION ESTIMATES 

Here we give the proofs  of  the two technical  L e m m a s  2.1 and  3.3. 

Proof of Lemma 2.1. We have 

slz_,l~ +tln_z,12=(s+t) _~l_+~%_Siz_z,12~ st 

where  ~ = (sz + tz')/(s + t). Therefore  

exp(-s Iz-nl 2) exp(-t In- z'l 2) 
. ~ ~[ i ]  

= e x p  - ~ Y' e x p [ - ( s + t )  I n - -~ l  -~] 
n e E [ i ]  

N o w  i f  n l - ~ j  >/1 and n , -  1 ~<.x'~<nt, then ( n l - - ~ ) 2 ~ > ( X - - ~ l ) - ' .  There- 
fore 

f. I Is I �9 e - ( S +  I)(//I -- ~1)2 ~ ~ e - ( ' +  t)( . . . . .  i)-dx 
/ t l > ~ l + ~  I 111 ~> I -I- ~. I 11--1 

i ~< e - c'+'~l ..... '~'-dx 2 \ s + t J  

Similarly,  

Thus  

and so 

e -''+''''t-~,'" ~<1(~_.__~_~ '/2 
"~2 k s +  tJ  

~. e-C"+'11"'-~1~2~< 1 +e-C"+'~/4+ks+t / 
n I eE_ 

e - I " + n l  . . . .  I'-<~K(s+t) I 
, ,  e 2e[ i ]  

Proof o f  Lemma 3.3. We split  the sum into three par ts :  

e - ' l l  . . . . .  r~'+ i:' . . . .  i~l = I + II  + I I I  
,, i  e ~ [  i ]  



8 7 4  

where 

] = E e - : q  I-- -,,~1;'+ I--' - - , I ; '1  

Im---I  >~ I/2 I-- - :'1 
Im--- '1/> I/2 I----"l  

II  = ~ e - ~ l  I: - ,,,1~' + I:' -,1,1~'1 

I m - = l  < I/2 I=- : '1  

I I I  = ~ e-~l  I:-,,,1~' + I:' .... Iq 
I m - : ' l  < 1/2 l: :'1 

I Z t  I _ _t  If Im-z l  >~ I z -  and Im-z ' l  >~ I-~-~ I, then 

2~'-'{ Im-  zl"+ Im-  z'l"} >/Iz-z ' l  ~' 

Therefore  

N o w  

I ~ < e  - = 1 : - : ' 1 ~ '  ~ e - a t l  - 2 i ' - I ) l m - : l i '  

m ~ z [  i] 

e _ ~ (  i _ 2~,_i) i r a _ :  V 

m e Z [  i ]  

is bounded  by a cons tant  C,(y) independent  of  z and thus 

i ~< Cl(y) e - ~  J:-: ' l  ~ 

On the other  hand,  if Im-z  I < �89 I=-z'l, then 

I r a - z ' l  ~'= I ( - - z ' ) -  ( z -  m)l ~' 

>~(Iz-z ' l - lz-m[V 

Iz-z'l" (1 - J ,- - - '---Y-~ ) ~' 

] ----m "'~ 
>~lz-z'l~' I-2'-~-----= z--z' J 

= lz-  z'l~'-21-~_,, Iz-ml ~' 

Dorlas e t  al, 
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Therefore 

i i ~ < e - ~ l - - - - - ' l ;  ~-" e-~l l- I /2'-; ' ) l  . . . . .  I ~ ' < C 2 ( y ) e - ~ l _ - - = ' V  

meZ[ i ]  

Similarly, 

III ~< C2(y) e-~ I-- ---'1; I 
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