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The Nature of the Spectrum for a Landau
Hamiltonian with Delta Impurities
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We consider a single-band approximation to the random Schrédinger operator
in an external magnetic field. The random potential consists of delta functions
of random strengths situated on the sites of a regular two-dimensional lattice.
We characterize the entire spectrum of this Hamiltonian when the magnetic field
is sufficiently high. We show that the whole spectrum is pure point, the energy
coinciding with the first Landau level in the absence of a random potential
being infinilely degenerate, while the eigenfunctions corresponding to energies in
the rest of the spectrum are localized.

KEY WORDS: Quantum Hall effect; Landau Hamiltonian; localization:
localization length: delta impurities.

1. INTRODUCTION

The study of random Schrédinger operators with magnetic fields is impor-
tant for the theory of the quantum Hall effect and is also of intrinsic mathe-
matical interest. A basic picture that is widely used in the theories of the
quantum Hall effect is the following. In each Landau band, all eigen-
energies except for one energy, E. say, in the center of the band, corre-
spond to exponentially localized wave functions and the localization length
&(E) diverges like |E— E_|~", with v>0, at E_.. This picture is supported
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by field-theoretic approaches and also by the so-called network model.
Much effort has been devoted to the numerical calculation of the exponent,
and at least for models restricted to the first Landau band, it is found that
v~2.3, in agreement with experiment, quite independently of the micro-
scopic details of the randomness. We refer to the recent review'"’ for more
information on these matters.

Mathematical proofs that the wavefunctions are localized, and thus
the spectrum is pure point, at the edges of the Landau bands have been
achieved recently.t*® However very little is known about the nature of the
spectrum in the interior of the band. Avishai er a/.'” have shown that in the
mode! studied in this paper there is an extended generalized eigenfunction
at the first Landau energy.

In earlier works'®® it was assumed that there exist localized states at
the band edges. With this assumption it was deduced from the fact that the
Hall conductivity is nonvanishing that if all states are finitely degenerate,
then the localization length diverges somewhere in the middle of the band.
However, there are various possibilities for the spectrum which are com-
patible with this statement. One possibility is a continuous spectrum, but
it was already suggested by Thouless''®’ that the spectrum in the center of
the band might be singular. In this paper we prove, for the model con-
sidered, that the situation is in fact as follows. The whole spectrum is pure
point, but there is a single eigenvalue, corresponding to the first Landau
level, which is infinitely degenerate. We do not prove exponential decay,
but the decay that we obtain is sufficient to show that the eigenstates other
than the ones corresponding to the Landau levels do not contribute to the
conductivity and thus that the conductivity is entirely due to the infinite
degeneracy.

We consider a two-dimensional infinite system of noninteracting elec-
trons moving in a uniform magnetic field of strength B and a random
potential V. In the symetric gauge the vector potential is given by A(x)=
(—4%Bx,, 1Bx,), x=(x,, x,) € R? and the Hamiltonian is

H=(—iV—A(x))*+ V(x) (1.1)

The effect of the random potential is to broaden the Landau levels into
bands. When the potential is not too strong compared to the magnetic
field, these bands do not overlap. The random potential consists of point
scatterers, delta functions, situated on the sites of a regular lattice. The
strengths of the scatterers are random; they are independent, identically
distributed variables with a bounded probability distribution. The precise
hypotheses on the probability distribution are stated in Section 2. When
the magnetic field is strong, it is reasonable to consider only the projections
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of the Hamiltonian onto each Landau level and to neglect the cross terms.
The Hamiltonian restricted to the nth level is

H,=B(2n+1)P, +P,VP, (1.2)

where P, denotes the projection onto the level. The term B(2n+1) P,
comes from the decomposition of the purely kinetic part of (1.1) and can
be dropped, as it modifies the energy only by a constant. Note that the
resulting Hamiltonian is a random integral operator instead of a differential
operator and that the kernels of P, are known explicitly. For simplicity, in
this paper we restrict ourselves to the case n =0, but the case n50 can be
treated similarly.

This model has been the subject of many numerical calculations, lead-
ing, among other things, to the exponent v.""-'"'? (In refs. 11 and 12 the
strength takes only two values + V.) Our aim is to investigate the validity
of the physical picture outlined in the first paragraph.

The results obtained in this paper are valid in the regime when the
magnetic field is large compared to the density of scatterers. We prove that
there exists an infinitely degenerate eigenenergy which coincides with the
first Landau level in the absence of a random potential. This is implied in
the work of Avishai et al.'”’ But the main contribution of this paper is to
show that the whole spectrum is pure point and to prove that the eigen-
functions corresponding to energies not coinciding with the first Landau
level are localized. Our estimate on the localized wavefunctions show, that
for every 0 <y < 1, if the magnetic field is sufficiently high depending on y,
they decay faster than exp(—m |x|”) for all m >0, independent of the
energy. Note that this result does not exclude exponential decay nor the
possibility that the (exponential) localization length diverges.

We expect that at least in the strong magnetic field regime considered
here the results will be unchanged in a more general model where the
Hamiltonian is not restricted to the first Landau band and the position of
the scatterers is random.

The paper is organized as follows. In Section 2 we set up precisely the
model Hamiltonian and study the eigenspace corresponding to the lowest
Landau level. The proof that the spectrum is pure point for all energies
relies on the ‘general theorem of von Dreifus and Klein.!'*’ In Section 3 we
prove the two basic hypotheses of this theorem for all energies: (i) that
with high probability the Green function decays in some large box; and (i)
the nonresonance condition. In ref. 4 we adapted the von Dreifus and Klein
theorem to the magnetic continuum case for another type of random
potential. The necessary modifications needed here are briefly sketched in
Section 4.
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2. THE HAMILTONIAN AND ITS NULL SPACE

Let w,, neZ[i]={n, +in,: (n,, n,)eZ*}, the Gaussian integers, be
iid. random variables. We shall assume that their distribution is given
by an absolutely continuous probability measure 4 whose support is a
compact interval X =[a, b] < R containing the origin and whose density p
is bounded. We let Q= X% and P=T], ;4. For meZ[i] let 7, be
the measure-preserving automorphism of Q defined by

(Tlﬂw)”.:wll—lll (2'1)

The group {t,:meZ[i]} is ergodic for the probability measure P.

Let # =L*C) and let J#, be the eigenspace corresponding to the
lowest eigenvalue (first Landau level) of the kinetic part of the Hamiltonian
defined in (1.1) and let P, be the orthogonal projection onto . The
Hamiltonian for our model is the operator on % given formally by

H(w)=5n’; P, V(~,w)=%PO (-, ) P, (2.2)

where k = B/4, we Q, and
Viz,o)= Y w,0(z—n) (2.3)
neZlil

Note that H coincides with H, in (1.2) up to the term BP, and a multi-
plicative constant. The projection P, is an integral operator with kernel

2k 3 m ,
Py(z,2") =7exp[ —K |z—2'|*=2ixz A Z'] (2.4)

where z A 2’ =Rz57 — FzR2', Rz and Sz being the real and imaginary
parts of z, respectively. Note that if Y e #, then € #, if and only if
Y(z) = f(z) exp( —k |?) where f(z) is entire. Using (2.4), we can write the
Hamiltonian in the form

H = Z wllf;l ®f_;r

neZli]

where, for ne Z[{],

ﬁ,(2)=\/§;Po(z,n)=Eexp[2xﬁz—k'(lnlz+ ERVENEE)
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Note that | f,ll=1, (f,, f..)=(n/2x)'? f,(n) and that H is an integral
operator with kernel

Hz, )= Y o,f(z)](Z) (2.6)

nelZli)

We first obtain a bound on H{(z, z’) which implies that H is bounded. The
following is proved in the Appendix.

Lemma 2.1. Fors,t>0and z,z’eC

Z e " |:—nlze-l lr—=z2 < K(S+ t) e—[.\'l/(.s‘+l)] ]=— =2
neZ(i]

where

172\ 2
K(s)=<1+e*“’"‘+<g> >

The above lemma implies that |H{(z, z')| is bounded above by

2Mk

K(2K) e~ 1 ==F (2.7)

where M =max(|a|, |b|). Therefore H is bounded and ||H| <4MK(2x).
Note that the heat kernel is

2

P[lz,2) =L e 120 17—z

and the corresponding operator has unit norm.
Let {U.: ze C} be the family of unitary operators on # correspond-
ing to the magnetic translations:

(U:f)(zl)=elix:A:'f(z+zl) (28)
Then for ne Z[i]
U, H(w) U; ' = H(z,0) (29)

Note that [Py, U.]=0 for all zeC, so that U.sc ;. Also U, U.,=
[exp(2ikzy A 2,)] U.,,.,. The ergodicity of {r,:meZ[i]} and Eq.(2.9)
together imply that the spectrum of H{w) and its components are non-
random (see, for example, ref. 14, Theorem V.2.4); it is easy to prove that
almost surely the spectrum of H{w) contains X-
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Lemma 2.2. With probability one
Xco(Hw))

Proof. 1t is sufficient to prove that for each Ee€[a, b] and for all
48>0, there exists £’ with P(Q') >0 and ¢ € 5%, with ||| =1 such that for
all we Q', [(H(w)— E) ¢l <d. Choose R such that 3, - s exp(—« [n]?) <
/3M, where M =max(|a|, |b|), and let

Q' ={w: |w,—E|<d/3, max |ow,|K(x)<d/3}
| )

mp < R.om#(

Since E and 0 are in the support of u, P(2') > 0. We have

(Hfy— Efy)(z) = \/_2‘7_?’: Z , f,2) foln) — Efy(z)

i

=(wy— E} folz)} + I

Z wn./;;(z) .f()(n)

n#0

Therefore, since 3, . 1,y €xp( —k |n]*) < K(x), for we Q'

. A
IEfo — Efoll < lwo — E[ + /= X ool -1 fn)l

n#0
Il < R
s .
+M E Z [ fo(n)| <o |

Iz R

In the rest of this section we examine the null space of H, 4(H).
We characterize it and show that it is infinite dimensional for large k. Let
J#; be the closure of the span of {f,:neZ[i]} and 4 =.#. Clearly
Mo A(H). We shall prove that #,=4"(H) and that .#, is infinite
dimensional.

Lemma 2.3. There exists »,>0 such that for x> ,, with prob-
ability one, .#,=.4"(H) and .#, is infinite dimensional.

Proof. If e s, then for all neZ[i], Y(n)=(Py)(n)=(2x/m)'?>
(/.- ¥). Therefore y € .4, if and only if for all neZ[i], ¥(n)=0. Suppose
Hy =0; we want to show that y(n)=0 for all ne Z[i]. We have

Hy= Y «f,

nezZ[i]
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where
T
4= [ @W(n)
Thus
= im (% Pt T Gt
R—=% \<r Il <R
|m| < R
"n#Em
>Jim (2 T af= T - mle o) 210)
R—w ln] < R In| <R
{m| < R
Now
Z |an| . '(x'lul e " b= ml®
lul < R
] < R
= Y e ¥ lal-la <Kk Y Jal? (211
reZ(i] Jnl < R fnl < R
[n+rl<R
Thus
0=[HY|?>(2—K(x)) Y. o, (2.12)
neZli]

and so if x is large enough, then ¥, -, |a,|>=0. Since almost surely
w,#0 for all ne Z[i], Yy(n)=0 for all ne Z[i], with probability one. Thus
we have proved that .4, = 4"(H) almost surely. Let

Vo) =1 <1 -;) g+ (2.13)

n#0

It follows from the theory of entire functions (see ref 15, 2.10.1) that
there exists A>0 such that |y,(z)] <exp(4 |z|?). Let ¢.(z)=zy(2)
exp( —« |z|?) for k>1; then if x> A, the ¢, are in .4, Moreover if
X1 ay$i, =0, then 37, a, 2% =0 for z¢ Z[]. Therefore, ¥}, 4, z¥=0
and thus the a, are zero, implying that the ¢, are independent. ||

Remarks. (i) There exists x,>0 such that sup, _xz|¥o(z)|=>
exp(r, R?) (cf. ref. 15, 2.5.11).
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(ii) It is possible to give a characterization of the elements of .4,.""
If Y e, then y(z)=f(z) $(z) exp(—x |z|?), where f and ¢ are entire
and ¢ has simple zeros at all neZ[i] and no other zeros. Then, since,
Y., <o(1/|n}?) converges by Hadamard’s factorization theorem (see ref. 15,

2.7.1) there is an entire function / such that
$(z) = ze" W (z)
Therefore
Y(z)=flz) 2" Wo(z) e = zg(z) Yy(z) e

where g(z) is entire.

(iii) We feel that we should make some comments about a paper by
Thouless''® on the Wannier functions. Thouless pointed out that if a, =
(=1yn*rm*rmn where n, =%n and n,=4n, and x =n/2, then

Y, «,f[z)=0

nelZli)

We first note that this does not contradict Lemma 2.3, since our result
holds only for large . Also, it does not imply that the f, are not linearly
independent even for x = #/2, that is, if Zf;':, ;f,,(z)=0 with N< oo, then
a;=0 for j=1,.., N, as can be seen from the following argument. We have

N o
O= Za aj.f;:,(z)=< Z Ck§k>e’“'|3|1
i=1 ) =0

where

(2K)k N . ) S (2}()[{ N !
- 7k o=~ 17 7 ik
k= X! Z ;e " M= k! Z a;n;

i=1 e

with

Let yo(z) be as in (2.13) and for n' € Z[i], v’ #0, let

Vo(n)=z ] (1—5) g/t (2.14)

n#0.0 h
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The functions ,.(z) are entire and

=0 if n#n

#0 if n=n' (2.15)

‘1’/1'(") {

Let

l//u'(z) = 2 bu’kzk
k=40

Since %_, an“=0for k=0,1,2..., we have for /=1,.., N,
i=1"0

N

all)[,n/(nl)= Z aj‘/’n/(nj): Z
k=

Jj=1

N
k
bu/k Z a;n; =0
)

¢ i=1

and therefore o, =0 for all /=1,.., N.

3. THE SPECTRUM OF H

In this section we prove that the whole spectrum of H is pure point
with probability one. We prove also that almost surely the eigenfunctions
corresponding to nonzero eigenvalues are localized in the sense that they
decay like exp(—|z]”) with 0 <y < 1. To do this we use the decomposition
Sy = My @ A, to write H in the form

H=0®H, (3.1)

where H, is the restriction of H to .#,, and then study the spectrum of H,.
We have that

Hl = Z wn.fu®f-;l (32)
neZl[i]
The main result of this section is the following theorem.

Theorem 3.1. Let O<y<1. There exists «,(y) such that for
x> {(y), almost surely, the spectrum of H, is pure point and the
generalized éigenfunctions of H, satisfy

NS

s |.'.'|)

The generalized eigenfunctions of H, are elements of a conuclear space &,
containing .#,, which will be defined after Lemma 3.7. To prove this
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theorem we use the method of ref. 13, but we also exploit the fact that for
large x, H, is almost diagonal since the inner products |(f,, f,,)]| <
exp( —# |n—m|?). For this purpose we define an orthonormal basis spanning
-, which approximates the set of f, for large x. Let A: Z[i] — N be any
ordering of the elements of Z[i]. Let {g,:neZ[i]} be the orthonormal
basis of .#; obtained by the Gram-Schmidt procedure:

go=J/o
(3.3)
guanH”2 {f‘u_ Z (gma _fn)gm}
Ay < An)
where
D”=1— Z I(-gnnf;r)lz (34)
Alm) < 2in)

From now on, for any operator A, we shall write {(n| 4 {m) for the inner
product (g,, Ag,.). If A is a subset of Z[{], let

HA: z wu.fu®.fn (35)

ne

Let P, be the projection onto the space spanned by {g,:ne A}, that is,

P,= Z, 2,®8, (3.6)
and let
H,=P,H,P,=P, Z(‘ w,f,®f,P, (3.7)
and
G(E)=(E—H,) " (3.8)

Let us assume that there exist 0 <y <1, 4 >0, and R> 0 such that for all
n,melZ[i],

[Kn| H, |mY| < de= Rin—ml »
1Al <4 :
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and
|<l‘l| H " l"’l)l < Ae — Ridtn. AN + i AC))

for all A =Z[i]. These bounds will be proved in Lemma 3.7. We now fix
numbers s, y,, f, p, and ¢ satisfying 112 <s<1, 0<yp,<yps, 0<B<y,s,
p>2,and ¢>4p + 12. These are fixed throughout the rest of the paper. We
need the following definitions to state the main theorem, which is used in
the proof of Theorem 3.1.

For neZ[i] let

A (my={m:meZ[i], |R(n—m)| <LJ2,|F(n—m)| < L/2}

Definition. If r>0 and E€R, we shall say that a square A,(n),
with ne Z[ ], is (r, E)-regular if:

(RA) d(E,o(H ) >%e "

(RB) We have

|<n| G/l/_(n)(E) |n7>| <eier

for all medd,(n)nZ[i], where 84 ,(n)=A,(n)\Ax(n) and L=L—L".

If A,(n) is not (r, E)-regular, we shall say that 4,(n) is (r, E)-singular.

We shall say that the condition (P1) is satisfied if:

(P1) There exists # >0 such that, for all ne Z[{], for all L> L, and
all E€(E,—n, E;+7), we have

P{d(E, o(H ;) <e '} <L~ (3.10)

and we shall say that the condition (P2) is satisfied if:
(P2) There exists r >0 such that, for all ne Z[i],

P{A,(n)is (r, Eq)-regular} >1—L;” (3.11)

Under assumption (3.9) the following theorem is proved in Section 4.

Theorem 3.2. There exists L{s, 7, yo. B, P> ¢. A, R) such that if for
some E,eR and for some L,> L, both conditions (P1) and (P2) above
are satisfied, then there is a 4>0 so that almost surely o(H,)n
(Ey—4, Ey+ 4) is in the pure point spectrum and if ¢ is an eigenfunction
of H, with eigenvalue in (E,— 4, E,+ 4), then for all 0 <y’ <y,

fim DO (3.12)

Z— L IZI)"
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We shall now proceed to check that the conditions of the theorem are
satisfied for all EjeR, forall 0<y< 1, 12<s<1, 0<yp,<ys, 0<f <y,s,
with p =3 and ¢ =24, when x is sufficiently large, depending on all these
numbers except E,. Theorem 3.1 then follows. First we need to establish
some properties of the g,. For the proof of the next lemma, see the
Appendix.

Lemma 3.3. For ye(0, 1), there exists Cy(y) >0 such that for a > 1

Z e—all:—ml"'+I:'*ml'l'l S C()()’) e—:xl:~:'|T (313)

meZ[i]

We now use the preceding result to obtain bounds on the coefficients
in the expansion of the g, in terms of the f,.

Lemma 3.4. For O<y<|1, there exists x(y) such that for all
k>x(y) and all ne Z[i],

g,= Z o e—(h',-’4) | —m)7 . (314)

m
Al < An)

where |¢”| <1 for A(m)<A(n) and 1 <" <1+ %%,

m n

Proof. We use induction on A(n). By the induction hypothesis, if
A(m) < A(n), then

(g”” f”) = Z c—.zlef(n‘/-'tl Il"—u|'f(f;” f,,')

AQwe) < )

Thus

Z (glll’f;l')glll

Alm) < Atn}

— Z Z Z C_.Z’Cl,{'e —~(x/4) |m — u|7'e —(wcid) for — |~|}'(f*“’f;”) _f,,

A€ Alny Au) < Am) Alr) < atm)

= Z 2 Z E:i’c’lf'e“(l\'/W) |1 —~ u|¥

Mey<aln) AMu)y<An) Anyz i) = maxtAlu), A(r))

xe ML £ )],
Therefore, if A(n')=2A(n)+1, by (3.3),

gy = Z Clxl e —(w/4) |n" — |'|"f'r

Ay < A



Spectrum for a Landau Hamiltonian with Delta Impurities 859
‘ —172
where ¢/, =D '>>1 by (3.4) and for A(v) <A(n'),

no_ -2 S, — (k/4) | — ul?
€ = Dn' Z Z c.Cc.€

M) AN An) = A0m) = max(A(u). Atr))

x e —(x/4) |m — rl'f'e(;\'/4) |0 — 1'17'(-](‘“’ f;,')

Therefore

eI <4D; ' Y ) A

Ay < 2n) Al = Amy Zmax(Alu). Alr))

X ¢ A I WS (1 f )

< 4D,;: IQCO()’) Z e — (K4 |1 — l‘I’e(l\‘/'-”U " —vl? |(f“’ f;')l

Au) < Aln)
by Lemma 3.3. We have, for ju—n'| =1,

I(./;w /n’)l = K fro— |2

e (red) u — Il'lle — w2} [ — n']:e — () e —)?

A [ =, =2, ~ (kA = i |
<e (r/4) |u ”|€ I/e (n/d) ju—u')

Also |z,]"+

¥> |z, 4+ 2,|%; thus

Zs

|1 <4D; PCoy e Y eI <AD S 2Cyly) Kk/4) e

Alae) € Aln)

Therefore if x is sufficiently large so that 8C,(y) K(x/4) e =" <1, then
|| <$D,;'2. But

(g L) <2 3 em W RI(f,, )] < 2e =M =VK 3K /4)

Alu) < Am)

Thus

S s ) SAK (/) e 4T eIl < g R < 34

i) < Aln'y m

if « is large enough. Then D, >1/4, so that |¢”|<1 for Av)<A(n').
Using (1—¢) ' <1l+¢ for e<1/2 and D, >1—e " we get also
c<l+e )
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This last lemma allows us to obtain bounds on |g,(z)] and on the
inner products (g,,, f,,)- We first obtain a bound on |g,(z)].

Corollary 3.5. For « sufficiently large

2k P2
|g(2)| e r32e -t ln=zl g e s (3.15)
7

Proof. We have

|gu(:)_f;1(:)|<(c::—l) |.fu(:)|+ Z |c:::|e_(h/4)|” " |.fm | (316)

Anr) < Atn)

24 5
|-/;l(:)l =\/ze—h‘ fn—z1*
b/

Now

= % —{nA2) | — :|7e(h‘z'12) |II—_'|;'ef)\' i — )2
7
S gEe—(A'/Di Iu—:l"'eh'/'l?_
Vo
since |z|*> —6 46 |z|” for 0 < < 1. Therefore
2K N
(C:;—l) |f‘“(z)|<evh'/24 _e—(h‘/12)|M~:|l
i1
In the sum (3.16), |n —m| =1, so that
K
—|ln—m|"+ K |m—z|?
4
> n—ml 4 i Im—z|?
—+—|n—m K |m—z|”
76 12

>S4 |n—z|"—£— |m—:|"+§|m—2|2+5|m-z|2
6 12 12 2 2

AT LA e L
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Therefore for x sufficiently large

nr

Z |C" | e—(h’/4) | —m|? Ifm(z)l S efx/l(xe—(l\‘/ll) ln—z|7

Alm) < Atn)

Thus
|8,(2) — fi(2)] S e /P =t b=zt

and therefore

‘ : R ., s
Ig”(:)l ge—h/:‘ze—(h/lllln—_p_i_ ?e~" = 22 I

The bound on |(g,,, f,,}| now follows very easily.

Corollary 3.6. For « sufficiently large
I(gnn f;l)l <4e_("‘/4)|'”7“|r (317)

Proof. By Lemma 3.4

(g, fIIS2 3 em ™=t (f £)]

Alu)y << Atmn)

sz Z e—(h'/4) |’”—"|Te—'\' ln—ullg26—(1\‘/4)|111—11|7'K(3h./4)

A1) < AQmr)
We first establish the bounds at the beginning of Theorem 3.2.

Lemma 3.7. For x large enough there exists 4 >0 independent of
k such that

[Cnl By Imy| < et in=m
(3.18)
17, <4

and
l<n' ﬁ - |I7’l> | < Ae—(A‘/S)((I(n'..l")?'+(/(m,.-'l“}7')
e

for all A =Z[{].
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Proof. We have

|<nl ﬁ/l |’n>| = Z wu(gn‘ .fu)(f;n gm)

e d
< MI Z e —{n/d) e — H[i'e —{(K/4) |l - mi¥
neZ[ i)
i —(w/4) [0 — )"
SM'Cy(y)e

where M'=16M. Let S be the operator on .# with (n|S|m)=
e~ WA n=ml’ Then |H ,| < M'Cy(y) ||S|l. Finally,

|<n| I:l,vl" I’n>| = Z wu(gu' ,fu)(.fu’ gm)

He A
SM’ Z e*(h‘/-’l)quulie—(k,/tl)Iu—/nll
e A
s a2y ey /8 It — i — (e /8) [ — i
<MI€ (n BN A2V 4 d(n, A9 Z e (x/8) |1t n[e (w/8) |er — |
ue.

g Ml C()( y) e —(RBUA A + dimn, AN I

Let & be the set of functions on C of the form

()= ), a,g(2) (3.19)

neZfi]

where |a,|(1 + |n|) ™" is bounded for some t € N. Then & is the dual of the
nuclear space &, consisting of functions on C of the same form with
la,] - [n]" bounded for all reN, equipped with the seminorms |-[|,, re N,
defined by

r
g7 =3 % la,l*Inl*

=0 nezli)

This is a nuclear space since ¥, . 71, (18.ll,/llg.ll /) converges for 1" > 142
(ref. 17, p. 62). Lemma 3.7 gives the bound

[<n| H im>}| < de—w/3rin—mi

This implies that H, maps &, continuously onto itself, which allows us to
define H, on & by duality as the adjoint map. The generalized eigenfunc-
tions of H, are then in &F and therefore polynomially bounded, that is,
la,| < C(1 4 {n|)"."*
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The next lemma will be used in proving that (P1) and (RA) of (P2)
in Theorem 3.2 are satisfied.

Lemma 3.8. If x,,.., x, are i.id. random variables with density p
bounded by p,, then 5, the density of X} _, a,x;, a, >0, k=1,...n, is
bounded by p,/max a,.

Proof. We have

p (yn~l ——yif>
an—l

Po Ya—D)a Yi—DYa Yu—1—Vy
<= p =t Jn
“l'[p< (03] )p( o3 > p< 0, >

(L)L, L

&, &2 &,

=&j/’(32)}7(33}”'p(:") z2edz =0

&y a

We can write H, in the form

H.fl = Z xln.m' glll ® gm'

m.m' e

Where X = Zn €A wn( &> f;l)(f;l’ g ) Since

xmln = Z Cl),, I(gm’ .fu)ll

ne .t

by the preceding lemma x,,, has a density bounded by p./l(g,., [l

where p, is the upper bound for the density of the w,. Now, using
Lemma 3.4, we have

|(f;"’ gl")l:Z = DIH = (C::;) -2 > (l + e—h./s) -2 > ]/2
for x sufficiently large. Thus x,,,, has a density bounded by 2p,. For Borel

subsets B of R let ¢;(B)={m| E ,(B) |m), were E (B) are the spectral
projections of H ;. Then by Lemma VIIL.1.8 in ref. 14 (in ref. 14 the lemma

822.87,34-26
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is proven for real matrices, but one can easily check that it extends to the
present situation where only the diagonal elements are real),

Nnun 111

E. o/(B) <2poj dx
B
and therefore

nr

Es/(B) < 2p0j dx
B

As in Proposition VIIL4.11 of ref. 14, it then follows that for all E€ R and
e>0,

P(d(E, a(H ;) <&) <4poe | 4]

The next lemma will be used in proving that (RB) of (P2) in
Theorem 3.2 is satisfied. Let

ﬁ/l = Z wn gn®gu

ned

and G (E)=(E—H,)~". If d(E, {w,:neA})>e, then we have
- 1
l<n| GI(E) |I7’1>| <;5m.u

Lemma 3.9. Given ¢>0, if d(E, {w,:neA})>¢ and if « is large
enough so that e ~**> < ¢/2, then

[<nl GAE) Im)| <&~ Y3, +e B I=nh)

Proof. Let 6H ,=H,—H,. If n#m, then |{(n| H,|m>|=0; there-
fore by Corollary 3.6 and Lemama 3.3, for x large enough,

|<nl 5H¢l "n>' = Z wu(gn’ .fu)(.fu’ gm)

ne A

< MI Z e —{x/4) Iu—nli'e —(w/4) [ —m|¥

weZli]

S MI C()()’) e —I\'/Se —(w/8) |t — mal?
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On the other hand,

|<n| 5HA ln>| = Z w,, (.fu’ gu)lz_wn

ued

SM Z |(f'us gn)|2+M(l_|(.fu’ g")ll)
uFEn

=M Y [(f&)P+M 3 |/, g
Y] Auy< A(m)

<M Z l(ﬁl’ gu)|2+M Z |(f‘ln gu)l2
ustn #En

SZM' Z e—(h‘/‘Z)lu—nl'f

uFEN

s 2Mle—h'/8 Z e —(3x/8) |
neZli]

Therefore for x large enough
(<l GH. Imy| < e*/10g =) in=ni
Thus
[<n| G4(E)0H , Imy| =|E—w,| =" [<n| GH , my| Sg e 10—l
By using Lemma 3.3 we can then deduce that
<G A(E) SH 1) Im | < (Coly))* =" g ~he ~H/16g =t n=uk

— Kk, —kn/32 , —{n/8) |n—m|" < —(w/8) [t — m|"
=

1
<e e ‘e Fe

From the resolvent identity we get
GAE)=G (E)+G (E)6H ,G (E)= Y, (G (E)JH ,)* G (E)

k=0

if the series converges. Let T be the operator with {(n| T |m) =
exp[ —(«/8) [n—m|"]. Then

~ ' 1
(G AE)SH )" <5 1T
2
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and therefore the series converges. Thus
I<n| G(E) Im>|<e™'(8,,,,+e W1l

We are now ready to show that the conditions of Theorem 3.2 are
satisfied. We have proved that there is «,> 0 such that for all x >, and
for all A = Z[{], the following are satisfied: (1)

[Cnl FL ] < Ae=om bn=mt
1A <4
and
K| B o |m>| < e Wo/8dim A%+ dum. A7)
(2) Forall EeR and £> 0,
P(d(E, o( H ;)) <g)<dpye |A]
(3) I d(E, {w, - ned})>eand e <¢g/2, then
[<nl G AE) Im>| <&71(8,,+ e~/ =)
From (2) we have that, for all Ee€R and for all L >0,

P(d(E, o(H ) <e ') <4pye~*'L?

A

so that if we take L, sufficiently large, for all L > L,, (P1) is satisfied for
any g > 0. Also the probability that (RA) of (P2) is satisfied is greater than
—1L-9
Now let L, be as in Theorem 3.2 and choose L,> L, such that

L3e~(l\'o/8)( Li—LV —(x0/16) L},

and

2pO>L?» 1 1
1-22) ——>1—-—
( Ly) "2y L

Then from (3), by putting e=1/L5, we see that if x>, =
max(xg, 32 In(2L5)), then (RB) of (P2) is satisfied with probability greater
than 1—1/L3+1/(2LY). Thus the probability that (RA) and (RB) are
satisfied is greater than 1 —1/L}; that is, (P2) holds with p = 3.



Spectrum for a Landau Hamiltonian with Delta Impurities 867

4. THE PROOF OF THEOREM 3.2

This short section deals with the proof of Theorem 3.2. Our proof is
based on the paper of von Dreifus and Klein''*’ as adapted, in our paper,'®’
to infinite-range operators, that is, operators that couple points within a
region to points outside the region. Here we give only the modifications
that have to be made to the method of ref. 4 to fit the present situation; this
section should be read in conjunction with Sections 4, 6, and 7 in that
paper. Some simplification occurs because in this paper we require less
than exponential decay. Theorem 3.2 is the analogue of Theorem 4.1 in
ref. 4. As before, this theorem can be split up into two parts: one in which
condition (P2) is iterated to pairs of larger and larger blocks (Theorem 4.9)
and one in which the iterated condition is shown to imply the required
decay of the eigenfunctions (Theorem 4.1). The following theorem is the
analogue of Theorem 4.2 in ref. 4. However, the proof is much simpler than
that of the latter and therefore we give it.

Theorem 4.1. Let 0<y <y, and let IR be an interval. Let
| <a <min(2s, yo8/f, yo/y'), r>0, and Ly>1. Define L, ;,=L;,
k=0,1,2,.. Suppose that for all k=0,1,2,.. and all n, meZ[i] with
|n_’n|‘x ZLk + 1,

P{3EeI such that A,,(n) and A,,(m) are both (r, E)-singular} <L~

Then, with probability one, the generalized eigenfunctions of H, corre-
sponding to generalized eigenvalues in 7 satisfy

l
fim P& @1
n— oo Inl}

Note that the last inequality together with Corollary 3.5 implies that

In jy(z)] _

lim = - (4.2)

T oo |Z| ¥
We need the following two lemmas, the analogues of Lemma 6.3 in ref. 4,
which we state without proof. We find it more convenient here to give
estimates for the two operators which occur in the proof of Theorem 4.1

than a general estimate as in ref. 4. Throughout the rest of this section R
is as in (3.9).

Lemma 4.2. Let ) be a generalized eigenfunction of H, with eigen-
value E and therefore polynomially bounded, that is, there exist K> 0 and



868 Dorlas et al.

teN such that |(g,. ¥)| < K(1+1n|)". If A,(n,) is (r, E)-regular for some
r>0, then there exists a constant 4, such that

I(glm’ G/l[_(lm)(E) Hl P.'ll_lllm‘ lrb)l

<A.{(L+mn'e-“”3+e-*'“* 5 |<g,.,w)i} 43)

ne Axytng)
for L large enough.

Lemma 4.3. Let |/ be a generalized eigenfunction of H, with eigen-
value E. If 4,(n,) is (r, E)-regular for some r >0, then there exist 4,>0
and Q, such that for L > Q,

I(gnlw G-vll.(lm)(E) H«ll_(ll())' P,'ll,lnn)l//)l S Azeiruu Z |(gn’s lp)l (44)

n' € Alng)
We now give the proof of Theorem 4.1.

Proof of Theorem 4.1. Define A, (n,)=4,,,, (no)\A,.,(n,) and
let &(ny) be the set of weQ for which there exists ne 4, , (nq) such
that 4, ,(n,) and A, (n) are both (r, E)-singular for some Eel By the
Borel-Cantelli Lemma we may assume that for all n,eZ[i], the set
{k: we &{ny)} has a finite number of elements. Now let y be a generalized
eigenfunction of H, with eigenvalue E and choose n,€Z[i] such that
I(g,, ¥)| #0. By the resolvent identity,

I(gn“’ lp)' < |(gn(,’ GA,_A_(M(,)(E) HI le:,k(u(,)‘ lp)l
+ [(gnns G.f,'_,\{n")(E) f?.vll_‘(u(,)‘ P./l,,,__(n(,))xb)l (45)

Suppose that 4, (n,) is (r, E)-regular. Then, using Lemmas 4.2 and 4.3, the
last inequality implies that

|(gn“’ l//)l <A|(Ll -+ |n(,|)’ 67“"’2l RL[

A+ 4 e Y (g, W)l (4.6)

ne A2plng)

If this were to hold for infinitely many k’s, we could take the limit k — oo
and find that |[(g, ,%)| =0, which is a contradiction. We conclude that
there exists k, such that for all k>k, 4,(n,) is (r, E)-singular. This
implies that if we Q,=1J;_, 6n,), then there exists k, >k, such that for
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k=k,y, A, (n)is (r, E)-regular for all ne 4, (n,). The above inequality
with n, replaced by » then yields

(g, W) < A(Ly+ |n|)' e V2R

(A +4)e ™Y (g, Pl

ne A tan)

< Ce o (4.7)

where ' <r, since |n—ny| <L, =L%. |

The next three lemas are the analogues of Lemma 7.4 of ref. 4. The first
two are equivalent to proving the inequalities 7.27 and 7.32 in Lemma 7.4
and are sufficiently close to the these inequalities that they do not require
a proof here; the third one is significantly different and warrants a proof.
The difference is mainly due to the fact that we do not require exponential
decay. As a result the parameter r in the regularity condition can be fixed
for all scales. We first need to define the following two conditions.

Let /<R be a fixed interval.

R(L,r'y. Forall n,meZ[i] with |[n—m|, =2L+1,

P{3Eel A,(n) and A,(m) are both (r, E)-singular} < L~

K(L,): For all L>L,, all EeR with d(E, I) <}iexp(—L"), and all
nelZ[i],

P{d(E, o(H ) <e '} <L~

Lemma 4.4. Let />1 and L=/* Assume that A,(n)cA;(n,) is
(r, E)-regular. Then, if / is large enough, there exist constants C, and 4,
such that for med4,(n,),

[<n| G.1,u(E) Im) < Cy expl — 3 RIV ]+ A 1+ le ™"

x{e™ A sup || Gy (E)Imd]}  (48)

n'eAjn)

where f=1+1"+ 1.

Lemma 4.5. Let /'">/ and L=1/* Suppose that A, (n,) < Az(n,)
and that A,(n,) and 4,(n,) satisfy the regularity condition (RA). Then
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there exist constants C, and 4, such that for / large enough, ne 4,(n,),
and medA,(n,),

IKnl G 4 (E) [m]

Aptng

S Cye R L 4 [l sup [{n'| G

w'e Ajn \Aj-tny)

(E)|m>|  (49)

Apfng)

¥

where I'=1"—1

Lemma 4.6. Let JeN be given and n,e Z[i]. There exists Q' > 1
such that if /> Q and L=1!* then (i)-(iii) below imply that A,(n,) is
(r, E)-regular:

(1) A,(ny) satisfies (RA).
(it) A,(n') satisfies (RA) for all

e{l 1+1+1,.,J0+1+1)) =

and all n' € 4,{n;) such that A, (') = Az(n,).

(iii) There are at most J squares A,(n;) = Az(n,), i=1,.., D<J, such
that d(n;, n;) =1+ 1 for i # j which are (r, E)-singular.

Proof. Choose a maximal set of singular squares A4,(n;), i=1,..,
D<J, in Aj(ny) as in (ii1). Then if A4,(n) = Az{n,) and d(n, n, )>l+l for
all i, 4,(n) is regular. There exist squares 4, = A;(n,) with [,e 7}, j=1,.,
t< D, such that 4, nA, = fori#j, Xi_, LTI+ T+1), and

f

U Arpin(n) e U 1,

i=1 i=1

Ifn¢A; for any j=1,.,¢t and 4 (n) = Ag(ng), then d(n, n;) =1+ 1 because
din, A ) 1 and d(n;, A} )/,(1+l+1) which implies that |n—n;| >
(l+l+ 1)~ =1+ 1 Therefore A,(n) is regular. By Lemma 4.4, if A,(n)

is regular, then (4.8) is satisfied. On the other hand, if 4;(r) is singular but

A,(n)yc Ag(ny), then |n—n;| </+ 1. This implies that ned,,;, (n,) for

some / and therefore ne A J for some j. Thus by Lemma 4.5,

Knl Gy (E) [m]
<Coe ™ FO L A Lell sup ('] Gy (E) M| (4.10)

n'e Alj\A‘/
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Since n' ¢ A;, A,(n') is regular provided A4,(n") = Az(n,). We can therefore
use (4.8) to write

a3 i ~ 4 _ 7
|<’1| G/‘L(H")(E) |m>| s Cle_(RM)I +A21jelj { Cle (R

+A et le™™ sup [ Kn"| Gy (E) ImD]}
n e Ain’y
e /ll}\/ll;

SCye 15 sup [Kn"| G, (E) Im)>  (411)
u" e djury
ne t“l_',\f"fj

for I large enough, depending on J. Note that we have used /;,<2Jl, y,> f.
We now want to iterate (4.8) and (4.11) starting at n=n,: This can be

done until we reach 04,(n,). Suppose we can perform N iterations. Then
we can write

[{ny G.’l/,(u(,l(E} lm>]

N-2
SC’L’_‘R/‘”M{1+Z(HU) Z Z(nl)...Z(nk)}

k=0
+Z(ng) - Ziny ) €™ (4.12)
where
1 . is (r. E)-si ]
Zm)=3% . ff A/(”)fs(' )-singular
A7t e™™ if  Ay(n) is regular

Suppose we encounter a singular box N, times. The maximum distance
traveled in those N, steps is equal to the size of J boxes, that is,
J(I+ 3[+1). On the other hand, since d(n,, 34,(n,)) = 2L —L*) =1L, we
can make at least N,=N — N, regular steps, where

] 3. 1 .
T 1+=T >—(L-1
N5+ <+2 +1> S(L )
or

2L—ﬂﬁf§+n>l
]

N,

,

([=='—=='—-8J—-2J17")

]
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Therefore

Z(ng)---Z(ny_y)
< (’ZI [x+ IeAr/Tn)N,
a— |

2

-~ =t
<exp{ [lnA,+(s+l)1nl]—rl"0< > —l”"—lOJ)}

But y,+a—1>ay,, because yi{a—1) <a—1, since y,< 1. We can there-
fore write

Z(I’IQ) . Z(nN_ \ ) < %e—rﬁ'na — %e—rLTu
The first term of (4.12) is bounded by
26@ —(R/A) I < %e —rliy

for large /, since y,<vys. |

The next two lemmas are the analogues of Lemmas 7.5 and 7.1,
respectively, in ref. 4.

Lemma 4.7. Let IcR be an interval. Let Ly>1 and suppose
that K(L,) holds. Let /,>[,>1/, and let 4, and A, be disjoint squares.
Then

o 17
P{d(o'(H.,,).o'(H ) <e™") <7 (4.13)

where
o'(H,)=0(H,)n{EdE,I)<ie "}

Lemma 4.8. Let | <a<min(2s, y,5/8, p/2). Then there exists Q
such that if /> Q and R(/,r) holds and K(L) holds for all L=/, then
R(L, r) holds with L=/

Finally, we have the following result.

Theorem 4.9. Let « be as in the preceding lemma. Then there
exists O, >1 such that if for some L, > Q,, the conditions R(L,, r,) and
K(L,) hold, then R(L,, r,) holds for all k=0, 1, 2,.., where L, ,,=L;.
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APPENDIX. CONVOLUTION ESTIMATES
Here we give the proofs of the two technical Lemmas 2.1 and 3.3.

Proof of Lemma 2.1. We have
2 aed 2 St 2
Slz—=nl"+tn=2|"=(s+t) Ipn—a]"+——|z— 2|
s+t
where o = (sz + tz')/(s + t). Therefore

Y. exp(—s|z—n|*) exp(—t|n—2']?)

neZli]

—exp (= =) T expl—(s+ 0 n—al’]

st+1 nez[i)

Now if n,—a,>1 and n, —1<x<ny, then (n, —a,)*>>(x—«,) There-
fore

"

e—(x+l)(.\'-—1|)' dx

Z PRCR ] —a.)3< Z

m=l+x mzl+a m—1

- 1/2
S'[ e"(-"+"‘-“—“l’zdx=l L
. 2\s+t

Similarly,

' , 1 T 12
Z e (8 + 1)y u|)<§

mo<oy — | s+i

Thus

1/2
2 n
Z e—(.\'+1)(u|—a|)~<1+e—(.\'+l)/4+
s+t

nez

and so

Z e——(x+l)[n—-:x|2<K(s+t) I

ne2li]

Proof of Lemma 3.3. We split the sum into three parts:

Z e—a{l:—ltll7'+|:'—ml"'} =14+II1+1II

meZ(i]
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where

1= Z e—z{|:—l:1|7'+|:'—m|'l'}

==tz 1/2 2=
I — =" 2172 |z — =)

II= Z e~z —mli 4= —mli
fm—zl<1/2 |z ==

I = Z eIz —mli+ 12 —mii
=zl < 12—

If [m—z|=23|z—2'| and |m—2'| 23|z —Z'|, then

2 m—z"+|m=2'} 2|z =2}
Therefore
[<e |z — 2|7 Z e =20y Yo — 2
meZ(i]
Now

Z e—z(l—Z?"')lm—:lf
meZ[i]

is bounded by a constant C\(y) independent of z and thus
IS C(y) "
On the other hand, if |m—z| <1 |z~Z|, then

I —2 7= |(z—2') = (z —m)]’

z—m|\
==z (1- =5
2[2—2’|"<1— z—m>
z—~72
1 Jz—m|”
_7I ¥ _
Zz=7 (1 2|z -7 >
1
=z =2V~ e —ml’
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Therefore

—a|m— = - —N20=y [z = ml? —a|z =27
IISE «|z—=') Z e x(b—1/2 )= mlscz(y)e alz—=

meZli]
Similarly,
IS Cy(p) e F=71 ]
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