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We consider a single-band approximation to the random Schro¨dinger operator in an
external magnetic field. The random potential is taken to be constant on unit
squares and i.i.d. on each square with a bounded distribution. We prove that the
eigenstates corresponding to energies at the edges of the Landau band are localized.
This is an important ingredient in the theory of the Quantum Hall Effect. ©1996
American Institute of Physics.@S0022-2488~96!03403-1#

I. INTRODUCTION

We consider a two-dimensional infinite system of noninteracting electrons moving in a uni-
form magnetic field of strengthB and a random potentialV. In the symmetric gauge the vector
potential is given byA(x)5[(B/2)x2 ,2(B/2)x1], x5(x1 ,x2)PR2 and the Hamiltonian is

H5„2 i“2A~x!…21V~x!. ~1.1!

The effect of the random potential is to broaden the Landau levels into bands. When the potential
is bounded and the magnetic field is strong enough these bands do not overlap. It is generally
expected that the states lying near the edges of the bands are exponentially localized and the
corresponding spectrum is pure point.1,2 Near the center of the bands the situation is more con-
troversial. One possibility is that there exist truly extended states in some finite-energy range.
Instead, it could happen that the localization length remains finite for all energies, except for one
value, where it diverges~e.g., like a power law!.3–5 This picture is essential for understanding the
occurrence of plateaus in the conductivity as a function of the magnetic field measured in Quan-
tum Hall experiments. In this connection, Kunz6 has shown that the localization length must be
infinite for at least one energy in each band, assuming that the states with energy at the edges of
the bands are exponentially localized.

Rigorous results on random Schro¨dinger operators with magnetic fields are still rare. A few
exact results concerning the density of states have been obtained.7–11 In the present paper we
address the problem of proving that the energies at the edges of the bands correspond to localized
states. For the random potential we choose a model already considered in previous works in the
absence of magnetic field.12,13 The two-dimensional plane is decomposed into unit squares, on
each of which the potential is taken to be constant. The values of the potential on the squares are
i.i.d.s with a bounded probability distribution. The precise hypotheses on the probability distribu-
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tion are stated in Sec. II. When the magnetic field is strong it is reasonable to consider only the
projections of the Hamiltonian onto each Landau level and to neglect the cross terms. The Hamil-
tonian restricted to thenth level is

Hn5B~2n11!Pn1PnVPn , ~1.2!

wherePn denotes the projection onto the level. The termB(2n11)Pn comes from the decom-
position of the purely kinetic part of~1.1! and can be dropped as it modifies the energy only by a
constant. Note that the resulting Hamiltonian is a random integral operator instead of a differential
operator and that the kernels ofPn are known explicitly.

Our main result is that, for the HamiltonianHn , the states at the edges of the corresponding
band are exponentially localized. For simplicity in this paper, we restrict ourselves to the case
n50. Our proof depends on a modification of a theorem of Von Dreifus and Klein.14 This theorem
is only stated here and the proof is given in a companion paper,15 which deals with the easier case
when the distribution of the random potential is unbounded, e.g., Gaussian. In this paper we
concentrate on the case when the distribution is bounded.

We now describe the main features of our analysis. In Sec. II we prove~see Lemma 2.3! that
it is enough to show that, because of the special form of the Hamiltonian, the wave function
decays exponentially on the lattice. This simplification enables us to use the methods of Spencer,16

Von Dreifus and Klein14 for lattice models. However, the fact that the model is formulated in the
continuum makes the model considerably more difficult to analyze and nontrivial modifications
are required, because the relevant Green’s identity~3.3! is more difficult to handle. These are
described in Sec. III. This section also contains the basic step in the proof of localization, Theorem
3.1, which as in Ref. 14 reduces to two main conditions~P1! and~P2!. The proof of this theorem,
which does not depend on the boundedness of the potential, can be found in Ref. 15. In Sec. IV we
verify the conditions~P1! and ~P2!. The condition~P1! is an estimate of the type first proved by
Wegner17 on the probability that an energyE lies within some small distance from the spectrum
of the Hamiltonian for a finite box. This requires bounds on the integrated density of states in finite
boxes. Our Hamiltonian, when restricted to a finite box, turns out to be a Hilbert–Schmidt opera-
tor. Therefore the spectrum has an accumulation point at zero that requires an adaptation of
Wegner’s argument. This feature is intimately related to the fact that the original Laudau levels are
infinitely degenerate. Condition~P2! states that there exist a length scaleL such that the Green’s
function for a box of sizeL decays exponentially fast, with a high probability depending onL. For
bounded potentials the usual proofs in the absence of a magnetic field use the fact that the density
of states is exponentially small near the band edge. These are the so-called Lifshitz tails. Here we
verify ~P2! directly using a Combes–Thomas argument18 and the explicit form of the eigenfunc-
tions ofP0. The main part of the paper is concerned with this problem.

While this paper was being written we received a preprint by Combes and Hislop19 with
similar results, and recently W.-M. Wang also obtained results along the same lines.20 We wish to
compare briefly these papers with the present one.

In Refs. 19 and 20, localization is proved for the Hamiltonian~1.1! in the case where the
random potentialV is sufficiently smooth. Mathematical techniques of percolation theory and
microlocal analysis are used~also see Ref. 21!. The regime studied is that of large magnetic field,
that is, the magnetic length ('1/AB) has to be smaller than the characteristic length over which
the potential varies. In this situation the one-band problem is well approximated by the classical
effective Hamiltonian (2n11)B1V(x). As a consequence the problem is mapped onto a perco-
lation problem for the equipotential lines ofV(x). As far as we know this physical picture goes
back to Ref. 22.

In contrast, the effective Hamiltonian used in this paper for the single band problem is
PnVPn , and therefore the kinetic energy that is contained inPn is not quenched. As a conse-
quence our main theorem holds for arbitrary strength of the magnetic field~for the single band!. In
particular, localization at the band edges occurs even when the magnetic length is large with
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respect to the characteristic length of variation ofV, that is, when the percolation picture loses its
validity. Of course, we have neglected the interband coupling, and if that is taken into account a
condition on the strength ofB would be necessary. However, it is not clear what the optimal
condition would be. We remark that in the present study the random potential is of a different kind
from that in Refs. 19 and 20 since it is discontinuous.

II. THE HAMILTONIAN

Let vn , nPZ2 be i.i.d. random variables with distribution given by a probability measurem

with suppm5X5[a,b], a compact interval inR. We letV 5 XZ2 andP 5 PnPZ2m. FormPZ2 let
tm be the measure preserving automorphism ofV defined by

~tmv!n5vn2m . ~2.1!

The group$tm :mPZ2% is ergodic for the probability measureP.
Let H5L2~R2! and letH0 be the eigenspace corresponding to the lowest eigenvalue~first

Landau level! of the HamiltonianH0 defined in~1.1!. Let P0 be the orthogonal projection onto
H0. The Hamiltonian for our model is the operator onH0, given by

H~v!5P0V~•,v!5P0V~•,v!P0 , ~2.2!

wherevPV and

V~x,v!5 (
nPZ2

1L1~n!~x!vn , ~2.3!

L1(n) being the square of the unit side centered atn,
P0 is an integral operator with kernel

P0~x,y!5
2k

p
exp@2kux2yu212ikx`y#, ~2.4!

wherek5B/4. Since we shall be using both the Euclidean norm and the maximum norm onR2, we
shall use the following convention:

uxu5~x1
21x2

2!1/2, ixi5max~ ux1u,ux2u!,

and forL.0 andxPR2,

B~x,L !5$yPR2:uy2xu<L%, LL~x!5$yPR2:iy2xi< 1
2 L%.

Let $Uy :yPR2% be the family of unitary operators onH corresponding to the magnetic
translations:

~Uyf !~x!5e2iky`xf ~x1y!. ~2.5!

Then fornPZ2,

UnH~v!Un
215H~tnv!. ~2.6!

Note that [P0 ,Uy]50 for all yPR2, so thatUyH0,H0. AlsoUy1
Uy2

5 e2ikyz`y1Uy11y2
. The

ergodicity of$tm :mPZ2% and Eq.~2.6! together imply that the spectrum ofH~v! and its compo-
nents are nonrandom~see, for example, Carmona and Lacroix, Theorem V.2.4!; it is easy to prove
that almost surely the spectrum ofH~v! is equal toX ~cf. Ref. 23!.
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Lemma 2.1:For P-almost allvPV,

s„H~v!…5X. ~2.7!

Proof: For cPH0,

aici2<^c,H~v!c&<bici2,

and therefore

s„H~v!…,X.

To prove the reverse inclusion, it is sufficient to prove that24 for eachEPX and for alld.0 there
existV8,V with P~V8!.0 andcPH0 with ici51, such that for allvPV8, i(H(v)2E)ci,d.
LetEPX andcPH0with ici51. ForR.0, letcR5P01B(0,R)c. Sinceic 2 cRi <i 1B(0,R)cci , we
can chooseR large enough such thaticRi.1/2. LetV85$v:uV(x,v)2Eu,1/2d,;xPB(0,2R)%
then clearlyP~V8!.0. Now

i~H~v!2E!cRi25iP0„V~•,v!2E…P01B~0,R!ci2

<i~V~•,v!2E!P01B~0,R!ci2

<E
B~0,2R!

dx„V~x,v!2E…2ucR~x!u21E
B~0,2R!c

dx„V~x,v!2E…2ucR~x!u2.

~2.8!

If vPV8 for the first integral in~2.8!, we have

E
B~0,2R!

dx„V~x,v!2E…2ucR~x!u2<
1

4
d2icRi2<

1

4
d2. ~2.9!

We now estimate the second integral in~2.8!,

ucR~x!u25S E
B~0,R!

dy P0~x,y!c~y! D 2<E
B~0,R!

dyuP0~x,y!u2, ~2.10!

using the Schwarz inequality andici51. If xPB(0,2R)c andyPB(0,R),

uP0~x,y!u2<
4k2

p2 exp@2kR22kux2yu2#, ~2.11!

so that we have, for the second integral in~2.8!,

E
B~0,2R!c

dx„V~x,v!2E…2ucR~x!u2<
4~b2a!2k2

p2 e2kR2E
B~0,R!c

dxE
B~0,R!

dy e2kux2yu2

<
4~b2a!2k2R2

p
e2kR2E

R2
dx e2kuxu2,

1

4
d2, ~2.12!

if R is sufficiently large. h

The next lemma describes the generalized eigenfunctions ofH~v!. It is proved in Ref. 15~see
Theorem 2.3 and Lemma 6.2! in the case whereX may be unbounded.
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Lemma 2.2: For almost everyEPX with respect to the spectral measure ofH, there existsc,
a polynomially boundedC` function onR2 such thatHc5Ec andP0c5c. Moreover, ifcPH0
thenE is in the pure-point spectrum ofH.

The object of this paper is to prove that almost surely the generalized eigenfunctions ofH
corresponding to points ofX near its edges are localized, in the sense that they decay exponen-
tially and therefore those points are in the pure-point spectrum. The next definition makes precise
what is meant by exponential decay.

Definition: c:R2→R decays exponentially with a rate greater or equal tom if

lim sup
x→`

lnuc~x!u
uxu

<2m. ~2.13!

The main result of this paper is the following theorem, which is proved in Sec. IV.
Theorem 2.3: If the probability measure corresponding to the i.i.d. random variablesvn is

absolutely continuous with respect to the Lebesgue measure and its densityr satisfies a Lipshitz
condition of orders.0 and suppr5[a,b], where2`,a,b,`, then there is aD.0 andm.0,
such that almost surely [a,a1D]ø[b2D,b] is in the pure-point spectrum ofH and the corre-
sponding eigenfunctions ofH decay with a rate greater or equal tom.

The last lemma of this section provides an important simplifying feature in our proof of
localization. It shows that to prove that an eigenfunction decays exponentially it is sufficient to
prove that its average on unit squares decays exponentially.

Lemma 2.4:If c is a generalized eigenfunction ofH and

lim sup
n→`
nPZ2

ln^1L1~n! ,ucu&

unu
<2m, ~2.14!

thenc decays exponentially with rate greater or equal tom.
Proof: If c is a generalized eigenfunction ofH then, by Lemma 2.2,cPC` and is polyno-

mially bounded,uc(x)u,C(11uxu) t, say. Ifc satisfies~2.14! then, givene.0, we can chooseR
such that fornPZ2 with unu.R21/&,

E
L1~n!

uc~x!udx<e2~m2e!unu. ~2.15!

Sincec5R0c, for all xPR2,

uc~x!u<
2k

p E
R2
e2kux2yu2uc~y!udy

5
2k

p E
uyu<R

e2kux2yu2uc~y!udx1
2k

p E
uyu.R

e2kux2yu2uc~y!udy

5
2k

p
~ I 11I 2!. ~2.16!

For the first term, we have

I 1<C~11uRu! tpR2e2k~ uxu2R!2. ~2.17!

We now obtain an exponential bound on the second term,
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I 2< (
nPZ2

unu.R21/&

E
L1~n!

e2kux2yu2uc~y!udy

< (
nPZ2ux2nu<1

unu.R21

E
L1~n!

e2kux2yu2uc~y!udy

1 (
nPZ2ux2nu.1

unu.R21

E
L1~n!

e2kux2yu2uc~y!udy5I 31I 4 . ~2.18!

Now

I 3< (
nPZ2ux2nu<1

e2~m2e!unu<4e2~m2e!~ uxu21! ~2.19!

and

I 4< (
nPZ2

e2~m2e!unue2k~ ux2nu21!2

<e2~m2e!uxu (
nPZ2

e~m2e!ux2nue2k~ ux2nu21!2

<e2~m2e!uxu (
nPZ2

e~m2e!~ unu11!e2k~ unu22!2<C8e2~m2e!uxu. ~2.20!

h

III. THE METHOD

In this short section we describe our method. Our proof is based on the paper of Von Dreifus
and Klein14 ~also see Refs. 25 and 16!. Here we give a summary of the main differences. The
details can be found in Ref. 15.

The main tool in Refs. 14, 25, and 16 are the local Hamiltonians, the Hamiltonian restricted to
bounded regions by Dirichlet boundary conditions, and the corresponding Green’s functions. For
L,R2, here we define the local HamiltonianHL on L2 ~L! by

HL5PLVLPL* , ~3.1!

wherePL51LP0 andVL5V1L . V is also truncated to ensure that for disjoint regions the corre-
sponding local Hamiltonians are stochastically independent. We note that for boundedL, HL is a
Hilbert–Schmidt operator and its spectrums~HL! has an accumulation point at the origin.

For l¹s ~HL! let

GL~E!5~HL2E!21. ~3.2!

If c is an eigenfunction ofH with eigenvalueE¹s(HL), then using the resolvent identity, we
have forxPL @cf. Eq. ~3.12! in Ref. 15#

c~x!52„GL~E!~PLVPLc* 1PLVLcPL* !c…~x!. ~3.3!

Most of the complexity in adapting the proofs of Ref. 14 to this model comes from the fact thatH
is not a local operator.~3.3! contains terms that couple points inL to points outside. However,
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because of the form of the kernel ofP0, the coupling is bounded by a Gaussian. The Green’s
functionGL(E) does not have a kernel in this case. We therefore have to modify the definition of
regularity.

Definition: Letm.0, 0,b,1, EPR and 1
2,s,1. A squareLL(x) is (v,m,b,E,s) regular if

~RA!,d(E,s„HLL
(x)…). 1

2e
2Lb

;
~RB!, for all fPL2„LL(x)…,

^1L1~x! ,uGLL~x!~E!1L̃ L~x!fu&,e2mLi1L̃ L~x!fi ,

whereL̃ L(x) 5 LL(x)\L L̃ (x) andL̃ 5L2Ls.
In order to state the theorem that is used in proving localization, we need to define the

following two conditions: LetE0PR\$0% and fixbP~0,1!, sP~ 12,1! andp.2. We shall say thatL
satisfies condition~P1! if the following occurs.

~P1! There exists q.4p112 and 0,h,1
2uE0u, such that for all L1>L and all

EP(E02h,E01h),

P$d„E,s~HLL1
~0!!…,e2L1

b
%,L1

2q ;

and we shall say thatL satisfies condition~P2! if the following occurs.
~P2! There existsgP~0,1! andm.Lg21, such that

P$LL~0! is ~v,m,b,E0 ,s! regular%>12L2p.

The following theorem is Theorem 4.1 in Ref. 15.
Theorem 3.1: There existsL0(b,s,p,q) such that if there is anL>L0 that satisfies both

conditions ~P1! and ~P2! then there is aD(L,b,s,h).0 so that almost surely, forE0Þ0,
s(H)ù(E02D,E01D) is in the pure-point spectrum and the corresponding eigenfunctions decay
with mass greater or equal tom.

The proof of this theorem can be split up in two parts: one in which condition~P2! is iterated
to pairs of larger and larger blocks and one in which the iterated condition is shown to imply
exponential decay. Because of Lemma 2.4 it is sufficient to iterate on squares centered on points
of Z2. This is very important in adapting the method of Ref. 14, which is for lattice Hamiltonians,
to our model, which is for a continuous system, because it allows us to add probabilities.

Another difference between condition~P2! and the corresponding condition in Ref. 14 is the
dependence ofm on L. In most cases one checks~P2! by proving that the density of states decays
very fast near the edges of the spectrum~Lifshitz tails!. In this paper we check~P2! directly and
this requires that we weaken~P2! to allowm to depend onL.

IV. PROOF OF LOCALIZATION

In this final section we shall show that the conditions of Theorem 3.1 are satisfied, thus
establishing that the eigenfunctions corresponding to points near the edges ofX are localized
~Theorem 2.3!.

From now on we shall assume that the probability measurem is absolutely continuous with
respect to the Lebesgue measure onR and has a densityr that satisfies a Lipshitz condition of
orders.

There exists.0 andK.0 such that

ur~x!2r~y!u<Kux2yus, ~4.1!

for all x,yP[a,b]. This implies that thatr is bounded, and therefore
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m@c,d#,K8~d2c!. ~4.2!

In the next ten lemmas~Lemmas 4.1–4.10! we shall assume that 0,a,b, but we emphasize that
this is not necessary for the final result. Let

NL
.~V,E!5#$ j :lL

~ j !~V!>E%, ~4.3!

where

lL
~1!~V!>lL

~2!~V!>lL
~3!~V!>•••>0

are the eigenvalues ofHL . Note that since this operator is Hilbert–Schmidt,NL
.(V,E) is finite for

E.0. We have the following simple scaling law forNL
.(V,E): If t.0,

NL
.~ tV,tE!5NL

.~V,E!. ~4.4!

Throughout this section we shall use a simplified notation. We letHL 5 HLL(0)
, GL 5 GLL(0)

,
VL 5 VLL(0)

, PL 5 PLL(0)
, LL5LL(0), L̃ L5L̃ L(0),L15L1~0!, andHL5L2„LL~0!…. The fol-

lowing lemma will be required for condition~P1! and for part~RA! of the regularity condition in
~P2!. The proof is a modification of Wegner.17

Lemma 4.1:There exists a constantC.0 such that forE.a.0 and 0,e,1
2E,

P~d„E,s~HL!…,e!<CL4emin~1,s!.

Proof:We first note thatVL
1/2PL* is Hilbert–Schmidt since it has a square integrable kernel and

thereforeHL is trace class. Also,

traceHL5E
L
dxE

L
dyuP0~x,y!u2V~y!. ~4.5!

Now, sinceNL
.(V,E) is the number of eigenvalues greater thanE, it is smaller than the sum of

lL
( i )(V)/a:

NL
.~V,E!<a21 traceHL5a21E

L
dxE

L
dyuP0~x,y!u2V~y!

<a21bE
R2
dxE

L
dyuP0~x,y!u2

<2~pa!21bkuLu. ~4.6!

By ~4.4!,

E„NL
.~V,E2e!2NL

.~V,E1e!…5ESNL
.S EV

E2e
,ED2NL

.S EV

E1e
,ED D . ~4.7!

Writing ~4.7! explicitly, we get
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E„NL
.~V,E2e!2NL

.~V,E1e!…5 )
nPG

S 12
e

ED E
Ea/~E2e!

Eb/~E2e!

dvn rS S 12
e

EDvnDNL
.~V,E!

2 )
nPG

S 11
e

ED E
Ea/~E1e!

Eb/~E1e!

dvn rS S 11
e

EDvnDNL
.~V,E!,

~4.8!

whereG5$nPZ2:L1(n)ùLLÞ0% If we orderG in some way we can then write~4.8! as

E„NL
.~V,E2e!2NL

.~V,E1e!…5(
j

S )
i, j

S 12
e

ED E
Ea/~E2e!

Eb/~E2e!

dvni
rS S 12

e

EDvni D
3S )

i. j
S 11

e

ED E
Ea/~E1e!

Eb/~E1e!

dvni
rS S 11

e

EDvni D D E dvnj

3S S 12
e

ED 1E/~E2e!@a,b#~vnj
!rS S 12

e

EDvnj D 2S 11
e

ED
31E/~E1e!@a,b#~vnj

!rS S 11
e

EDvnj D DNL
.~V,E!. ~4.9!

Thus

E„NL
.~V,E2e!2NL

.~V,E1e!…

<2~pa!21bkuLu2E dvUS 12
e

ED 1E/~E2e!@a,b#~v!rS S 12
e

EDv D
2S 11

e

ED 1E/~E1e!@a,b#~v!rS S 11
e

EDv D U
<2~pa!21bkuLu2S 2e

E
1E

aE/~E2e!

bE/~E1e!UrS S 12
e

EDv D 2rS S 11
e

EDv D Udv

1
E

E1e
mS a,a E1e

E2e D 1
E

E2e
mS b E2e

E1e
,bD D

<CuLu2emin~1,s!, ~4.10!

where we have used~4.1!, ~4.2!, anda<E<b. Note that the constantC is independent ofE. Now

P~d„E,s~HL!…,e!<(
i

P„l iP~E2e,E1e!…<E„NLL

. ~V,E2e!2NLL

. ~V,E1e!…

<CL4emin~1,s!. ~4.11!
h

We shall see later that it is sufficient to prove~P1! and part~RA! of ~P2!. The remaining
lemmas will be used to prove part~RB! of ~P2!.

We first use a Combes–Thomas18-type argument to obtain an upper bound for
^1L1

,uGL1L̃L
fu&.

Lemma 4.2:There existsC.0 andL0.0 such that if 0,e,1 andL.L0 ; then
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PS ^1L1
,uGL1L̃ L

fu&,
C

e
e2CeLi1L̃ L

fi ,;fPHLD>P~d„E,s~HL!…>e!. ~4.12!

Proof: Let U be the operator onHL defined by (Uf )(x) 5 ex0•xf (x), wherex0PR2 with ux0u,1
and let

Q5UHLU
212HL . ~4.13!

ThenQ has a kernelQ(x,y), where

Q~x,y!5~ex0•~x2y!21!HL~x,y!, ~4.14!

HL(x,y) being the kernel ofHL . Therefore

u~Qf!~x!u<
2kb

p E uex0•~x2y!21ue2~k/2!ux2yu2uf~y!udy. ~4.15!

Since

uex0•~x2y!21ue2~k/4!ux2yu2<ux0•~x2y!ueux0•~x2y!ue2~k/4!ux2yu2

<ux0uux2yueux0uux2yue2~k/4!ux2yu2

<ux0ue2ux2yue2~k/4!ux2yu2<e1/2k
1/2

ux0u, ~4.16!

we have

u~Qf!~x!u<~Tufu!~x!ux0u

whereT is the operator with kernelT(x,y) 5 (2kb/p)e1/2k
1/2
e2(k/4)ux2yu2. Thus

iQfi<iTufui ux0u<iTi ux0u ifi , ~4.17!

and thereforeiQi<Kux0u.
Let E satisfyd„E,s(HL)…>e and choosex0 such thatux0u,e/(2K), so thatiQi< 1

2e. Then,
by ~4.13!,

iUGL~E!U21i5i~HL1Q2E!21i,
2

e
. ~4.18!

Now we split upL̃ L into four parts:

L̃ L5 ø
i51

4

L̃ L
~ i ! ,

where L̃ L
( i )5$x:xPL̃ ,ei•x>uxu/&% and e15~1,0!, e25~21,0!, e35~0,1!, and e45~0,21!. We

have

^1L1
,uGL1L̃ L

fu&<(
i51

4

^1L1
,uGL1L̃

L
~ i !fu&. ~4.19!

Now
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^1L1
,uGL1L̃

L
~1!fu&5^1L1

,U21uUGLU
21U1L̃

L
~1!fu&

<iU211L1
iiUGLU

21iiU1L̃
L
~1!ii1L̃ L

fi

<
2

e
iU211L1

iiU1L̃
L
~1!ii1LL

fi . ~4.20!

Clearly,

iU211L1
i<ee/2&K,K8, ~4.21!

and by choosingx05(2e/2&K,0) we get

iU1L̃
L
~1!ci25E

L̃L
~1!
e2x0•xuc~x!u2 dx<e2~e/4K !~L2Ls!ici2, ~4.22!

from which it follows that

iU1L̃
L
~1!i<e2~e/8K !~L2Ls!,e2~e/9K !L, ~4.23!

for L sufficiently large. Thus, using~4.20!–~4.23! we get

^1L1
,uGL1L̃

L
~1!fu&,

2K8

e
e2~e/9K !Li1L̃ L

fi , ~4.24!

and similarly fori52,3,4. Therefore

^1L1
, uGL1L̃ L

fu&,
8K8

e
e2~e/9K !Li1L̃ L

fi . ~4.25!

h

The proof of part~RB! of ~P2! is now reduced to estimatingP~d„E,sL(HL)…,e!. However,
the estimate~4.1! is not good enough and we have to obtain a better one.

We shall make use of the explicit form of the following basis functions forH0. FormPN and
xPR2 let

um~x!5
~2k!~1/2!~m11!

~pm! !1/2
~x12 ix2!

me2kuxu2. ~4.26!

Then $um :mPN% is an orthonormal basis forH0. Note that sinceUy commutes withP0,
$Uyum :mPN% is also an orthonormal basis forH0. We also have that ifmÞn, then

E
B~0,r !

um~x!un~x!dx50, ~4.27!

so that if

f5 (
m50

`

cmum ,

then
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E
B~0,r !

uf~x!u2 dx5 (
m50

`

ucmu2E
B~0,r !

uum~x!u2 dx. ~4.28!

Lemma 4.3:If 0<r<d andmPN, then

E
B~0,d!\B~0,r !

uum~x!u2 dx>~e22kr22e22kd2!E
B~0,r !

uum~x!u2 dx. ~4.29!

Proof: A straightforward calculation gives

E
B~0,d!\B~0,r !

uum~x!u2 dx5 (
k50

m H ~2kr 2!k

k!
e22kr22

~2kd2!k

k!
e22kd2J ~4.30!

and

E
B~0,r !

uum~x!u2 dx512 (
k50

m
~2kr 2!k

k!
e22kr2. ~4.31!

For fixed t>0, we defineF(s) for s>t by

F~s!5 (
k50

m
sk

k!
e2s2S 12 (

k50

m
tk

k!
e2tD e2s. ~4.32!

Then the statement of the lemma is equivalent to the following: Ifs>t>0, thenF(s)<F(t). Now

F8~s!5e2sS 2
sm

m!
1 (

k5m11

`
tk

k!
e2tD

5
e2s

m! S 2sm1tme2t(
k51

`
tkm!

~k1m!! D
<
e2s

m! S 2sm1tme2t(
k51

`
tk

k! D<
e2s

m!
~2sm1tm!<0. ~4.33!

h

In the remaining lemmas we shall prove that the part~RB! of ~P2! is satisfied. From Lemma
4.2 with e5Ld21 andm52L (1/2d21), we get, forL sufficiently large

P~^1L1
,uGL1L̃ L

fu&,e2mLi1L̃ L
fi , ;fPHL!>P~d„E,s~HL!…>Ld21!.

Now, if E.b2e, the inequalityHL<(b22e)1 implies thatd„E,s(HL)….e. Therefore, it is
enough to prove that forL sufficiently large with probability greater than 121/2Lp,

HL<S b2
2

L12dD1. ~4.34!

We shall proceed in the following way.
Let 0,d,1/4 and puteL54L21/21d. For each configuration,vPV and forA,R2 let
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A15$xPA:VL~x,v!.b2eL%,

A25$xPA:VL~x,v!<b2eL%.

Let t be a fixed number, such thatkt.768. We shall say that a configurationvPV satisfies
the condition~C1! if the following holds

~C1! There is a set of regions$Bi% with #$Bi%<L2, such that
~i! LL

1,ø iBi ,
~ii ! diamBi<2t ln L, and
~iii ! d(Bi ,Bj )> At ln L.

Let t be a fixed number such that 16kt4,1. We shall say that a configuration satisfies~C2! if
the following occurs.

~C2! For each kPLLùZ2, we can find a ballDk , center k, and radiusrk , where
~t2/2!~ln L!1/2<rk<t2~ln L!1/2, with a surrounding annulusD̃k of width t~ln L!1/4, such that
D̃kùLL

150”.
We shall first prove~Lemmas 4.4–4.8! that for configurations that satisfy~C1! and ~C2!

simultaneously,~4.34! holds. Then in Lemmas 4.9 and 4.10 we show that such configurations
occur with probability greater than 121/2Lp.

For a configuration that satisfies~C1!, we letBi
( j ) 5 $x P R2:d(x,Bi) , ( j /8)At ln L% for

j51,2,3,4. IffPH we writefi for the restrictionfuBi
(2).

In the following lemma we shall prove that on subsets ofBi
(1), P0f can be approximated by

P0f i .
Lemma 4.4:There existsL0 such that ifL.L0 then, for all configurations that satisfy~C1!, for

all i , for all fPH with ifi<1, and for allA,Bi
(1),

U E
A
u~P0f!~x!u2 dx2E

A
u~P0f i !~x!u2 dxU, 1

L4
. ~4.35!

Proof: Let xPBi
(1); then

u~P0f!~x!2~P0f i !~x!u5U E
R2\Bi

~2!
P0~x,x8!f~x8!dx8U

<S E
R2\Bi

~2!
uP0~x,x8!u2 dx8D 1/2

5
2k

p S E
R2\Bi

~2!
e22kux2x8u2 dx8D 1/2

<
2k

p S e2~kt/64!ln LE
R2
e2kux2x8u2 dx8D 1/2

52Ak

p

1

Lkt/128<2Ak

p

1

L6
. ~4.36!

Thus

uu~P0f!~x!u22u~P0f i !~x!u2u5~ u~P0f!~x!u1u~P0f i !~x!u!uu~P0f!~x!u2u~P0f i !~x!uu

<2Ak

p

1

L6
~ u~P0f!~x!u1u~P0f i !~x!u!. ~4.37!
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Now for L large enough,

E
A
uP0f~x!udx<uAu1/2iP0fi<uAu1/2ifi<uAu1/2,L, ~4.38!

and similarly,

E
A
u~P0f i !~x!u<uAu1/2if i i<uAu1/2ifi,L. ~4.39!

Therefore

E
A
u~P0f!~x!u22u~P0f i !~x!u2udx,4Ak

p

1

L5
,
1

L4
, ~4.40!

for L sufficiently large. h

Lemma 4.5:There existsL0 such that ifL.L0 then, for all configurations that satisfy~C1!, for
all i , for all fPH with ifi<1, and for allA andC subsets ofR2 such thatBi

(3),C,A,

U E
A
u~P0f i !~x!u2 dx2E

C
u~P0f i !~x!u2 dxU, 1

L4
. ~4.41!

Proof: It is sufficient to prove the lemma forA5R2 andC5Bi
(3),

u~P0f i !~x!u<
2k

p E
Bi

~2!
e2kux2x8u2uf i~x8!udx8

<
2k

p S E
Bi

~2!
e22kux2x8u2 dx8D 1/2

<
2k

p S E
Bi

~2!
e22k$d~x,Bi

~2!
!%2 dx8D 1/2

5
2k

p
uBi

~2!u1/2e2k$d~x,Bi
~2!

!%2<Le2k$d~x,Bi
~2!

!%2, ~4.42!

for L large enough. IfxPR2\Bi
(3), d(x,Bi

(2)) . 1
8At ln L. Also, we can find a ballB of radiusL such

thatBi
(3),B. Let B̃ be a ball of radius 2L concentric withB. Now

E
R2\Bi

~3!
u~P0f i !~x!u2 dx<E

R2\B̃
u~P0f i !~x!u2 dx1E

B̃ \Bi
~3!

u~P0f i !~x!u2 dx

<2pL2E
2L

`

e22k~r2L !2r dr14pL4e2~k/32!ln L

5
pL2

2k
e22kL21

4p

Lkt/3224,
1

L4
, ~4.43!

for L sufficiently large. h

In the next two lemmas we obtain an upper bound for the integral ofu(P0f)(x)u
2 over that

part ofBi whereVL(x,v).b2eL as a fraction of the integral overBi
(4).
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If a configuration satisfies both~C1! and ~C2!, for eachi we letKi be the smallest subset of
LLùZ2, such that

Bi
~3!, ø

kPKi

Dk,Bi
~4! .

Then #Ki<C ln L. Note that theDk’s are not disjoint.
Lemma 4.6:There existsL0 such that ifL.L0 then, for all configurations that satisfy both

~C1! and ~C2!, for all i and for allfPH with ifi<1,

E
Bi

1
u~P0f i !~x!u2 dx<S 12

1

L1/4D EBi~4!
u~P0f i !~x!u2 dx1

1

L4
. ~4.44!

Proof: Let

P0f i5 (
m50

`

cmU2kum , ~4.45!

wherekPKi . Since for eachkPKi , Bi
(4)2.D̃k ,

E
Bi

~4!2
u~P0f i !~x!u2 dx.E

D̃k

u~P0f i !~x!u2 dx

5 (
m50

`

ucmu2E
D̃k

2

uum~x2k!u2 dx

>$e22krk
2
2e22k~rk1Ark!2% (

m50

`

ucmu2E
Dk

uum~x2k!u2 dx, ~4.46!

by ~4.28! and Lemma 4.3. Thus

E
Bi

~4!2
u~P0f i !~x!u2 dx>

1

L2kr4
~12e2rL!E

Dk

u~P0f i !~x!u2 dx, ~4.47!

whererL5kt2~ln L!1/2. Summing overKi and dividing by #Ki , we get

E
Bi

~4!2
u~P0f i !~x!u2 dx>

1

L2kt4
~12e2rL!

1

#Ki
E
Bi

~3!
u~P0f i !~x!u2 dx. ~4.48!

By Lemma 4.5 and using #Ki,C ln L we have forL large enough,
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E
Bi

~4!2
u~P0f i !~x!u2 dx>

1

L2kt4 S 12e2rL

C ln L D S E
Bi

~4!
u~P0f i !~x!u2 dx2

1

L4D
>

1

L2kt4

1

2C ln L E
Bi

~4!
u~P0f i !~x!u2 dx2

1

L4

>
1

L1/8
1

2C ln L E
Bi

~4!
u~P0f i !~x!u2 dx2

1

L4

>
1

L1/4 EBi~4!
u~P0f i !~x!u2 dx2

1

L4
. ~4.49!

Now

E
Bi

1
u~P0f i !~x!u2 dx5E

Bi
~4!1

u~P0f i !~x!u2 dx

5E
Bi

~4!
u~P0f i !~x!u2 dx2E

Bi
~4!2

u~P0f i !~x!u2 dx

<S 12
1

L1/4D EBi~4!
u~P0f i !~x!u2 dx1

1

L4
. ~4.50!

h

Lemma 4.7:There existsL0 such that ifL.L0 then, for all configurations that satisfy both~C1!
and ~C2!, for all i and for allfPH with ifi<1,

E
Bi

1
u~P0f!~x!u2 dx<S 12

1

L1/2D EBi~4!
u~P0f!~x!u2 dx1

4

L4
. ~4.51!

Proof: Let c5P0f so thatP0c5c and ici<ifi<1,

u~P0c i !~x!u<E
Bi

~2!
\Bi

uP0~x,x8!uuc~x8!udx81E
Bi

uP0~x,x8!uuc~x8!udx8

<S E
Bi

~2!
\Bi

uP0~x,x8!u2 dx8D 1/2S E
Bi

~2!
\Bi

uc~x8!u2 dx8D 1/2
1S E

Bi

uP0~x,x8!u2 dx8D 1/2S E
Bi

uc~x8!u2 dx8D 1/2
<S 2k

p D 1/2S E
Bi

~2!
\Bi

uc~x8!u2 dx8D 1/21 2k

p
uBi u1/2e2k$d~x,Bi !%

2
. ~4.52!

Therefore, ifL is large enough,

u~P0c i !~x!u2<
2k

p E
Bi

~2!
\Bi

uc~x8!u2 dx81Le2k$d~x,Bi !%
2
. ~4.53!

Hence
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E
Bi

~4!
\Bi

~1!
u~P0c i !~x!u2 dx<

2k

p
uBi

~4!\Bi
~1!u E

Bi
~2!

\Bi

uc~x8!u2 dx81LE
Bi

~4!
\Bi

~1!
e2k$d~x,Bi !%

2
dx.

~4.54!

The last term is less than

L2

L ~kt !/64,
1

L4
.

Using this bound andBi
(2)\Bi,Bi

(4)2,

E
Bi

~4!
\Bi

~1!
u~P0c i !~x!u2 dx<

2k

p
Bi

~4!\Bi
~1!u E

Bi
~4!2

uc~x8!u2 dx81
1

L4
. ~4.55!

Now

U E
Bi

~4!
uc~x!u2 dx2E

Bi
~4!

u~P0c i !~x!u2 dxU<U E
Bi

~1!
uc~x!u2 dx2E

Bi
~1!

u~P0c i !~x!u2 dxU
1E

Bi
~4!

\Bi
~1!

uc~x!u2 dx1E
Bi

~4!
\Bi

~1!
u~P0c i !~x!u2 dx

<
1

L4
1E

Bi
~4!2

uc~x!u2 dx1E
Bi

~4!
\Bi

~1!
u~P0c i !~x!u2 dx

using Lemma 4.4 andBi
~4!\Bi

~1!,Bi
~4!2 ,

<S 11
2k

p
uBi

~4!\Bi
~1!u D E

Bi
~4!2

uc~x!u2 dx1
2

L4
.

~4.56!

Thus, writingA5(2k/p)uBi
(4)\Bi

(1)u,

E
Bi

~4!
u~P0c i !~x!u2 dx<~11A!E

Bi
~4!2

uc~x!u2 dx1E
Bi

~4!
uc~x!u2 dx1

2

L4

5~21A!E
Bi

~4!
uc~x!u2 dx2~11A!E

Bi
1

uc~x!u2 dx1
2

L4
. ~4.57!

Hence by Lemma 4.6,

E
Bi

1
u~P0c i !~x!u2 dx<S 12

1

L1/4D ~21A!E
Bi

~4!
uc~x!u2 dx

2S 12
1

L1/4D ~11A!E
Bi

1
uc~x!u2 dx1

3

L4
. ~4.58!

Therefore, by using Lemma 4.4 and rearranging the inequality, we get

S 11~11A!S 12
1

L1/4D D EBi1uc~x!u2 dx<S 12
1

L1/4D ~21A!E
Bi

~4!
uc~x!u2 dx1

4

L4
. ~4.59!
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Thus

E
Bi

1
uc~x!u2 dx<

~121/L1/4!~21A!

~121/L1/4!~21A!11/L1/4 EBi~4!
uc~x!u2 dx1

4

L4

<S 12
1

L1/2D EBi~4!
uc~x!u2 dx1

4

L4
, ~4.60!

for L sufficiently large. h

Lemma 4.8:There existsL1.0 such that for allL.L1 and for all configurations that satisfy
both ~C1! and ~C2!,

HL<S b2
2

L12dD1. ~4.61!

Proof: Let fPHL with ifi. Then

^f,HLf&5^f,PLVLPL*f&

5^PL*f,VLPL*f&

5^P0f,VLP0f&

5E
LL

V~x!u~P0f!~x!u2 dx

<~b2eL!E
LL

2
u~P0f!~x!u2 dx1bE

LL
1

u~P0f!~x!u2 dx

<~b2eL!E
LL\~øBi

~4!
!
u~P0f!~x!u2 dx1~b2eL!(

i
E
Bi

~4!2
u~P0f!~x!u2 dx

1b(
i
E
Bi

~4!1
u~P0f!~x!u2 dx

<~b2eL!E
LL\~øBi

~4!
!
u~P0f!~x!u2 dx1(

i
H ~b2eL!E

Bi
~4!

u~P0f!~x!u2 dx

1eLE
Bi

1
u~P0f!~x!u2 dxJ

<~b2eL!E
LL\~øBi

~4!
!
u~P0f!~x!u2 dx1(

i
S ~b2eL!1eLS 12

1

L1/2D D
3E

Bi
~4!

u~P0f!~x!u2 dx1
4eL
L4

L2,

by the previous lemma. Thus
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^f,HLf&<~b2eLL
21/2!E

LLø~ø iBi
~4!

!
u~P0f!~x!u2dx1

4eL
L2

<~b2eLL
21/2!iP0fi21

4eL
L2

<~b2eLL
21/2!ifi21

4eL
L2

<S b2
eL
2L1/2D5S b2

2

L12dD .
h

Now we come to the main probabilistic estimate. The next two lemmas will be used in
establishing that the configurations that satisfy~C1! and~C2! simultaneously occur with probabil-
ity greater than 121/2Lp.

Lemma 4.9:Let a.0 andp.0. Then for allL sufficiently large, ifa ln L,aL
2,L1/4,

PS 'xPLLùZ2:#„B~x,aL!ù~Z2!1
….

1

4
dL
1/2D,

1

4Lp
.

Proof:

PS 'xPLLùZ2:#„B~x,aL!ù~Z2!1
….

1

4
aL
1/2D< (

xPLLùZ2
PS #„B~x,aL!ù~Z2!1

….
1

4
aL
1/2D

<L2 (
n5n0

N SNn D eL
n , ~4.62!

wheren05[aL
1/2/4] andN5#„B(x,aL)ùZ2…<gaL

2. Now (n
N)<Nn/n!<(Ne/n)n, so that

(
n5n0

N SNn D eL
n,

1

12~NeeL
/n0!

SNeeL

n0
D n0. ~4.63!

The result now follows from

NeeL

n0
<
4gaL

2eL21/21d

@aL
1/2/4#

<16geL21/41d. ~4.64!

h

Lemma 4.10:Let a.0 andp.0. Then for allL sufficiently large, ifa ln L,aL
2,L1/4, the

probability that for everyxPLLùZ2, there existsr x P (aL/2,aL 2 AaL), such that

„B~x,r x1AaL!\B~x,r x!…ù~R2!150” ,

is greater than 121/4Lp.
Proof:Suppose there existsxPLLùZ2 such that for allr P (aL/2,aL 2 AaL),

„B~x,r1AaL!\B~x,r !…ù~R2!1Þ0” .

Then each of the the concentric annuli,
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B~x,aL!\B~x,aL2AaL!, B~x,aL2AaL!\B~x,aL22AaL!,...,

B„x,aL2~@AaL/2#21!AaL…\B~x,aL2@AaL/2#AaL!,

contains a point of~R2!1, so that at least every other annulus contains a point of~Z2!1. Therefore

#„B~x,aL!ùZ1
2
….@AaL/4#.

By Lemma 4.9 this has a probability less than 1/4Lp. h

We are going to apply this lemma in two instances: one to decouple regions of sizeO~ln L!
and another for regions of sizeO„~ln L!1/2… to get the over-spill of the wave function.

Proposition 4.11:There existsL1.0 such that allL.L1 satisfy ~P1! and ~P2! for each
EP(b2L2d,b].

Proof: Puttinge 5 e2Lb
in Lemma 4.1 we get forE.a.0,

P~d„E,s~HL!…,e2Lb
!<CL4e2Lb min~1,s!. ~4.65!

It follows from ~4.65! thatL satisfies~P1! if sufficiently large.~4.65! also shows that there isL1.0
such that ifL.L1,

PS d„E,s~HL!….
1

2
e2LbD>12

1

2Lp
.

It is then sufficient to prove that ifm52Lg21, whereg51/2d; then

P~^1L1
uGL~E!1L̃ L

fu&,e2mLi1L̃ L
fi , ;fPHL!>12

1

2Lp
.

From Lemma 4.2 withe5Ld21, we get forL sufficiently large,

P~^1L1
,uGL1L̃ L

fu&,e2mLi1L̃ L
fi , ;fPHL!>P~d„E,s~HL!…>Ld21!.

If E.b2e, thenHL<(b22e)1 implies thatd„E,s(HL)….e. Therefore it is enough to prove that
for L sufficiently large with probability greater than 121/2Lp,

HL<S b2
2

L12dD1.
Let aL5t ln L and let$xi : i51,...,N% be the points ofLLùZ2 so thatN<L2. By Lemma 4.10,
with probability greater than 121/4Lp for eachi , we can findr i P (aL/2,aL 2 AaL) such that

„B~xi ,r i1AaL!\B~xi ,r i !…ù~R2!150” .

Let

Ai5B~xi ,r i !

and

Ã i5B~xi ,r i1AaL!.

Let B15A1 and for 1, i<N let
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Bi5Ai \ø j, i Ã j ;

if Bi50” it is ignored. Then for all 1, i<N,

diamBi<diamAi52r i<2aL ,

and if i. j , sinceBj,Aj andBi,Ã j
c,

d~Bi ,Bj !.d~Ã j
c ,Aj !5AaL.

If xPLL
1, let i x be the smallesti such thatxPAi . Thenx¹ø j, i x

Ã j , thereforex P Bix
. Thus

LL
1,ø iBi . So we have proved that with probability.121/4Lp condition ~C1! is satisfied. By

applying Lemma 4.10 again, this time withaL5t2~ln L!1/2, we see that with probability
.121/4Lp, condition ~C2! is satisfied. Thus, with probability.121/2Lp both conditions~C1!
and ~C2! are satisfied and Lemma 4.8 gives the required result. h

We are now ready to prove the main theorem of this paper, Theorem 2.3.
Proof of Theorem 2.3:We remove the conditiona.0 and let

ṽn5vn112a,

so that the probability measure corresponding to the random variableṽn has support equal to
@1,c#, wherec5b2a11. Let

Ṽ ~x,v!5 (
nPZ2

1L1~n!ṽn ,

and

H̃ 5P0Ṽ P0 .

Let dP~0,1/4! and letL.max(L0 ,L1), whereL0 is as in Theorem 3.1 andL1 is as in Proposition
4.11. Then there anm.0, and for eachEP[c2L2d,c] there is aDE.0 and VE,V with
P~VE!51, such that forvPVE ,[1,c]ù[E2DE ,E1DE] is in the pure-point spectrum ofH̃ and
the corresponding eigenfunctions decay with rate greater or equal tom. Let

V85 ù
EP@c2L2d,c#ùQ

VE ;

thenP~V8!51 and forvPV8, [c2L2d,c] is in the pure-point spectrum ofH̃ and the correspond-
ing eigenfunctions decay with mass greater or equal tom. Now the eigenfunctions ofH with
eigenvalues in [c2L2d,c] are eigenfunctions ofH̃ with eigenvalues in [b2L2d,b]. Thus, it
follows that almost surely [b2L2d,b] is in the pure-point spectrum ofH and the corresponding
eigenfunctions ofH decay with mass greater or equal tom. Similarly, one can prove the same
result for [a,a1L2d]. h
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