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We consider a single-band approximation to the random ‘Satger operator in an
external magnetic field. The random potential is taken to be constant on unit
squares and i.i.d. on each square with a bounded distribution. We prove that the
eigenstates corresponding to energies at the edges of the Landau band are localized.
This is an important ingredient in the theory of the Quantum Hall Effect1996
American Institute of Physic§S0022-24886)03403-]

I. INTRODUCTION

We consider a two-dimensional infinite system of noninteracting electrons moving in a uni-
form magnetic field of strengtB and a random potentidl. In the symmetric gauge the vector
potential is given byA(x) =[(B/2)x,, — (B/2)x,], X=(X;,X,) e R? and the Hamiltonian is

H=(—iV—A(X))*+V(X). (1.1

The effect of the random potential is to broaden the Landau levels into bands. When the potential
is bounded and the magnetic field is strong enough these bands do not overlap. It is generally
expected that the states lying near the edges of the bands are exponentially localized and the
corresponding spectrum is pure potritNear the center of the bands the situation is more con-
troversial. One possibility is that there exist truly extended states in some finite-energy range.
Instead, it could happen that the localization length remains finite for all energies, except for one
value, where it divergee.g., like a power law®~° This picture is essential for understanding the
occurrence of plateaus in the conductivity as a function of the magnetic field measured in Quan-
tum Hall experiments. In this connection, Kérzas shown that the localization length must be
infinite for at least one energy in each band, assuming that the states with energy at the edges of
the bands are exponentially localized.

Rigorous results on random ScHinger operators with magnetic fields are still rare. A few
exact results concerning the density of states have been obfaittdd. the present paper we
address the problem of proving that the energies at the edges of the bands correspond to localized
states. For the random potential we choose a model already considered in previous works in the
absence of magnetic fietd!®> The two-dimensional plane is decomposed into unit squares, on
each of which the potential is taken to be constant. The values of the potential on the squares are
i.i.d.s with a bounded probability distribution. The precise hypotheses on the probability distribu-
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tion are stated in Sec. Il. When the magnetic field is strong it is reasonable to consider only the
projections of the Hamiltonian onto each Landau level and to neglect the cross terms. The Hamil-
tonian restricted to thath level is

H,=B(2n+1)P,+P,VP,, (1.2

where P,, denotes the projection onto the level. The teBif2n+1)P,, comes from the decom-
position of the purely kinetic part dfL.1) and can be dropped as it modifies the energy only by a
constant. Note that the resulting Hamiltonian is a random integral operator instead of a differential
operator and that the kernels Bf, are known explicitly.

Our main result is that, for the Hamiltoniath, , the states at the edges of the corresponding
band are exponentially localized. For simplicity in this paper, we restrict ourselves to the case
n=0. Our proof depends on a modification of a theorem of Von Dreifus and Kfdihis theorem
is only stated here and the proof is given in a companion pEpehjch deals with the easier case
when the distribution of the random potential is unbounded, e.g., Gaussian. In this paper we
concentrate on the case when the distribution is bounded.

We now describe the main features of our analysis. In Sec. Il we gemeeLemma 2)3that
it is enough to show that, because of the special form of the Hamiltonian, the wave function
decays exponentially on the lattice. This simplification enables us to use the methods of $pencer,
Von Dreifus and Kleifi* for lattice models. However, the fact that the model is formulated in the
continuum makes the model considerably more difficult to analyze and nontrivial modifications
are required, because the relevant Green's idef&t$) is more difficult to handle. These are
described in Sec. lll. This section also contains the basic step in the proof of localization, Theorem
3.1, which as in Ref. 14 reduces to two main conditi®® and(P2). The proof of this theorem,
which does not depend on the boundedness of the potential, can be found in Ref. 15. In Sec. IV we
verify the conditiongP1) and (P2). The condition(Pl) is an estimate of the type first proved by
Wegnet’ on the probability that an enerdy lies within some small distance from the spectrum
of the Hamiltonian for a finite box. This requires bounds on the integrated density of states in finite
boxes. Our Hamiltonian, when restricted to a finite box, turns out to be a Hilbert—Schmidt opera-
tor. Therefore the spectrum has an accumulation point at zero that requires an adaptation of
Wegner's argument. This feature is intimately related to the fact that the original Laudau levels are
infinitely degenerate. ConditiofP2) states that there exist a length schlsuch that the Green’s
function for a box of sizé&. decays exponentially fast, with a high probability dependind. oRor
bounded potentials the usual proofs in the absence of a magnetic field use the fact that the density
of states is exponentially small near the band edge. These are the so-called Lifshitz tails. Here we
verify (P2 directly using a Combes—Thomas argum®and the explicit form of the eigenfunc-
tions of Py. The main part of the paper is concerned with this problem.

While this paper was being written we received a preprint by Combes and Hisdh
similar results, and recently W.-M. Wang also obtained results along the samé&°liveswish to
compare briefly these papers with the present one.

In Refs. 19 and 20, localization is proved for the Hamilton{arl) in the case where the
random potentiaV is sufficiently smooth. Mathematical techniques of percolation theory and
microlocal analysis are usddlso see Ref. 21 The regime studied is that of large magnetic field,
that is, the magnetic IengtHl/JE) has to be smaller than the characteristic length over which
the potential varies. In this situation the one-band problem is well approximated by the classical
effective Hamiltonian (2+ 1)B+V(x). As a consequence the problem is mapped onto a perco-
lation problem for the equipotential lines ¥f(x). As far as we know this physical picture goes
back to Ref. 22.

In contrast, the effective Hamiltonian used in this paper for the single band problem is
P,VP,, and therefore the kinetic energy that is containedPjnis not quenched. As a conse-
guence our main theorem holds for arbitrary strength of the magnetidfieelthe single band In
particular, localization at the band edges occurs even when the magnetic length is large with
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1576 Dorlas, Macris, and Pulé: Localization in single Landau bands

respect to the characteristic length of variationVothat is, when the percolation picture loses its
validity. Of course, we have neglected the interband coupling, and if that is taken into account a
condition on the strength d would be necessary. However, it is not clear what the optimal
condition would be. We remark that in the present study the random potential is of a different kind
from that in Refs. 19 and 20 since it is discontinuous.

II. THE HAMILTONIAN

Let w,, neZ? be i.i.d. random variables with distribution given by a probability meagure

with suppu=X=[a,b], a compact interval ifk. We let() = X% andP = I, 2. FormeZ? let
7, be the measure preserving automorphisnfladefined by

(Tm®)n=®n_m- (2.1

The group{r,,:meZ? is ergodic for the probability measuie

Let . 7#7=L%R? and let.77, be the eigenspace corresponding to the lowest eigenvhiae
Landau level of the HamiltonianH, defined in(1.1). Let P, be the orthogonal projection onto
4. The Hamiltonian for our model is the operator .61y, given by

H(w)=PoV(:,0)=PoV(-,0)Pg, (2.2
wherewe() and
Vx,0)= 2 1y m(X)on, 2.3
ne7?

A4(n) being the square of the unit side centered at
Py is an integral operator with kernel

2
Po(x,y)=7’< exfd — k|x—y|?+ 2i kx/\y], (2.9

wherex=B/4. Since we shall be using both the Euclidean norm and the maximum nokf are
shall use the following convention:

x| =(E+x5)Y2  |IXll=max(|xy].|x,]),
and forL>0 andx eR?,
B(x,L)={yeR%|y—x|<L}, A (x)={yeR%|y—x|<3L}.

Let {Uy:yeRZ} be the family of unitary operators om” corresponding to the magnetic
translations:

(U, f)(x) =X Xf(x+y). (2.5
Then forneZ?,
UH(0)U t=H(mw). (2.6)

Note that [Pg,U,] =0 for all y e R? so thatU,.7,C.70. AlsoUy U, = e2iKVzAV1Uy1+y2. The

ergodicity of{r,,:meZ? and Eq.(2.6) together imply that the spectrum bff(w) and its compo-
nents are nonrandofsee, for example, Carmona and Lacroix, Theorem V.2 4s easy to prove
that almost surely the spectrum df{w) is equal toX (cf. Ref. 23.
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Lemma 2.1For P-almost allwe (),
o(H(w))=X. (2.7
Proof: For e . 7,
allyl><(y,H(w)p)=<bly]?,
and therefore
o(H(w))CX.

To prove the reverse inclusion, it is sufficient to prove hédr eachE e X and for all >0 there
exist Q' CQ with P(Q')>0 ande. 7, with |{=1, such that for alweQ', [(H(w)—E) #<é.
LetE e X andyre 7, with [|¢f|=1. ForR>0, letyr= Pylg oy - Since| ¢ — yrll <[ 1gor)cttll, we
can chooseR large enough such thagigl[>1/2. Let Q' ={w:|V(X,0) — E|<1/25,Yx e B(0,2R)}
then clearlyP(€2")>0. Now

[(H(@)—E)¢rll?=[Po(V(, @) — E)Polg g ¥l?
<[|(V(+,@) = E)Polgor ¥?

< f dx(V(x, ) = E)?|hp(x)|*+ f AX(V(x,) = E)? ()]
B(0,2R) B(O,2R)

(2.9
If weQ)' for the first integral in(2.8), we have
2 2 1 2 2 1 2
dx(V(x,0) = E)?|gr()|?< 5 & ¢rl*< 5 &% (2.9
B(0,2R) 4 4
We now estimate the second integral(ih8),
2
|¢R(X)|2=< J dy Po(x,y) z/f(y)) Sf dy|Po(x.y)|?, (2.10
B(O,R) B(OR)
using the Schwarz inequality afjgh|=1. If xe B(0,2R)¢ andy € B(0,R),
442
|P0(x,y)|2<?exp:—KRz—K|x—y|2], (2.11)

so that we have, for the second integral8),

4(b—a)?k?
f dx(V(X,0) = E)?|yr(x)|*< (—z)K efksz de dy e xx-yP?
BO.R) ™ BORC  JB(OR)

4(b—a)’k’R?
<

1
— kR? *K‘X‘2<_ 2
p e JRde e 7 o7, (2.12

if R is sufficiently large. [l
The next lemma describes the generalized eigenfunction$(@j. It is proved in Ref. 15see
Theorem 2.3 and Lemma 6.1h the case wherX may be unbounded.
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1578 Dorlas, Macris, and Pulé: Localization in single Landau bands

Lemma 2.2For almost everf e X with respect to the spectral measurafthere existsy,
a polynomially bounde€” function onRR? such thatH = E and Poyy= . Moreover, if e 7,
thenE is in the pure-point spectrum oé{.

The object of this paper is to prove that almost surely the generalized eigenfunctibhs of
corresponding to points of near its edges are localized, in the sense that they decay exponen-
tially and therefore those points are in the pure-point spectrum. The next definition makes precise
what is meant by exponential decay.

Definitiont zR>—R decays exponentially with a rate greater or equahtd

lim sup%s—m. (2.13

X—

The main result of this paper is the following theorem, which is proved in Sec. IV.

Theorem 2.3: If the probability measure corresponding to the i.i.d. random variables
absolutely continuous with respect to the Lebesgue measure and its desatigfies a Lipshitz
condition of orders>0 and supp=[a,b], where—«w<a<b<w, then there is &>0 andm>0,
such that almost surelyaja+A]U[b—A,b] is in the pure-point spectrum df and the corre-
sponding eigenfunctions ¢f decay with a rate greater or equalrto

The last lemma of this section provides an important simplifying feature in our proof of
localization. It shows that to prove that an eigenfunction decays exponentially it is sufficient to
prove that its average on unit squares decays exponentially.

Lemma 2.41f ¢ is a generalized eigenfunction bf and

In(1x,(n)
In|

i) _

lim sup <-m, (2.19

n—o

nez?

then s decays exponentially with rate greater or equaio

Proof: If ¢ is a generalized eigenfunction &f then, by Lemma 2.2/ C* and is polyno-
mially bounded)#(x)|<C(1+|x|)!, say. If s satisfies(2.14) then, givene>0, we can choosR
such that fom eZ? with |n|>R—1/2,

J’ [ip(x)|dx<e™(M-elnl, (2.15
Aq(n)
Since =Ry, for all xeR?,

2k 2
wool= = | et uylay

=2 ey J e~ W y(y)|dy
™ Jlyl<R ™ Jly>R
a

For the first term, we have
I,<C(1+]|R|)!7R2%e «(X-R? (2.17)

We now obtain an exponential bound on the second term,
J. Math. Phys., Vol. 37, No. 4, April 1996
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_ _vl2
b= 3 [ e ey
7
nSRowma

= > f e Y y(y)|dy
ne7?|x—n|<1 1(n)

[n|>R-1
_ _yl2
+ f e Y y(y)|dy=15+1,. (2.18
ne7?|x—n|>1 JAx(n)
[n|>R-1
Now
| 5< 2 e~ (m=alnl< e~ (M=e(x|-1) (2.19
ne7?|x—n|<1
and
l,< Y e (m-elnlgx(x—n/-1?
ne7?
Se*(m*e)|x| Z e(mfe)|x7n|eﬂ<(|xfn|fl)2
ne7?
<e (Mol > gm-anl+g-x(n-2*< crg-(m-elx (2.20
ne7?
O
. THE METHOD

In this short section we describe our method. Our proof is based on the paper of Von Dreifus
and Klein* (also see Refs. 25 and Jl@Here we give a summary of the main differences. The
details can be found in Ref. 15.

The main tool in Refs. 14, 25, and 16 are the local Hamiltonians, the Hamiltonian restricted to
bounded regions by Dirichlet boundary conditions, and the corresponding Green’s functions. For
ACR?, here we define the local Hamiltoniah, on L2 (A) by

HA:PAVAPT\v (31)

whereP,=1,P,andV,=V1,. V is also truncated to ensure that for disjoint regions the corre-

sponding local Hamiltonians are stochastically independent. We note that for bodnéidis a

Hilbert—Schmidt operator and its spectrurH ,) has an accumulation point at the origin.
Forheo (Hy) let

GA(E)=(H,—E)~ . (3.2

If ¢ is an eigenfunction oH with eigenvaluek ¢ o(H ), then using the resolvent identity, we
have forxeA [cf. Eqg.(3.12 in Ref. 15

$(X) == (GA(E)(PAVP et PyVAcPR) #)(X). 3.3
Most of the complexity in adapting the proofs of Ref. 14 to this model comes from the fad¢d that
is not a local operator(3.3) contains terms that couple points Mnto points outside. However,
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1580 Dorlas, Macris, and Pulé: Localization in single Landau bands

because of the form of the kernel &, the coupling is bounded by a Gaussian. The Green'’s
functionG, (E) does not have a kernel in this case. We therefore have to modify the definition of
regularity.

Definition: Let m>0, 0<8<1, EcR and3<s<1. A squareA (x) is (w,m,3,E,s) regular if
(RA),(E,a(H, (%)) >,
(RB), for all ¢peL (A (X)),

(1,00 41GA (B 1T o) <€ ™ 1% ol

whereA | (x) = A (X)\A[ (yandL =L—L°®.

In order to state the theorem that is used in proving localization, we need to define the
following two conditions: LetE,e R\{0} and fix 8<(0,1), se(3,1) andp>2. We shall say thak
satisfies conditior{P2) if the following occurs.

(P1) There exists q>4p+12 and G<7n<3E,, such that for allL,=L and all
Ee(Eo— 7.Eo+ 7).

P{A(E,o(Hy, o))<e “T}<L;9;
1

and we shall say thdt satisfies conditiorfP2) if the following occurs.
(P2 There existsye (0,1) andm>L?"1, such that

P{A(0) is (w,m,B,Ey,S) regulak=1—L"P.

The following theorem is Theorem 4.1 in Ref. 15.

Theorem 3.1: There existsLy(8,s,p,q) such that if there is ah=L, that satisfies both
conditions (PD) and (P2 then there is aA(L,B,s,7)>0 so that almost surely, foE,#0,
o(H)N(Ey—A,Ey+A) is in the pure-point spectrum and the corresponding eigenfunctions decay
with mass greater or equal to.

The proof of this theorem can be split up in two parts: one in which cond{i#@nis iterated
to pairs of larger and larger blocks and one in which the iterated condition is shown to imply
exponential decay. Because of Lemma 2.4 it is sufficient to iterate on squares centered on points
of 72 This is very important in adapting the method of Ref. 14, which is for lattice Hamiltonians,
to our model, which is for a continuous system, because it allows us to add probabilities.

Another difference between conditidR2) and the corresponding condition in Ref. 14 is the
dependence ah onL. In most cases one checl®?) by proving that the density of states decays
very fast near the edges of the spectrliishitz tails). In this paper we checkP?) directly and
this requires that we weakdR2) to allow m to depend ori.

IV. PROOF OF LOCALIZATION

In this final section we shall show that the conditions of Theorem 3.1 are satisfied, thus
establishing that the eigenfunctions corresponding to points near the edgeswref localized
(Theorem 2.3

From now on we shall assume that the probability meaguig absolutely continuous with
respect to the Lebesgue measurefoand has a density that satisfies a Lipshitz condition of
orderao.

There existe>0 andK>0 such that

lp(x) = p(y)|<K][x—y|, (4.

for all X,y e[a,b]. This implies that thap is bounded, and therefore
J. Math. Phys., Vol. 37, No. 4, April 1996
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plc,d]<K’(d—c). 4.2

In the next ten lemmad.emmas 4.1-4.1)0we shall assume thatOa<b, but we emphasize that
this is not necessary for the final result. Let

NS (V,E)=#{j:\(V)=E]}, (4.3
where
MYWVIZAEV)=ZAP(V)=---=0

are the eigenvalues #f , . Note that since this operator is Hilbert—SchmNg (V,E) is finite for
E>0. We have the following simple scaling law foiy (V,E): If t>0,

N7 (tV,tE)=N7 (V,E). (4.4

Throughout this section we shall use a simplified notation. Wel|et= Ha (o) G = GAL(O),
VL = VAL(O)l PL = PAL(O)7 AL:AL(O)’ A L:A L(O)’ A1=A1(O), and%/”l_:Lz(AL(O)) The f0|-
lowing lemma will be required for conditiofP1) and for part(RA) of the regularity condition in

(P2). The proof is a modification of Wegn&f.
Lemma 4.1There exists a constaft>0 such that foE>a>0 and O<e<3E,

P(d(E,o(H,))< e)<CL*eMn(Lo),

Proof: We first note tha/¥?P* is Hilbert—Schmidt since it has a square integrable kernel and
thereforeH , is trace class. Also,

traceHA=f dxf dy|Po(X,¥)|2V(y). (4.5
A A
Now, sinceNy (V,E) is the number of eigenvalues greater thgnit is smaller than the sum of
AP(v)/a:
Ny (V,E)<a?! traceHA=a‘1J dxj dy|Po(x,y)|?V(y)
A A
-1 2
<a bJ dxf dy|Po(X,y)]
R? A

<2(ma) bx|Al. (4.6)

By (4.4),

N N _[ EV _[ EV
]E(NA(V,E—e)—NA(V,E+e))=E<NA<E,E)—NA EE)) 4.7

Writing (4.7) explicitly, we get
J. Math. Phys., Vol. 37, No. 4, April 1996
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Eb/(E—¢) €
J dw, p((l—E)wn) N7 (V,E)

Ea/(E-¢)
Eb/(E+¢€) €
f do, p| | 1+ E

Ea/(E+e)

€

E(N3(V,E— .s)—Nj(v,E+e)):nHF (1_ =

_H (14_% wn)NX(V,E),

nel

4.9

whereI'={neZ%A;(n)NA_#0} If we orderI" in some way we can then wrii@.8) as

BN (V,E—€)— N3 (V,E+ €)= (H (1—E)Fb«h)dwn_ p(<1_f) wn.)
T i< Eal/(E—e) i E/ T

€ Eb/(E+€) €
X H 1+—f do, p|| 1+ =] o, fdwn,
i=] E) JeaE+eo i E| N i
€ € €
X 1_E 1E/(E—e)[a,b](wnj)P l_E @, |~ 1+E
€
><1E/(E+e)[a,b](wnj)P 1+E wnj))NK(V,E). 4.9
Thus
> >
E(NY(V,E—€)—Ny(V,E+e¢))
- ) € €
$2(7Ta) bK|A| dw 1_E 1E/(E*e)[a,b](w)p 1_E w
€ €
| 1t g/leEroran(@lp| | 1+ £
<2 “Lok|A|? 26+beI(E+E) 1- = 14— d
<2(ma) 'bx|A| E e o p E|@| P g|e||de
N E E+e N E b E—e b
Ete” a.a E-¢| E-e""Efe’
$C|A|zemi”(1"’), (41@

where we have used.l), (4.2), anda<E<b. Note that the constafi is independent of. Now

P(A(E,o(H ) <€)<, P(\jc(E—€,E+e))<EN] (V,E—€)—N3 (V,E+e))

<CL%eMminLo), (4.12)
O

We shall see later that it is sufficient to pro#l) and part(RA) of (P2. The remaining
lemmas will be used to prove paiRB) of (P2).
We first use a Combes—Thom&sype argument to obtain an upper bound for

(1y,|GLI 9.
Lemma 4.2There exist€C>0 andL >0 such that if 8<e<1 andL>L,; then

J. Math. Phys., Vol. 37, No. 4, April 1996
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C
Pl(L,|GUIT #l) < e S 1r gV de 4 |=PdE o(H))Ze). (412

Proof: Let U be the operator o7, defined by Uf )(x) = e*0*f(x), wherex,eR? with |xg|<1
and let

Q=UH U '—H,. (4.13
ThenQ has a kerneQ(x,y), where
Q(x,y)= (e X YV—1)H (x,y), (4.14

H,(x,y) being the kernel o, . Therefore

[(Qp)(0)|< ? f oY)~ 1] RV gy . (419
Since
|eX0 (x¥) — 1| e~ (MIx—YIP< | . (x—y)|el¥o X Ylg (lx—yI?
< |xo||x— y| eollx—Ylg=(xialx=yI?
g|Xolez|x—y|e—(x/4)|x—y\2$61/2K1’2|X0|, (4.16
we have

[(QA)(X)[=(T[S])(X)|Xo|

whereT is the operator with kerndl(x,y) = (2«b/ )el2< e~ (x> Thys

IQel=<ITIIl [xol <IITIl [xol Il (4.17

and thereford Q|| <K|xg|.
Let E satisfyd(E,o(H,))=¢€ and choose, such thatx,| < e/(2K), so that|Q||<3e. Then,
by (4.13,

2
IIUGL(E)U‘1H=II(HL+Q—E)‘1||<;- (4.18
Now we split upK L into four parts:

A,
1

KL:

C »

where A V={x:xe A ,e;-x=|x|/vZ} and e;=(1,0), e,=(—1,0), e;=(0,1), and e,=(0,—1). We
have

4
(LapGLIT, B =2, (11,IGLIT ). (4.19

Now
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1584 Dorlas, Macris, and Pulé: Localization in single Landau bands

<1A1a|GL1K<L1>¢|>:<1A1vU_l|UGLU_1U1X(L1)¢|>

<[u™*1, flluG U HlluaR @lllLg 4l
2
<_ U1 VR @ll12s, ¢l (4.20

Clearly,

IU~t1, |<se?? <k, (4.20)

and by choosing,=(— €/2v2K,0) we get

ULt @yl?= ﬁ(l)eZXO'XI P(x)|? dx=e™ (HOE=LI) )12 (4.22
A

L

from which it follows that

UL o e (€301t < (e, (423

for L sufficiently large. Thus, usin@t.20—-(4.23 we get
~ 2K’ —(el9K)L|| 1 ~
(14,|GLIX (L1)¢|><T e 113 &l (4.24

and similarly fori=2,3,4. Therefore

!

8K
(L 1617 g <— e @15 4. (429
O

The proof of part(RB) of (P2 is now reduced to estimating(d(E,o (H,))<e). However,
the estimaté4.1) is not good enough and we have to obtain a better one.

We shall make use of the explicit form of the following basis functions’gy. Forme N and
xeR? let

(ZK)(1/2)(m+l) | |2
_ i ma— k|X
Um(X)—W (x;—ixz)™e : (4.29
Then {u,:meN} is an orthonormal basis forZ,. Note that sincel, commutes withPy,
{Uyun:meN} is also an orthonormal basis fo#,. We also have that ifn#n, then

f U (X) Uy (X)dX=0, (4.27)
B(0y)
so that if
¢= 2 Crlm,
m=0
then
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Dorlas, Macris, and Pulé: Localization in single Landau bands 1585

| 18007 ax= 3 fenl? | a0l ax. (4.28
B(0r) m=0 B(0O,r)

Lemma 4.31f 0<r=<d andmeN, then

_ 2 _ 2
f [um(X)|? dx= (e 2<""— g~ 2«d )f lum(x)|? dx. (4.29
B(0,d)\B(0,r) B(Or)

Proof: A straightforward calculation gives

2k r2 k 2 d2 k
f |um(x)|2 dx= E [( o ) e 2xr? (2wd) L ) e_deZ] (4.30
B(0,d)\B(0, k=0 ! !
and
m 2\ k
2kr
f lup(x)|? dx=1— 2 (K ) e2a? (4.3
B(O,r)

For fixedt=0, we defineF(s) for s=t by

m k

Fo=3 - E (4.32
k=0 K © k=0

Then the statement of the lemma is equivalent to the following=lt=0, thenF(s)<F(t). Now

F'(s)=e"® —i'f' % ie‘t
m' Zme k!

e s t“m!

P —sM+tMet '

k=1 (k+m)!

—S

e”s ” tk
sm( S"HtMe > | = (—smt=o0. (4.33

O

In the remaining lemmas we shall prove that the pRB) of (P2) is satisfied. From Lemma
4.2 with e=L° * andm=2L¥2~1) \we get, forL sufficiently large

P((1y |G 15 dl)<e ™17 8l Ve 7)=PE o(H))=L" D).

Now, if E>b—¢, the inequalityH <(b—2¢€)1 implies thatd(E,o(H ))>e. Therefore, it is
enough to prove that fdr sufficiently large with probability greater than-1/2L°,

H,_\<b %)1 (4.34

We shall proceed in the following way.
Let 0<6<1/4 and pute, =4L~¥2*°_ For each configurationye Q) and for ACR? let
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1586 Dorlas, Macris, and Pulé: Localization in single Landau bands

AT={xe AV (X,0)>b—¢€},
A ={xe AV (X,0)<b—¢€}.

Lett be a fixed number, such that>768. We shall say that a configuratiare () satisfies
the condition(C1) if the following holds

(C1) There is a set of regionB;} with #{B,}<L2, such that
() AfCUB;,

(i) diamB;<2tInL, and
(i) d(B;,Bj)=VtInL.

Let 7 be a fixed number such that #6'<1. We shall say that a configuration satisfi€®) if
the following occurs.

(C2) For eachke A N7? we can find a ballD,, center k, and radiusp,, where
(7#2)(In L)Y2<p <A(In L)% with a surrounding annulu®, of width =InL)" such that
DNA[ =0.

We shall first prove(Lemmas 4.4—4)8that for configurations that satisf§C1) and (C2)
simultaneously{(4.34 holds. Then in Lemmas 4.9 and 4.10 we show that such configurations
occur with probability greater than-11/2L°.

For a configuration that satisfi¢€1), we letB{) = {x e R%d(x,B;) < (j/8)\'t InL} for
j=1,2,3,4. Ifpe. 77 we write ¢, for the restrictiong|B{?.

In the following lemma we shall prove that on subset8§f, Py¢ can be approximated by
Pob; -

Lemma 4.4There existd  such that if. > L then, for all configurations that satisf¢ 1), for
all i, for all ¢pe. 7 with ||¢l|<1, and for allACB(®,

1

f |[(Pop)(x)]? dx—j |(Poebi)(x)]? dx
A A

Proof: Let xe B(Y); then

|(PO¢)(X)_(PO¢i)(X)|=f|§2\B§2)P0(X,X’)d’(xl)dX,

12
g( fRZ\B<2>|P0(X’X,)|2 dX,)

2k 1/2
- J e—ZK\X—X/\Z dx’
m \ JrAB?

2k 1/2
<27 | g~ (xt/64)n Lf e—K|x—x’\2 dx’
T R2

k 1 k1l
Thus
[1(Pod)(X)[2=(Poei) () 2| = ([(Po) ()| +(Pobi) (X) DI [(Pod) ()| = (Popi) (X)]|

1
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Dorlas, Macris, and Pulé: Localization in single Landau bands 1587

Now for L large enough,

| IPosolax=Ialpos <|a 2l <|A1 <L 439
and similarly,
| ool =laraal<iaP o<t 439
Therefore
[ 1Pod 0012 I(Pog 0 lax<an = 5= 440
for L sufficiently large. O

Lemma 4.5There existd ; such that ifL >L 4 then, for all configurations that satisf¢1), for
all i, for all ¢pe.7 with ||¢||<1, and for allA andC subsets ofR? such thaB>)C CCA,

1

J |(Po¢i)(x)|2 dx_f |(P0¢i)(x)|2 dx
A c

Proof: It is sufficient to prove the lemma fok=R2 andC=B{®,

2 ’
|(P0¢i)(X)|$?K fBgz)efle I i (x| dx’

2k 1/2
< f , e—ZK\X—X'\Z dx’

ar Bi( )

2k 1/2
<58 j e~ 2k{d(xB?}? 4y

av B(Z)

2k

== |B{?| Ve HaxBI < | e elauBY, (4.42

for L large enough. ke RAB(®, d(x,B{?) > $/t In L. Also, we can find a baB of radiusL such
thatB®)CB. Let B be a ball of radius B concentric withB. Now

[, alPasno0l? ax= [ _IPagioal? ax [ (Poa o0l ax

©

szszf e 26(1=L% r 4 4| %o~ (<32 L

2L
ml? o 4w 1
for L sufficiently large. O

In the next two lemmas we obtain an upper bound for the integrilRy¢) (x)|? over that
part of B; whereV, (x,w)>b— ¢, as a fraction of the integral ove{®.
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1588 Dorlas, Macris, and Pulé: Localization in single Landau bands

If a configuration satisfies bottC1) and(C2), for eachi we letK; be the smallest subset of
A_N7?, such that

B®c U D,CB™.
kEKi

Then #K;=<C In L. Note that theD,’s are not disjoint.

Lemma 4.6:There existd_ such that ifL>L, then, for all configurations that satisfy both
(C1) and(C2), for all i and for all .7 with ||¢|<1,

[ 1Poso0f? ax=| 1= ) [, Pos00f? axer 5 (4.44
Br 0®i = FIZ B§4) 0Pi L4 .
Proof: Let

Podi= E—o CmU —kUm, (4.49

wherekeK; . Since for eactke K;, B® " DD,,

j(4),|(PO¢’i)(X)|2 dX>J‘- [(Pogb) (x)[? dx
B; D«
=3 lenl? [, lumx-t0 ax
Z{e_ZK’Ji_e_ZK(’me)Z}E |Cm|2f lum(x=K)|* dx, (4.46
m=0 Dy

by (4.28 and Lemma 4.3. Thus

1
(1) fD |(Pob) (x| dx, (4.47)
k

fs(4>—|(P0¢i)(X)|2 dx=

wherep, =«74(In L)Y2. Summing ovelK; and dividing by #;, we get

1 1
fBi<4)|<Po¢i><x>|2 de e o | JolPot) 00 dx adg
By Lemma 4.5 and usingkt <C In L we have forL large enough,
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Dorlas, Macris, and Pulé: Localization in single Landau bands 1589

l1—-e L

1 1
fB§4)|(PO¢i)(X)|2 dX?W (m) ( JBI(4)|(PO¢I)(X)|2 dX_ F

1 1 , 1
“ 2L fB_(4>|(Po¢i)(X)I dx-

1 1 ) 1
> R ) -
= Ll7§ 2CInL JB§4)|(PO¢I)(X)| dx L4

1 , 1
= fBin(Pod)i)(xn dx— (s (4.49

Now
f+|(Po¢i)(X)|2 dx=f (4)+|(Po¢i)(x)|2 dx
B B|
ZJB§4)|(PO¢i)(X)|2 dx— L§4)_|(Po¢i)(x)|2 dx

1 1
s(l—L—m) fB(4)|(PO¢i)(x)|2dx+F. (4.50
O

Lemma 4.7There existd ; such that ifL>L then, for all configurations that satisfy bot@81)
and(C2), for all i and for all .7 with ||¢|<1,

J-|P Y(X)[? dx<|1— 1 J’ |(P )x)|2dxjLi (4.51)
Bi+( 0®)(X) < [ B§4)( 0®)( KL .

Proof: Let y/=Py¢ so thatP = and||yi|<| #l|<1,

Poamool=

1/2 1/2
Bi \B;j Bi \B;

1/2 1/2
J iz | | [ o ax |
Bi B

Potxpx X+ [ [Potxx Il ax

+

2k 1/2 1/2 2k 2
< |2 ’ |112a— k{d(x,B;j)}
<<_7T) (jBi(z)\BiW(x )% dx + - |Bi|Ye . (4.52
Therefore, ifL is large enough,
P ) 2 2_K "2 d ’ L *K{d(X,Bi)}z 4.5
(Po)(012<— | , |w(x)]?dx +Le : (4.53
T JB;“\B;

Hence
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1590 Dorlas, Macris, and Pulé: Localization in single Landau bands

2k 2
. 2 T IRMAN\R(D) |2 ’ - k{d(x,Bj)}
fB§4)\B§1)|(PO¢,)(x)| dx=— |B{*\B; |fB§2)\Bi|¢(X )| dx +LJB§4)\B(1)e dx.

(4.549
The last term is less than
L? 1
MG
Using this bound an®®*\B,CB*~,
2 2K (@) g(D) 2 qor L
Lo gl (Pod) I dx= = BIEABY| | [9(x)[? dX'+ (. (4.55

Now

‘LEMW(X)P dx— JB§4>|(P0‘/fi)(X)|2 dx

gL;n'W)lz dx— fB§1)|(Po¢i)(X)|2 dx

+ fBi(4>\Bi(1)|w(X)|2 dx+ fsi(“)\Bi(l)KPol’bi)(X”z dx

1
= — 2 - 2
< L4+fBi(4)|¢/f(x)| dx+ JB“)\B;D'(PW')(X)' dx

using Lemma 4.4 and{*\BVCB* ",

=

2k 2
1+ — |B§4>\B§1>|) fB_<4)7|1,a(x)|2 dx+ 7.

(4.56
Thus, writingA= (2«/)|B*\BY],

2
J gl Po 00 ey [ w0l a [ ol e

2
=(2+A) JBWW(X)'Z dx—(1+A) JB_+|¢(x)|2 dx+ R (4.57)

Hence by Lemma 4.6,

1
f (P (%)]2 dxs(l— —rL14)<2+A>f o[ 90017 dx
B: B

, 3
-1~ (1+A)fB_+|¢(x)| dx+ 7. (4.58

Therefore, by using Lemma 4.4 and rearranging the inequality, we get

1+(1+A)

1 4
_ 2
1 LTE (2+A) fBi(4)|l,//(X)| dx+ —L4. (4.59)

1 2
1- ) | | IwooP ax<
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Dorlas, Macris, and Pulé: Localization in single Landau bands 1591

Thus
f 2 4 (1-1LY(2+A) f 2 g 4
< —
Bi+|l//(x)| X (1_1/Ll/4)(2+A)+1/L1/4 Bi(4)|¢(x)| X L4
1 ) 4
= 1—LT2 fBi(4)|l//(X)| dx+ F' (4.60
for L sufficiently large. O

Lemma 4.8There existd ;>0 such that for alL>L, and for all configurations that satisfy
both (C1) and(C2),

2
Proof: Let ¢e.7, with ||¢|. Then

(. HLp)=(¢,PLV P[ ¢)
=(P{ ¢,VLP{ ¢)
=(Po#,V Poo)

=JA V(X)|(Pop)(x)]? dx
g(b—eof _|(Po¢>(x>|2dx+bf L1(Podh)(x)]? dx
Ap AL
s(b—eof o [(Pod)(X)|? dx+(b—e) X f(4),|<Po¢)<x>|2dx
ALNUBY) i B
b3 [ IPos)0f? dx
s(b—eofA \(UB(4>)|<PO¢>(x>|2 dx+ 2 ((b—eufBWl(Poqb)(x)lz dx
L i ! i
+eLfB_+|<Po¢)<x)|2 dx]

s(b—euf o |(PoD (I dxt 2, | (b-e)t
ANUBH) g

o
L
stg4>'(P°¢)(x)'2 dx+% L2,
by the previous lemma. Thus
J. Math. Phys., Vol. 37, No. 4, April 1996
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1592 Dorlas, Macris, and Pulé: Localization in single Landau bands

4
(GHs=b—aL [(Po) () et o
ALU(UB*) L

_ de.

<(b— e L 13)||Pyo||? 1z
_ de.

<(b—e L 13 ¢]?+ 1z

€L 2
<|b- TR = b—Fg .
U

Now we come to the main probabilistic estimate. The next two lemmas will be used in
establishing that the configurations that sati€) and(C2) simultaneously occur with probabil-
ity greater than +1/2L°.

Lemma 4.91et &>0 andp>0. Then for allL sufficiently large, ifaIn L<a?<L4

1 1
P( Axe A NZ%#B(x,a)N (22)+)>Z d{’z) <arF-

Proof:

1 1
IP(zleALmZZ:;Lyt(B(x,aL)m(ZZ)+)>Z al?|l< > P(#(B(x,aL)ﬂ(Zz)+)>Z al’?

XEALQZZ
2 . N n
<L z €, (4.62
n=ng \ N
wheren,=[a('?/4] andN=#B(x,a,)NZ>)=<vya?. Now ()<N"/n!<(Ne/n)", so that
3 (e [
n=ng n L 1_(Nee|_/n0) No . .

The result now follows from

Nee, 4yalel 120
n < 72
0 [a[ /4]

<16yel V49, (4.64
O

Lemma 4.101et a>0 andp>0. Then for allL sufficiently large, ifa In L<aZ<L the
probability that for everx e A N72, there exists, e (a,/2,a, — \/a_L), such that

(B(X,T+\a )\B(x,r,))N(R?) " =0,

is greater than £1/4LP.
Proof: Suppose there exists= A| NZ? such that for alt e (a,/2,a, — Va,),

(B(x,r +a \B(x,r)N(R3)*#0.

Then each of the the concentric annuli,
J. Math. Phys., Vol. 37, No. 4, April 1996
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Dorlas, Macris, and Pulé: Localization in single Landau bands 1593

B(x,a. )\B(x,a, — \/a_,_), B(x,a — \/a—,_)\B(x,a,_— 2\/a—|_), vy
B(x,a_—([Va /21— 1)Va \B(x,a —[Va/2]Va,),

contains a point ofR?) ", so that at least every other annulus contains a poififdf . Therefore

#(B(x,a, ) N72)>[a,/4].

By Lemma 4.9 this has a probability less thanl174 O
We are going to apply this lemma in two instances: one to decouple regions dD@izé)
and another for regions of siza((In L)*?) to get the over-spill of the wave function.
Proposiﬁtion 4.11:There existsL;>0 such that allL>L, satisfy (P1) and (P2 for each
Ee(b—L"°b].

Proof: Puttinge = e~ -”

in Lemma 4.1 we get foE>a>0,
> ,o(H))<e Y)=CLe L mindo), .
JP(d(E (H )) LB) CL4 LA min(1,0) (4 65)

It follows from (4.69 thatL satisfieqP1) if sufficiently large.(4.65 also shows that there is;>0
such that ifL>L,

SIS

1
PldEo(H))>5 e 5P

It is then sufficient to prove that ih=2L""1, wherey=1/25, then

1
Py |GUE)IT ¢l)<e ™1F ¢, Ve r)=1- 5.

From Lemma 4.2 withe=L°"1, we get forL sufficiently large,
P((14,|GL1x ) <e ™15 ¢ll, Y¢e Z)=P(d(E,o(H)=L""1).

If E>b—¢, thenH <(b—2¢€)1 implies thatd(E,o(H ))>e Therefore it is enough to prove that
for L sufficiently large with probability greater than-1/2L°,

1

2
HLS b—Ll—,ﬁ

Leta,=tInL and let{x;: i=1,...N} be the points ofA, N7 so thatN<L2 By Lemma 4.10,
with probability greater than-11/4L° for eachi, we can find; € (a,/2,a, — \/a_L) such that

(B(x; .1+ Va )\B(x;,r))N (R " =0.
Let
Ai=B(X; 1)
and
A =B(x.ri+a,).

Let B;=A, and for 1<i<N let
J. Math. Phys., Vol. 37, No. 4, April 1996

Downloaded-16-Feb-2007-t0-128.178.70.47.-~Redistribution-subject-to-AlP-license-or-copyright,~see=http://jmp.aip.org/jmp/copyright.jsp



1594 Dorlas, Macris, and Pulé: Localization in single Landau bands

Bi=A\U A
if B;=0 it is ignored. Then for all Ki<N,
diamB;=<diamA;=2r;<2a,,
and ifi>], sinceB;CA; andB;CA ,
d(B;,B))>d(Af,A)=1a,.

If xe A, leti, be the smallest such thatxe A;. Thenx ¢ Uj<i Aj, thereforex e B; . Thus
A CU;B;. So we have proved that with probabilityl—1/4LP condition(C1) is satisfied. By
applying Lemma 4.10 again, this time with, =7(InL)*?, we see that with probability
>1—1/4L", condition (C2) is satisfied. Thus, with probability>1—1/2LP both conditions(C1)
and (C2) are satisfied and Lemma 4.8 gives the required result. O
We are now ready to prove the main theorem of this paper, Theorem 2.3.
Proof of Theorem 2.3We remove the conditioa>0 and let

w,=w,t1l—a,

so that the probability measure corresponding to the random vaf@bleas support equal to
[1c], wherec=b—a+1. Let

\7(x,w)= 2 1A1(n)a3na

nez?

and
l:T = P0\7 Po.

Let 6e(0,1/4 and letL>max(Ly,L,), whereL is as in Theorem 3.1 anid, is as in Proposition
4.11. Then there am>0, and for eachEe[c—L %] there is aAz>0 and Qe CO with
P(Qg)=1, such that forw e Qg,[1,c]N[E—Ag,E+ Ag] is in the pure-point spectrum ¢f and
the corresponding eigenfunctions decay with rate greater or equal ket

Q,: N QE,
Ee[c-L~%c]NQ

thenP(Q')=1 and foroeQ’, [c—L?,c] is in the pure-point spectrum ®f and the correspond-
ing eigenfunctions decay with mass greater or_equahtdNow the eigenfunctions off with
eigenvalues in ¢§—L ] are eigenfunctions oH with eigenvalues in j—L 2 b]. Thus, it
follows that almost surelyf—L ~°,b] is in the pure-point spectrum ¢ and the corresponding
eigenfunctions oH decay with mass greater or equalrto Similarly, one can prove the same
result for [a,a+L ). O
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