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Abstract  
Augmented Reality systems can be effectively used to enhance manufacturing and industrial processes. However, not 
all the existing prototypes of AR systems can be used in industrial environment, due to heavy constraints such as low 
robustness or cumbersome equipment. Our Augmented Reality system relies on purely passive techniques to solve the 
real-time registration problem and it can run on a portable PC. We combine a powerful VR component-based 
simulation framework with Computer Vision techniques, turning it into an Augmented Reality system. The resulting 
system allows us to produce complex rendering and animation of avatars, and to blend them into the real world. The 
system tracks the 3D camera position by means of a natural features tracker, which, given a rough CAD model, can 
deal with complex 3D objects. The tracking method is robust and can handle large camera displacements and aspect 
changes. The target applications of our AR system are industrial maintenance, repair and training. The tracking 
robustness makes the AR system able to work in real environments such as industrial facilities and not only in the 
laboratory. 

Introduction 

Virtual and Augmented Reality are becoming inextricably integrated strands of the new emerging digital 
visualization fabric. With the advent of the recent powerful, low cost consumer graphic computers, it 
becomes possible to build highly realistic real-time AR and VR simulations. At the same time, recent 
developments in human animation have led to the integration of virtual humans into synthetic 
environments.  

As the demand for Augmented Reality systems grows, so will the need to allow these virtual humans to 
coexist and interact with real objects and scenes. This is especially true in case of industrial and 
manufacturing applications where AR systems are highly suitable for training, ergonomics evaluation and 
rapid validation of prototypes before letting them into the manufacturing phase. Virtual teachers can be 
used to demonstrate complex machine operation to the novice users. Similarly, AR is an ideal approach for 
designing objects by having a virtual human interactively performing evaluation tests on an object 
composed of real and virtual components. 

Including real machinery and surroundings into the interactive simulation increases realism. It decreases 
time that would be otherwise required to model complex virtual environments. Finally it eliminates the 
computation costs involved in rendering them. Fig. 1 illustrates this approach: a virtual worker 
demonstrates how to use a machine in a complex industrial environment. The user of the AR system can 
change the point of view at any time, and since the camera position is correctly registered to the real scene, 
the virtual worker will always be correctly blended into the streaming video. Another application of our 
system is shown in Fig. 2, where a virtual human guides the user through an unknown building. 

We therefore view our contribution as twofold: 
 

• an accurate real-time vision-based camera tracker, which is responsible for the registration of the 
virtual humans into the streaming video and does not require engineering the environment; 

• its integration into an existing VR component-based simulation framework (VHD++), that provides 
human-computer interface and rendering of realistic virtual humans. 
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Thanks to the strong component-based character of the VHD++ simulation framework development of the 
tracking component as a VHD++ plug-in was straightforward. 
 
 
 
 
 
 
 
 
   
 
Fig. 1. First and second pictures from left: a virtual human demonstrates the use of a real machine (offline test 
requiring two machines). Third and forth testing the real-time tracking with basic rendering in a factory (one machine). 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. The same virtual human guides a visitor through an unfamiliar corridor. 
 

Related Work 
 
Many papers, such as (Drummond and Cipolla 2000), (Neumann and You 1999), (Simon et al.), (La Cascia 
et al.), have been published on tracking, and some characteristics such as accuracy and speed, can now be 
found in many existing systems. The robustness is much more challenging.  

Previous AR systems required to modify the environment by introducing markers, as it was done in 
(Kato et al.) for instance. Many other methods, in order to track the camera displacements, exploit certain 
features of the objects of the scene. These features can be edges, like in (Drummond and Cipolla 2000) or 
in (Marchand et al. 1999). Unfortunately edge-based methods cannot be effectively used in real industrial 
environment since the usually cluttered background introduces too strong noise.  Our AR system makes use 
of an approach to real-time tracking based on natural feature points, which are automatically detected and 
tracked as they appear. Contrarily to previous methods, which also consider natural feature points, our 
method is not limited to piecewise planar scenes but can handle arbitrarily complex scenes, with no limits 
to the camera displacement.  

Many other algorithms obtain high accuracy, even without an a priori knowledge, by matching natural 
features such as interest points. For example (Fitzgibbon and Zisserman 1998) process the image   sequence 
hierarchically to derive robust correspondences and to distribute error over the sequence. Considering 
speed as not critical issue, these algorithms take advantage of time consuming but effective techniques such 
as bundle adjustment. Many other methods perform the same task for real-time applications but tend to be 
less reliable since they can not rely on batch computations.  Those that work without the a priori 
knowledge are not really practical: for example (Azarbayejani and Pentland 1995) assumes absence of 
correspondences errors, and (Beardsley et al.) assumes the camera center motion to check if the 
correspondences respect the epipolar constraint.  

This paper is organized as follows: in the next section we present the VHD++ component-based 
simulation framework, then in Section “Stable real-time camera tracking” we describe our tracking 
algorithm, and finally we will present our experiments and results. 
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Fig. 3. VHD++ Development Framework.  Fig. 4. VHD++ architecture overview by example. 

VHD++ for AR Applications 

The VR part that has been used in our application example presented in Fig. 4 enables integration of 
heterogeneous simulation technologies, such as real-time 3D rendering, skeleton and skin animation, 
behavioral control, etc. VHD++ virtual humans show large range of animation capabilities, as introduced in 
(Ponder et al. 2003). The VHD++ framework constitutes an extendible, real-time, audio-visual simulation 
engine with special support of advanced real-time virtual characters simulation technologies.  

AR systems rely heavily on the interplay of complementary heterogeneous technologies. Because of   
that interdisciplinary character, the AR domain can be viewed as a melting pot of various technologies, 
which are non-trivial to put together (Azuma 1995). The VHD++ is a component-based software 
development framework that supports composition of high performance, real-time, interactive, audio-visual 
applications. It provides an extendible set of functional components like 3D rendering, 3D sound, advanced 
synthetic character simulation, AI, behavioral control, interactive scenario authoring, diagnostics, 
networking, runtime data base management, etc. VHD++ development methodology relies on massive 
design (runtime engine) and code (pluggable components) reuse. In effects applications are being 
composed out of the components rather than developed from the scratch.  

Fig. 3 shows a high level abstraction of the VHD++ architectural model. Pluggable, custom components 
encapsulating heterogeneous simulation technologies are marked as the thin spikes coming out of the 
kernel. Some of them are connected to the rectangles representing device abstractions. 

Motivation behind VHD++ is based on the following observation related to the VR/AR systems. It 
occurs that on the low, system infrastructure level most of the VR/AR systems feature strong concurrency, 
network distribution, support of various input and output devices and of course real-time performance.  It  
occurs as well that most of the systems use quite similar sets of low level fundamental components 
responsible for data loading, containment, serialization,  sharing of resources, multitasking, 
synchronization, time scheduling, event handling, networking, brokering, etc. On the high, application level 
the VR/AR systems tend to draw from a continuously growing spectrum of heterogeneous and 
complementary simulation technologies which repeat frequently in different configurations depending on 
particular application requirements and context (e.g. camera tracking, 3D rendering, 3D sound, collision 
detection, physics, skeleton animation, skin deformation, face animation, cloth simulation, crowd control, 
behavioral   control,   multi-modal   interaction, etc).    

In effect of the above observations the   VHD++ semantics has been developed around the following 
four key semantical elements: 
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• vhdRuntimeSystem (whole diagram); 
• vhdRuntimeEngine (outer embossed circle); 
• vhdServices (spikes coming out of the sharable data); 
• vhdProperties (sharable data on the diagram). 

 

 
Fig. 5. Matching of interest points: the crosses are the detected interest points in the picture. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. The model we used for tracking the corridor. It was extruded from a CAD plot and some details have been 
added. It took about 1 day of work to be designed. It is a conventional VRML model. 
 

In order to illustrate the respective roles and mutual relationships between the above elements, Fig. 4 
depicts in a schematic way an example of a VHD++ based application, including its possible physical 
deployment strategy. The example shows our target vhdRuntimeSystem featuring two vhdRuntimeEngines 
hosting a total of five plug-able vhdServices distributed here over two computer nodes.  
Each of the computer nodes features some input/output devices that are used throughout the simulation.  
We can easily imagine for example that starting from the left, the first vhdRuntimeEngineA hosts some 
services responsible for multi-modal interaction using connected VR input devices and behavioral control 
of the simulation. Lower right vhdRuntimeEnginB hosts for example a vhdService responsible for real-time 
vision based camera tracking and passing of the low bandwidth camera matrix updates to the vhdServices 
hosted on the previous vhdRuntimeEngineA which takes care of the 3D rendering, synthesis of real and 
virtual images, 3D sound, character animation. It is one of the deployment scenarios for our VR/AR 
application example. Existing vhdServices may be easily adapted to new requirements through derivation 
and overriding of virtual methods.  If necessary, developers may provide easily new vhdServices that will 
be added to the global pool and then available for future reuse.   

Stable Real-time camera tracking 

Our tracking method is suitable for many types of 3D textured objects that can be described either as a wire 
frame models or a triangulated meshes. It starts from 2D matching of interest points, and then it exploits 
them to infer the 3D position of the points on the object surface. Interest points are points where a 
discontinuity occurs in the image signal, and can be detected using the method proposed in (Harris and 
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Stephens 1998) or (Shi and Tomasi 1994). They are a reliable primitive to track, since they cannot be 
confused with any other parts of the texture. Moreover, being a local feature that can be normalized with 
respect to the luminance, interest points do not depend on lighting conditions.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7. The back-projection process.   Fig. 8. Examples of “Facet-ID” images. 
 
 

When the interest points on the object are tracked it is possible to retrieve the camera displacement in the 
object coordinate   system using robust estimation. In the following paragraphs we will describe in detail 
our tracking algorithm. First we present a simpler version that tracks the camera displacement frame by 
frame. This method works well but suffers from error accumulation for long sequences. We show how to 
prevent this problem by considering key-frames (defined offline or online).  This method is more complex 
but allows us to consider sequences without duration restriction. 

Initialization 

We use computer vision techniques to roughly compute intrinsic parameters by means of a calibration grid. 
The algorithm starts when the user moves the camera or the object close to a known position that may be 
shown on the screen. 
It is important to stress that a rough, approximate adjustments is sufficient. 
The matching algorithm receives as input the incoming image and a “bootstrap” reference frame; if the 
frames are close enough, the point matching number increases above a given threshold and the tracking 
starts. 
 
 
 
 
 
 
 
 
 
 
Fig. 9. This sequence has been tracked using a very simple model of one of the objects in the environment (four 
frames of the sequence). 

 

 
 
 
Fig. 10. This picture shows six frames of the tracked sequence of the corridor (700 frames). 
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 Fig. 11. Online and Offline Keyframes. a. Tracked camera displacement with four offline keyframes and one online 
keyframe. The dotted arrows represent the camera displacement from one frame to the next, and the number shows 
which keyframe is being used. K1 to K4 are the camera positions of the offline keyframes. When the current camera 
position gets too far from any known offline keyframe, a new online keyframe denoted Konline is generated. b. 
Choosing the best keyframe between K1 and K2. C’ is the previous camera position. 
 

Simple recursive tracking 

First, we detect the strongest interest points in the current source image using the Harris corner detector 
(Harris and Stephens 1998). Feature detection may also be performed by means of the method proposed in 
(Shi and Tomasi 1994). The strongest points are the image areas having color intensity significantly 
different from the neighborhood: we show the interest points detected in real images in Fig. 5. Let the 
interest points detected at the time t be: 

 

{ }n
tmtmtm ...0=  (1) 

 
Given a previous frame, let 1−tm be the set of 2D points that we detected   in it and  1−tM  be   their 3D 

position.  Assuming that the rotation and translation parameters vector [ ]TR |  is known in the previous 

frame, but new parts of the object may have appeared, we want to take into account the new 2D interest 
points. So we back-project them in order to find their 3D coordinates 1−tM , keeping only the interest  

points that are on  the object surface  and  discarding all the   others. To do so, we first use a “Facet-ID” 
image to detect on which face of the 3D model each 2D point lies. Some examples of this kind of image are 
shown in Fig. 8. That image is generated by encoding the index i of each facet if  as a unique color, and 

projecting the whole model into the image plane, using a standard OpenGL rendering. Once the facet-ID is 
known, we find the intersection with the found facet and the line passing through the camera centre of 
projection and the 2D point in the image   plane.   To compute this intersection we cast a ray from the 
center of the camera Copt , passing through the 2D interest point on the image m, and then intersecting the 

object model in the point M (see Fig. 7). 
Given the two matrices of intrinsic (A) and extrinsic ( [ ]TR | ) parameters that define the projection 

matrix as: 
 

[ ]TRAP |=  
(2) 
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We can compute the r

r
  vector, which gives us the direction of the ray. It can be expressed as: 

 
 
 
 

 
where: 

 
 

 
 

The optical center Copt  (the origin of the ray) can be computed using: 

 

TRCopt T−=  
(5) 

 
The intersection with the model, in the case of a triangle mesh, can be computed by means of the 

efficient algorithm presented in (Moeller and Trumbore 1997), however it can be any kind of line to 
geometric shape intersection algorithm.  

The algorithm in (Moeller and Trumbore 1997) is a very efficient computer graphics algorithm that 
computes the intersection between a triangle mesh and a ray. It can be extended to high polygon number 
meshes allowing tracking also complex objects without slowing down the tracker. Being the 3D position 

1−tM  in that frame known, we have two sets of points, respectively 2D and 3D: 

 

{ }n
tmtmtm 1...0

11 −−=−  

 

{ }n
tMtMtM 1

0
11 −−=− L  

(6) 

 
such that: 

 

[ ] i
tMtTtRAi

tm 11|11 −−−=−  
(7) 

 
where 1−tM and 1−tR  and 1−tT , the camera rotation and translation estimated for the previous frame, 

are expressed in the object coordinate system. A is the internal parameters matrix. We are looking for 
the tR and tT   matrices for the current frame. We match the 2D points between 1−tm  and tm , choosing for 

each point in the set 1−tm  the one in the set tm  that maximizes a correlation measure that is insensitive to 

illumination changes (Hartley and Zisserman 2000).   
 

( ) mARr 1−=
r

 
(3) 

( )Tvum 1=  
(4) 
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Fig. 12.  From the left: the first image has to be matched with the second one, but the two images are not close to each 
other. The point patches of the first image will be skewed as shown in the third image to make the matching possible. 

 
 
As a result, most of the current image points tm  are matched to the previous image points 1−tm : 

 
i
tmj

tm 1−↔  
(8) 

 

Since i
tm 1−  must re-project on j

tm  we should have: 

 

[ ] j
tmi

tMtTRA =−1|  
(9) 

 

Therefore also the 3D points belonging to j
tM can be associated to the 3D points of  i

tM 1− , giving in this 

way the 3D coordinates of the unknown points: 
 

i
t

j
t MM 1−=  

(10) 

 
The 3D points are the same for both the images if the 2D points have been correctly matched.  Once all 

the 2D-3D correspondences are done, we have enough information to compute the camera position in the 
object reference system. This is done using the algorithm proposed in (Dementhon and Davis 1992) and the 
robust estimator RANSAC to discard outlier matches (Hartley and Zisserman 2000). Using RANSAC in 
our case means that we consider several small sets of four random points to compute a temporary pose, find 
a displacement [ ]TR |  and re-project the whole set of points using this [ ]TR | . Only the configuration that 

re-projects the most of points will be accepted. This algorithm is efficient to consider a large number of sets 
of four points and it does this robust estimation in a reasonable time, which means we can do three hundred 
iterations in around ten milliseconds.  In this way we can detect only the correct points, and discard all the 
outliers. 

Keyframe based tracking 

In short, the simple method presented in the previous part works with very good precision without jittering. 
However, the simple recursive approach is too weak from the point of view of error accumulation, and it is 
not suitable for a real-time environment. Thus, one must improve the method with some additional 
information. This can be done using some prior knowledge, supplied by the keyframes.  This section 
explains how to use keyframes in order to track any sequence with no drift and no limits on the camera 
position. During the training stage the user creates offline keyframes, and in the tracking stage the previous 
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information is used to track. During the tracking the camera may move too far away from any known 
keyframe: In that case a new “online” keyframe is added to the others and it will be re-used when the 
camera position passes close to it a second time. 

During the offline stage, the user is asked to choose a set of images representing the scene from   many 
different points of view   or, at least, the positions that the camera will probably reach. Usually it is enough 
to record   a video sequence all around the object and to choose a frame for some camera displacement. 
While tracking the sequences presented in this paper we only used 4 keyframes. Complex aspect changes 
such as 360 degree rotations and 6 degrees of freedom may need from 10 to 20 keyframes. 

After the reference image choice the user is asked to accurately calculate the [ ]TR |  for each image. 

There are many methods to calculate the [ ]TR | . In our early test stage we were using a tool built by us 

using the method described in (Dementhon and Davis 1992): it is enough to get the 2D position of 4 known 
points in every image to calculate the objects pose. The user can even make use of commercial post-
production tools, such as the ones of   RealViz™ or 2D3™. The commercial products can   retrieve the 
object position over the whole sequence with good accuracy, since they work offline.  

When [ ]TR |  is known for every keyframe, the user has completed the offline stage. Then the system 

performs interest point detection and back-projects the points that lie on the object surface to compute their 
3D positions. 

Visibility criterion for keyframe choice 

The first step of the tracking algorithm is to choose the best keyframe.  This choice is a critical task on 
which the quality of the matching depends. An aspect of a keyframe must be as close as possible to the 
current frame. As shown in Fig. 11.b, simply evaluating the camera position is not enough.  The point C 
represents the current camera position, and K1 and K2 are two keyframes. Just taking the keyframe that 
minimizes the euclidian distance means that the closest keyframe is K1. However its aspect is not as close 
as K2, which is further away but has a closer line of sight. To correct this problem, we should evaluate the 
angle between the two lines of sight. However, this is still not a complete method, because it does not take 
into account object non convexities and self   occlusions.  Instead, we use an appearance-based method. We 
use the following criteria: 

 

( )(

( ))2]|[,

]|[,

KKK

Modelf
PPp

TRAfArea

TRAfArea −∑
∈∀  

(11) 

 
where ( )PfArea ,  is the 2D area of the facet f after projection by P. We reuse the method we introduced in 

the previous section for an accelerated OpenGL rendering of the object model.   Every facet is rendered   in 
a   different   color, representing the facet index, using the camera R and T estimated for the previous 
frame.  We histogram this “Facet-ID” image and compare the result to the keyframe histograms, which 
have been created offline during the learning stage. We get the contribution of the area of every single facet 
in the model as it is reprojected in the 2D image. Every   histogram bar represents the number of 
occurrences of every facet's pixels. This method has constant complexity, and requires only a single read of 
the image. 

Wide baseline matching 

This section presents our method to handle the perspective distortion on the correlation window.  
Conventional methods make use of a square bi-dimensional correlation window.  This technique gives 
good points matching under the assumption of very small perspective distortion between two frames. 
However, to effectively use keyframes, the ability to match distant frames becomes essential. Consequently 
we specify a point matching algorithm between a square 2D window in the current frame and a perspective 
distorted window in the keyframe image, that we call the “re-rendered'” image. We skew the 30x30 pixel 



Experiments and results    

10      Stable real-time AR framework for training and planning in industrial environments 

patches around each interest point from the keyframe image in order to bring them to a position close to the 
current one.  Each patch in the keyframe is related to the corresponding image points in the “re-rendered 
image” by a planar homography. 

Given the patch corresponding to the plane π having coordinates ),( dnTr=π  so that for points on the 

plane 0=+ dXnTr , the general expression for the homography induced by the plane is (according to 
(Hartley and Zisserman 2000)): 

 

( ) 1/' −−= AdntRAH Tr  
(12) 

 
between two different views defined by their  projection matrices [ ]0|IAP =  and  [ ]tRAP |'= . The 

homography equation for the general case can easily be obtained by changing the reference system; we get: 
 

( ) P
T

K AdntRAH 1'/' −−=
r

δδ  
(13) 

 
T

KP RRR =δ ; PK
T

KP ttRRt +−=δ  ; 

nRn K
rr

=' ; ( )nRtdd K
T

K
r

−='   

(14) 

 
where [ ]KKK tRA |   and [ ]PPP tRA |  are the projection matrices of the keyframe and  the previous frame. 

The resulting image is a re-rendering   of the interest   points' neighborhood in a more   convenient   
position as shown in Fig. 12. 

This method allows us to effectively match views even where there is as much as 60 degrees of rotation. 
An alternative solution to the homography would be to re-render a 3D representation of the object using   
an OpenGL textured 3D object, but we choose the other way to have a better result around the points. 

Offline and online keyframes 

Assuming we already have a consistent   set of keyframes, in this subsection we show how to employ them 
to track a sequence. As shown in Fig. 11.a, while the camera moves around the scene, the system switches 
from one keyframe to the other, always choosing the one that is closest to the current image.   

When the current camera position gets too far   from any known offline keyframe, a new online 
keyframe denoted Konline is generated. It will be added to the keyframe set and treated like the other ones. 
The criterion we use for deciding to generate an online keyframe is the minimum number of inliers 
(correctly matched points): when they are less than 15-30 (depending on the type of object) we switch to a 
new keyframe. After some time the camera will again pass close to a known position, re-using the 
keyframes that have been generated online. If the sequence is difficult the system needs more offline 
keyframes. 

An interesting characteristic of this method is that when some error has been accumulated over a part of 
the sequence, it will be reset to zero when an offline frame is used. The online   frames can be considered 
as a kind of “second chance” method used to recover when there are no offline keyframes, and it has only 
to guarantee no complete divergence before the camera gets close to an offline frame. 

Experiments and results 

The whole system runs close to real-time. Due to the time-consuming algorithms we are obliged to use 
two separate 2.5GHz PC machines, one for tracking and another for VHD++ rendering respectively. In this 
configuration the tracking yields from 15 to 25 fps depending on the object size, while rendering goes 
above 30 fps. Given the hardware configuration the current tracking performance can be achieved with 
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320x240 images. Once more CPU power is available, we will use bigger images and the tracking quality 
will improve.   
Aiming at the tracking performance as the most critical, we have also   built many tests by means of the 
tracking algorithm but using only a light rendering part. In this case our system can run on a single 2.6 GHz 
laptop machine using an IEEE 1394 camera.  

We tested the tracking algorithm in a factory environment, where we succeeded to track pre existing 
equipment and to superpose virtual parts. We also use the same algorithm for tracking and augmenting a 
variety of 3D objects (e.g. tea boxes, small toys). The same method is used for face tracking and 
augmentation in real-time; the executable of this algorithm is available for both IEEE1394 Point Grey 
Dragonfly camera or web cam at the link: 

 
http://cvlab.epfl.ch/software/download.html 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13. Plots showing a 700 frame sequence tracked using three different methods. The first plot shows the 
jitter of keyframe method compared to our method, the second one shows the error accumulation of the 
recursive method compared to ours. In both plots, the bold line corresponds to our results. We use our 
result as a ground truth being visually correct when we re-project the model.

 
 

All our demonstrations make use of small portable cameras that can be installed on a helmet. The 
visualization is screen display, which solves all the problems of tracking delay.  

Being our camera lens of good quality we have never addressed the radial distortion problem; however it 
can be easily solved by means of the most common camera calibration programs (e.g. Australis, Intel 
OpenCV Calib Filter).  

Examples of tracked objects and scenes are shown in the Fig. 1 and 2. Fig. 1 shows a virtual human 
showing the use of a real machine in a factory. In Fig. 2 we show the result of a sequence in which the 
camera is moved through the corridor and is turning around the corner, and   an avatar is walking in front of 
the user, showing the way to follow.  

In order to have a more qualitative analysis of our method, we made it work first in some limited 
conditions that are closer to the more conventional approaches, than using the complete algorithm. So we 
used a feature matching approach to track a scene three different times: 

 
• using only chained transformations, like a recursive tracker, 
• using only keyframes (offline information), 
• combining both using our proposed method. 

 
The result of the combined method is used as ground truth, since it works with good accuracy for the whole 
sequence. We verified this by re-projecting the model on the images. Fig. 13 depicts the evolution of one of 
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the camera center coordinates with respect to the frame index. The first plot compares our method to the 
keyframes-only method. The keyframe-only method suffers from jitter and fails at frame 295 because there 
is no available keyframe providing enough point matches for that point of view. The second plot compares 
the recursive method to ours. Error accumulation in the recursive method does not corrupt the tracking 
immediately, but eventually also provokes tracking failure around frame 550. 

At the end, when the tracking has been correctly performed, the rest of the work is done by VHD++. The 
rendering module provides the main support for video image synthesis of   virtual humans-objects correctly 
registered to the real video image. Thus we have implemented successfully the integration of the tracking 
and the rendering   module (currently on the   same vhdRuntimeEngine), realizing the architecture depicted 
in Fig.  4.  

Conclusion 

In this paper we presented a novel framework for building real-time VR/AR applications. Our system has 
not only been tested in a laboratory, but also in a real environment. The focus of this work is to build 
applications for training and planning in industrial environment, but it can be used as well for many other 
tasks, such as ergonomics, repair, prototyping, emergency situations training, and all the cases where a 
dangerous or too expensive to create situation is present and it cannot be reproduced by a real scene. 

The tracker embedded in the framework is based on natural feature points, and it can be used with a 
large set of scenes. The model information is exploited to track every aspect of a given target object even 
when occluded or only partially visible, or when the camera turns around the scene. The result is a practical 
system that we have been able to test in a real factory environment. 

Bibliography 

Azarbayejani and Pentland 1995 A Azarbayejani and A P Pentland Recursive Estimation of Motion, Structure and 
Focal Length. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 17, no. 6, pp. 562–575, 1995.  

Azuma 1995 R Azuma A survey of augmented reality. Computer Graphics (SIGGRAPH’95 Proceedings), August 
1995, pp. 1–8. 

Beardsley et al. 1997 P A Beardsley, A Zisserman, and D W Murray Sequential update of projective and affine 
structure from motion. International Journal of Computer Vision, vol. 23, no. 3, pp. 235–259, 1997. 

Dementhon and Davis 1992 D DeMenthon and L S Davis Model-based object pose in 25 lines of code. European 
Conference on Computer Vision, 1992, pp. 335–343. 

Drummond and Cipolla 2000 T Drummond and R  Cipolla Real-time tracking of multiple articulated structures in 
multiple views. ECCV (2), 2000, pp. 20–36. 

Fitzgibbon and Zisserman 1998 A Fitzgibbon and A Zisserman Automatic Camera Recovery for Closed or Open Image 
Sequences. European Conference on Computer Vision, Freiburg, Germany, June 1998, pp. 311–326. 

Harris and Stephens 1998 CG Harris and MJ Stephens A combined corner and edge detector. Fourth Alvey Vision 
Conference, Manchester, 1998. 

Hartley and Zisserman 2000. R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision,. Cambridge 
University Press, 2000. 

Kato et al. 2000 H Kato, M Billinghurst, I Poupyrev, K Imamoto, and K Tachibana Virtual object manipulation on a 
table-top AR environment. Proceedings of International Symposium on Augmented Reality, 2000. 

La Cascia et al. 1999 M La Cascia, S Sclaroff, and V Athitsos Fast, reliable head tracking under varying illumination: 
An approach based on registration of texture-mapped 3d models. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, vol. 22, no. 4, April 2000. 

Marchand et al. 1999 E Marchand, P Bouthemy, F Chaumette, and V Moreau. Robust real-time visual tracking using a 
2d-3d model-based approach. IEEE International Conference on Computer Vision, ICCV’99 (1), Sept. 1999, pp. 
262–268. 

Moeller and Trumbore 1997 T Moeller and B Trumbore Fast, minimum storage ray triangle intersection. Journal of 
graphics tools, 2(1):21-28, 1997. 

Neumann and You 1999 U Neumann and S You  Natural feature tracking for augmented reality. IEEE Transactions on 
Multimedia, vol. 1, no. 1, pp. 53–64, 1999. 



Bibliography    

13      Stable real-time AR framework for training and planning in industrial environments 

Ponder et al. 2003 M Ponder, G Papagiannakis, T Molet, N Magnenat-Thalmann, D Thalmann, VHD++ Development 
Framework: Towards Extendible, Component Based VR/AR Simulation Engine Featuring Advanced Virtual 
Character Technologies. Computer Graphics International (CGI) 2003, to appear. 

Shi and Tomasi 1994 J Shi and C Tomasi. Good Features to Track. IEEE Conference on Computer Vision and Pattern 
Recognition, pages 593-600, 1994. 

Simon et al. 2000 G Simon, A Fitzgibbon, and A Zisserman Markerless tracking using planar structures in the scene. 
Proc. International Symposium on Augmented Reality, October 2000, pp. 120–128. 


