Query-load balancing in structured overlays*

Anwitaman Datta
School of Computer Engineering
Nanyang Technological University (NTU, Singapore)
anwitaman @ntu.edu.sg

Roman Schmidt, Karl Aberer
School of Computer and Communication Sciences (1&C)
Ecole Polytechnique Fédérale de Lausanne (EPFL, Switzerland)
roman.schmidt@epfl.ch, karl.aberer @epfl.ch

Abstract

Query-load (forwarding and answering) balancing in
structured overlays is one of the most critical and least stud-
ied problems. It has been assumed that caching heuristics
can take care of it. We expose that caching, while neces-
sary, is not in itself sufficient. We then provide simple and
effective load-aware variants of the standard greedy routing
used in overlays, exploiting routing redundancy originally
needed for fault-tolerance, to achieve very good query load-
balancing.

Keywords: Query-load balancing, Structured overlays

1. Introduction

In recent years the concept of structured overlays (e.g.,
Distributed Hash Tables [DHTSs]) has attracted a lot of atten-
tion because of its potential to become a generic substrate
for internet scale applications. Structured overlays are used
for applications as diverse as locating resources in a wide
area network or a grid computing environment in a decen-
tralized manner. It can also be used for address independent
and robust and flexible (group) communication - e.g., appli-
cation layer multicast and internet indirection infrastructure
and content distribution network to name a few. The basic
function of a structured overlay is to act as a decentralized
index. To that end, for each resource, a globally unique
identifier (called the key) is generated using some function
suitable to the applications that are supposed to use the in-
dex. The codomain (loosely speaking, range) of this func-

*The work presented in this paper was (partly) funded by NTU’s start
up grant and partly carried out in the framework of the EPFL Center for
Global Computing and supported by the Swiss National Funding Agency
OFES as part of the European project NEPOMUK No FP6-027705.

tion is called the key-space. For example, the key-space
may be the unit interval [0, 1] or an unit circle [0, 1), so that
the keys can be any real number between 0 and 1. The key-
value pair is stored at peers responsible for the particular
key. Efficient search of this key helps the applications to
access the resource. This fundamental abstraction can be
used for diverse applications including searching and shar-
ing files or computational tasks or group communication. A
structured overlay can be more formally defined as follows.

Definition 1 Structured overlay networks comprise of the
three following principal ingredients:

(i) Partitioning of the key-space (say an interval or cir-
cle representing the real number between the range [0,1])
among peers, so that each peer is responsible for a specific
key space partition. A peer responsible for a particular key-
space partition should have all the resources (or pointers)
which are mapped into keys corresponding to the respective
key-space partition.

(ii) A graph embedding/topology among these partitions (or
peers) which ensures full connectivity of the partitions, de-
sirably even under churn (peer membership dynamics), so
that any partition can be reached from any other partition -
reliably and preferably, efficiently.

(iii) A routing algorithm which enables the traversal of
messages (query forwarding), in order to complete specific
search requests (for keys).

Balancing load among the participating peers is an im-
portant concern in structured overlays. Most existing load-
balancing techniques for structured overlays deal with man-
aging the partitions [1, 2, 4] and key-assignments, so that
approximately equal number of keys are assigned to each
partition and hence each peer. These however do not bal-
ance the query-related loads of (i) query forwarding and
(i1) query answering (access of keys). Indeed, in real life

it is likely that different keys are accessed with different
frequency. The relative popularity may vary by orders of
magnitude, for instance in a Zipf distribution.

A caching based approach to alleviate hot-spots appeals
to the intuition. In a recent work [3] we formally proved
the intuition of best possible caching scheme for a large
family of structured overlays. We showed that caching
proportional to query frequency for individual keys mini-
mizes search cost subject to the system’s storage capacity
constraint. This holds when the caches are placed at spe-
cific peers, exploiting the overlay’s topology. If the key-
space partitions are abstracted as leaves of a search tree, the
caches should be placed in the nearest neighboring subtree,
as if recursively coalescing the key-space partitions.

We also exposed experimentally that currently used
(greedy) routing strategies in overlay networks inherently
lead to high variation in resource usage at different peers,
even if the best possible caching scheme is used. This is
expected due to the variance observed in an uniform ran-
dom distribution. Queries are issued from different parts of
the network, and a typical greedy routing mechanism (e.g.,
longest prefix matching) oblivious of the load at peers may
lead to disproportionate use of peers’ resources, which may
in turn in the extreme case lead to overlay network conges-
tion even when there is free capacity available in the overall
system.

Structured overlays typically use redundant routes for
fault-tolerance. In this paper we provide simple and ef-
fective load-aware variants of greedy routing strategy ex-
ploiting such route redundancy, and evaluate the perfor-
mance of the overlay with extensive simulations using the
P-Grid [1] topology to demonstrate the very good quality of
query load-balancing that is achieved with our scheme. The
choice of simulation system has been partially guided by
the fact that we integrate our schemes in the Java based on-
going P-Grid implementation, which is used as a substrate
for diverse applications and is regularly deployed and tested
in the PlanetLab [6] infrastructure.

The paper is organized as follows. In Section 2 we re-
capitulate (from [3]) that in practice just caching is not
good enough to achieve good query-answering load bal-
ancing. We also observe that the query forwarding load
even in a network with good in/out-degree balance is again
subject to high statistical noise. As a consequence of this
noise, a system with sufficient capacity to meet the work-
load requirements will experience congestion and overload
in some parts, while other peers will have their resources
unexploited. This is because of the typical greedy route for-
warding strategy used in current overlays which does not
take into account load considerations. In Section 3 we pro-
pose and evaluate variants of greedy routing which exploit
routing redundancy to dynamically choose least loaded of
a set of potential routes. Our solution is simple still highly

effective, nevertheless never used for the highly critical but
neglected problem of query-load balancing in the last five
years of extensive structured overlay research. In Section 4
we point out the few related works which provide partial so-
lutions to query load balancing problems and then conclude
in Section 5.

Before proceeding any further, we will like to point out
that we make the following assumptions: (i) The number of
keys a peer is responsible for is already balanced, which
is more or less achieved under various settings - range-
partitioned or DHTs - by [1, 2, 4]. (ii) All peers have same'
and limited storage, part of which is dedicated to store the
keys it is responsible for based on its role in the index, and
the rest is used in order to dynamically cache some keys
in order to alleviate load-balancing and improve search la-
tency. (iii) The routing network itself does not lead to any
systematic hot-spots because of large variations in degree
distribution at each peer. This is a critical issue particu-
larly for overlays with randomized routing networks [1, 10]
(deterministic ones [12] already have good balance), which
has not been studied in the literature in great detail, but can
readily be achieved using standard techniques like power-
of-two (or multiple) random choices [5]. In Figures 1(a)
and 1(b) we show the in-degree distribution in a P-Grid net-
work without and with such an in-degree balancing tech-
nique. We omit further discussion on balancing in-degree
in randomized networks, and instead concentrate on query-
load balancing at runtime in an already existing overlay.

2. Is caching sufficient?

Distributing load randomly uniformly incurs high statis-
tical variation. Balls into bins [7] is a commonly used anal-
ogy. Similar variation is also observed for storage load bal-
ancing in DHTs where uniform hashing is used to achieve
storage load balancing in expectation, thus calling for more
sophisticated load-balancing techniques [2]. Caching is
popularly used to deal with hotspots and query-load imbal-
ances [3, 8, 9]. However, just caching keys proportional to
the access frequency but routing to any of these caches ran-
domly is also expected to lead to high statistical variation
of query-answering load. Similarly, even in overlay net-
works with well balanced degree distribution of peers, the
routing process is expected to cause large variation in the
actual forwarding load at peers. This intuition has however
been largely ignored so far. One possible reason for such an
oversight is that until recently there has not been any real de-
ployed structured overlays, and most simulations were fo-
cused on key distribution (storage) workloads that cumulate
over time, unlike bandwidth and CPU usage, which is tem-
poral in nature. However, these are critical in forwarding

'Homogeneity can be achieved by using multiple virtual peers for re-
source rich peers.

cers . . R
#p In-degree distribution of a 215 peers randomized network

3500
3000
2500
2000

1500

1000
500 | |
II Ill.
20 25

5 10 15

(a) Randomized choice of routing table

In-degree

In-degree distribution of a 2"15 peers usin g power-of-two choices

14000

12000

10000

8000

6000

4000

2000

In-degree
B 10 15 20 25 30

(b) Power-of-two based random choice of routing table

Figure 1. Route in-degree balancing in randomized structured overlay topologies. All the results in this paper are based on overlay routing

networks which already have a fairly well balanced in-degree distribution (like in Figure 1(b)), unless specified otherwise.

and answering queries in real time. Imbalance in query-
load distribution may lead to congestion even when other
peers have unused bandwidth capacity, or hotspots even
when caching peers stay unused.

2.1. Simulation setup and workload

We demonstrate the validity of our intuition based on
simulations. The consequence of such high statistical varia-
tion is that even if the system is provisioned for dealing with
hotspots by providing extra storage capacity, and deal with
the query traffic by providing sufficient aggregate band-
width, the system will not be able to deal with the workload,
simply because some peers will be overwhelmed while re-
source of many other peers will stay unused.

We simulated a randomized tree-structured network of
28 peers (specifically using the P-Grid routing topology).
We considered that there was no route redundancy. So to
say, for a given query, at a given peer there was only one
potential routing entry, and this route is chosen greedily
by the peer (longest prefix match in P-Grid). In real life,
overlays need redundant routes for fault-tolerance, and we
will show later how we can also use the same routing re-
dundancy to achieve good query-load balancing. The sole
routing entry was however chosen either (i) randomly or
(i1) using the power-of-two random choices [5] to balance
the in-degree (see Figure 1). Note that the power-of-two
choices based routing table instantiation is somewhat simi-
lar to other mechanisms like proximity aware routing table
construction in that the choice is made once during network
construction process. While such a priori careful design is
both useful in removing any systematic bias (high in-degree
naturally will imply higher load) and is a good design prac-
tice, we see from the simulations that it does not provide
mechanisms to cope dynamically with the system’s work-
load at runtime.

Each peer initially held D = 5 unique data items, thus
there were 1280 unique keys. Each peer had a capacity
for storing a maximum of I2,,;.D data items (including the
original and caches), where I?;,,; was chosen to be 10.

In the first experiment, queries with relative frequen-
cies Zipf-distributed (parameter 0.8614) were originated
at random peers chosen uniformly. Approximately 16700
queries were issued. We compared the system’s perfor-
mance with and without caching. For the former, queried
objects were cached according to the optimal placement
strategy [3] (proportional to the query frequency, and ex-
ploiting the topological characteristics of the overlay), with
one additional cache created for each query received by any
current cache. In case of lack of storage space, least re-
cently queried object (locally perceived at individual peers)
was removed in order to replicate a newly queried object.
We also ran another set of experiments to isolate the effect
of statistical noise of just the routing process. All objects
were queried the equal number of times. We compared the
effect on query-answering load with and without caching.
The instance of the overlay network where routing tables
were chosen based on power-of-two random choices was
used.

2.2. Greedy routing in structured overlays

We show cumulative distribution functions in Figure 2 to
summarize the load-balancing results, where two different
measures of load are used: (i) the number of query messages
forwarded by peers, as well as (ii) the number of queries ac-
tually answered by peers (possible when the peer has the
corresponding key stored locally). The cumulative distribu-
tion plots are to be interpreted as follows: The x-axis repre-
sents the load and the y-axis the percentage of the peer pop-
ulation which has a load less than or equal to this specific
(x-axis) load. Thus steeper ascent of the curve represent

smaller variation of load among peers, while gradual as-
centresults from greater variation (poorer load-balance). As
mentioned above, two sets of experiments were conducted,
once with queries with relative frequency Zipf-distributed
(parameter 0.8614), another where all keys were queried
exactly the same number of times. Queries were issued at
random peers.

As expected, there is reduction of the absolute number
of forwarding messages per query with the use of caching
(Figure 2(b)). In fact if the optimal caching strategy is used,
the best reduction in search cost of an object with r replicas
is from log (N) to log (N/r) where N is the number of key-
space partitions (assuming that the overlay topology leads to
logarithmic search cost) [3]. However, apart this reduction
in search cost, there is also hidden costs of caching. We
are thus not interested in the absolute load in this paper, but
primarily on load-balancing aspects, and thus interested in
the slope of the CDFs, the steeper the better load-balance.

A slightly steeper slope in Figure 2(a) for the caching
based scheme shows that the deviation in the number of
queries answered using the replication based strategy is
lower than without replication, that is, replication leads to
some improvement in query-answering load-balance. We
also notice that balancing the in-degree based on power-of-
two choices (Po2C) leads to improvement in load-balance.
The improvements are discernable, but limited. We attribute
it to the statistical noise. The huge effect of statistical noise
becomes apparent in Figure 2(c) for the experiment where
all keys are queried the same number of times. In this case,
the query-answering load is perfectly balanced if no repli-
cation is done, since each peer receives all queries for its
own keys and all keys are queried equally. However, with
caching, as keys are replicated - the effect of statistical noise
kicks in, thus in fact leading to load-imbalance.

This experiment where keys were queried equally was
more to put in context the effect of statistical noise. Under
realistic work-loads, we’ll need the query-adaptive caching
as a means to achieve load-balancing on an average. How-
ever, such a load-balancing is in itself inadequate unless
complemented with other mechanisms to reduce the vari-
ance. Since real overlays need multiple route choices per
level primarily for fault-tolerance, we next study whether
such routing redundancy can be exploited to improve load-
balancing.

3. Exploiting routing redundancy

Redundant routing table entries are used in structured
overlays for fault-tolerance. So to say, any peer typically
knows several peers to which it can forward a query. In a
tree structured (prefix based routing) overlay, these choices
are from all the peers belonging to the complementary
subtree. Of-course, at certain levels, there may be fewer

choices. We investigate whether such routing redundancy
can be exploited for improving load-balancing. We repeat
the experiments with same work load as above, i.e., Zipf
distributed access frequency of keys, in a P-Grid network
where peers had at least one (no redundancy) and at most
five unique redundant route choices per level.

3.1. Greedy routing with blind choice from
redundant routing entries

The actual route was randomly (blindly) chosen for each
query at each hop, out of all the possible candidates as
determined by greedy routing. In doing so, we obtain a
somewhat steeper CDF for query answering, however just
using multiple choices blindly does not realize good load-
balancing for either query answering or forwarding load, as
can be seen from Figure 3.

3.2 Greedy routing choosing redundant
entry with least forwarding load

The high variance of both query forwarding and answer-
ing load are artefacts of the routing process. So we inves-
tigate next, what happens if we forward queries based on
the forwarding load of peers, thus choosing dynamically the
least loaded (at that time instant) candidate as the route.
The idea is intuitive and requires simple modification of
existing approaches, nonetheless, has not been employed
in structured overlays, and we see next that extension of
this basic intuition leads to very good query-load balanc-
ing even for very skewed load-distributions. In Figure 3
we note that a forwarding load aware routing process dra-
matically improves the forwarding load balance. However,
even with caching and forwarding load aware routing, the
query-answering load imbalance stays high. There is also
reduction of absolute number of messages in the strategy
where caching is used, as expected.

3.3. Greedy routing choosing redundant en-
try with least cumulative load

We next tried to decide the query-forwarding process
based on a cumulative load measure. Typically, answer-
ing and forwarding queries require different amount of re-
sources, both bandwidth and computation. While query
forwarding involves a relatively small packet size, depend-
ing on the number and size of the query results, answering
queries may be substantially more expensive. We define a
parameter (, such that forwarding a query incurs ¢ fraction
of load as in answering a query. We simulated scenarios
with various values of (, ranging between 1 to 0.1. Lower
values of ¢ imply answering a query is much more expen-

© peers Greedy routing (w/o choice)

e

80

60

+— Randomized DHT
40
—+— Po2C route topology

® Randomized + Caching

20
—— Po2C + Caching

(a) Queries answered (Zipf)

% peers

Qur. Ans. < X

% peers Greedy routing (w/o choice)

80 e

60 /m
Py

L * Randomized DHT
40 —*— Po2C route topology

®— Randomized + Caching

20
—+— Po2C + Caching

Msgs < X

80

. /

40

20 //

Caching

No caching

20 40

Qur. Ans. < X

(c) Queries answered (Equal access)

Figure 2: Cumulative distribution of query answering and forwarding loads at peers. (i) Zipf distributed queries for random as well as power-of-two

choice based route choices. (ii) Same number of queries per key, for only the power-of-two choices based route choices.

sive than forwarding a query. For these experiments, we
first provide CDF of only the cumulative load in Figure 4.2

3.3.1 Is caching necessary?

We observe that using such a cumulative load based routing
significantly improves the load-balancing, particularly with
the use of caching. Without caching, the load-balancing
quality deteriorates for lower values of (. This is because,
when the effort to answer a query is similar to the effort to
forward a query, even if we do not use caching, the peers
can be compensated with one kind of load or the other, but
when the forwarding and answering loads are substantially
different such a trade-off does not work. This in turn im-
plies that if the effort for query-answering and forwarding
are interchangeable (¢ ~ 1), then effect of caching on load-
balancing is marginal, while if query answering incurs sig-
nificantly higher load than query forwarding ({ < 1) then

2Ignore the reduction of the absolute value of loads for experiments
with different ¢ values, since the contribution from forwarding load de-
creases for lower (.

caching is necessary. Of-course as already seen that caching
in itself is not sufficient, and for query-load balancing we
still need load-aware routing along with caching.

In Figure 5 we show separately the query answering and
forwarding components of the cumulative load, and observe
that even individually they are fairly well balanced based on
the cumulative load based forwarding strategy (with the use
of caching), though the balance of individual components
is not as well as the balance of cumulative load. This is
because the peers with higher answering load are compen-
sated by lower routing load and vice-versa, and hence such
imbalance in the component loads is in fact what the routing
algorithm was designed to achieve.

3.4 Impact of route redundancy

Finally, we show in Figure 6 that routing redundancy is a
prerequisite by using the same cumulative load-aware rout-
ing algorithm for different instances of P-Grid with max-
imum routing redundancy per level per peer varying be-
tween 1 and 10. We notice as expected that for low route

CDF of queries answered

1001
80+
%)
5 60r
[0]
o
L 40F
—o6— blind, w/caching
20+ x - blind, w/o caching
— + —load aware, w/ caching
P —%—load aware, w/o caching
Ole—e—# A L | | I)
0 20 40 60 80 100 120

Queries answered < x

(a) There is marginal improvement in query answering load because of
caching when using either blind or forwarding load aware routing. There
is no discernible improvement because of forwarding load based routing.

CDF of queries forwarded

100r S
—&— blind, caching
x - blind, no caching
80 - + - load aware, caching 'x~
—%—load aware, no caching !
(7] xi
5 60r |
g X %
® 40F i
/
20- X f
x !
!
0 & —k " I)
0 50 100 150 200 250 300

Messages < x

(b) Expectedly, caching leads to a lower message forwarding load since
query latency in terms of overlay hops and the absolute number of messages
is also reduced. There is a significant improvement in the forwarding load-
balancing with the use of a forwarding load aware routing in comparison to
blind routing (both w/ and w/o caching).

Figure 3: Forwarding load aware greedy routing: CDF of query (a) answering and (b) forwarding loads at peers for Zipf distributed queries in a network

where each peer had a maximum of 5 redundant route choices per level. The route is chosen dynamically (i) blindly, (ii) with least query-forwarding load.

redundancy, the quality of load-balancing stays poor. How-
ever the quality of load-balancing with caching is very good
for even moderate level of redundancy (at most 5 entries),
and the improvement there onwards is marginal. This is a
good news since the moderate number of redundant routes
required for fault-tolerance in structured overlays will in it-
self suffice to achieve good query load-balancing without
any separate provisioning.

Discussion: From all these empirical results, we con-
clude that each of (i) exploiting route redundancy in struc-
tured overlays, (ii) load-aware routing, along with (iii)
(more intuitive) access adaptive caching are important,
complementary and necessary to achieve good query load-
balancing, avoid congestions and deal with hotspots in
structured overlays.

4. Related work

While there exists numerous work on balancing storage
load in structured overlays, including [1, 2, 4], there are very
few works on query-load balancing. A recent work [11] is
the closest to our approach in that the authors propose to
change the routing tables themselves in order to exploit the
trade-off between query forwarding and answering loads.
Such a scheme leads to change in the routing network it-
self, which means, some peers with less queries to answer
may end up having high in-degree and will need to forward
most of the traffic. This not only exposes the overlay to
faults, but also leads to longer delays. Moreover the scheme
has been shown to work with moderate success only for the
special case when query forwarding and answering loads
are completely interchangeable (¢ = 1). Their limited suc-
cess concurs with our results since no caching was used

there. Another recent related work [13] proposes a mech-
anism to balance load (without differentiating types of load
like: storage, forwarding or answering). The essential result
in that paper has been two fold. (i) To show that heteroge-
neous peers need to provide resources proportional to their
capacity. This in itself is both intuitive, and while necessary
not sufficient because of the high variance observed in uni-
formly distributed random variables. (ii) Use aggregation
of load-history and using topology aware caching to redis-
tribute load. The topology aware caching is on similar lines
as our previous work [3]. Aggregation of load-history and
caching accordingly is a reactive strategy, and caching in
itself does not solve the load-imbalance problem, as we ob-
served in this paper. Our work tries to balance load dynami-
cally at run time, complementing the caching techniques, by
exploiting route redundancy, using routing heuristics which
require minor changes in the current routing process.

5. Conclusion

There is déja-vu in what we discover from an objec-
tive look at query-load balancing. Initial research in over-
lay design [9, 10, 12] hoped to achieve good balancing of
key-distributions among peers by using uniform distribu-
tion. The effect of statistical noise [7] was recognized only
later, and had to be fixed using further load-balancing mech-
anisms [2]. One can nevertheless find in literature that in
order to deal with hot-spots, caching is proposed (which is
necessary!), and presumed sufficient, which is not the case.
In some sense, it is unfortunate that despite dealing with the
effect of randomization for storage load balancing, the same
effects of randomization for more critical resources - band-
width and peer’s answering capacity under hot-spot condi-

CDF for {=0.5

+
+

CDF for {=1
1007 & Yt 1007 #
+ + +
+ + + +
+ + + +
+ + + +
gof & i 80r + +
1 b4 i i
+ + + +
+ + + +
i i i i
g O 1 i o %1 H
o i i 2 i i
Q + o + +
R b + R + +
40r 1 & 40r § 1
i i b i
+ i + +
+ + +
20t & b 20t ¥ i
+ i i + +
f b o with cachlng by T + - with caching
+ + + - w/o caching + + .
+ t + + + - w/o caching
0 ¢‘ L L 4L L Il 0 ¢+ L L +- +\ L L L]
200 220 240 260 280 300 120 130 140 150 160 170 180 190
Cumulative load < x Cumulative load < x
(a) Cumulative load (¢ = 1) (b) Cumulative load (¢ = 0.5)
CDF for {=0.2 CDF for {=0.1
100 F . + 1001 t . +
g + + +
+ + + +
+ + + +
+ + + +
80F b + 80r P
+ + + +
+ + + F
+ + + o+
+ ¥ +F
o 60 F f » 60f 1s
5 + + 5 + +
2 + + 2 + +
g + o+ 8 ++
o Tt o s
S s0f F f = 0t ¥
+ o+ +
+ o+ i
+ o+ #
+ o+ +
200 1 s #F
I f + - with caching ff + - with caching
f I + w/o caching &I + - w/o caching
0 A . . . , o+t F . . . ,
80 100 120 140 160 40 60 80 100 120 140
Cumulative load < x
(d) Cumulative load (¢ = 0.1)

o
o

Cumulative load < x

(c) Cumulative load (¢ = 0.2)

Figure 4: Cumulative load aware greedy routing: CDF of cumulative load at peers for Zipf distributed queries in a network where each peer had a

maximum of 5 redundant route choices per level, and the routing process chooses the candidate with least cumulative load.

tions, were totally ignored, presuming caching itself will
solve the problem. One may speculate several reasons for
overlooking such an important thing: (i) Initial work based
on simulations could observe the imbalance of key distribu-
tion, since it accumulates over time. Bandwidth consump-
tion is however temporary, and if only the average is mea-
sured (as has often been reported in most results), the im-
balance goes unnoticed. (ii) It is only recently that some
structured overlay implementations have matured enough
to be deployed and is dealing with moderate query loads,
and hence the effects of imbalance has not been observed.
But as the volume of traffic in structured overlays increase,
balancing of query-load will become critical, since other-
wise it’ll cause congestion (and IP layer congestion control
mechanisms will not be useful if the overlay systematically
causes the congestion at end-nodes) even while other peers

would have their resources under-utilized.

In that context, our work rediscovers the ghost of statisti-

cal noise. The way to reduce the variance is straightforward,

mechanism used in most structured overlays, and provides
excellent load-balancing. It is simple yet a powerful solu-
tion for a critical but long ignored problem of query-load
balancing in structured overlays.

Overlays often maintain multiple routes for fault-
tolerance. Using piggy-backed messages on control traffic
or other means, load at the routing table entry peers can be
estimated locally. This information can be utilized in dy-
namically choosing a proper route. We show the need and

effectiveness of such load-aware routing strategies, com-
plimenting caching in order to balance query-related loads
in structured overlays. Integration and experimentation of
these mechanisms in the actual P-Grid implementation is

ongoing work.

References
[1] K. Aberer, A. Datta, M. Hauswirth, and R. Schmidt. Indexing

data-oriented overlay networks. VLDB, 2005.
[2] J. Byers, J. Considine, and M. Mitzenmacher. Simple load

balancing for distributed hash tables. In IPTPS, 2003.

requiring slight modification of the existing greedy routing

% peers Cumulative load aware routing

100

80

60

40

Caching
20

No caching

Queries Answered < X
20 40 60 80 100

(a) Queries answered

% peers Cumulative load aware routing

80

40 /

Caching

No caching

Msgs < X

(b) Messages forwarded

Figure 5: Cumulative load aware greedy routing: CDF of components - query answering and forwarding loads - at peers for Zipf distributed queries in a

network where each peer had a maximum of 5 redundant route choices per level, and the routing process chooses the candidate with least cumulative load.

Effect of route redundancy: Without caching

1007
801
» | —=6— no redundancy
g 60 - - - two choices
og' 40- + five cho.ices
ten choices
201
0 O e X e L L L L L
0 20 40 60 80 100 120 140 160

Cumulative load < x

(a) Without caching

% peers

100r - o—o-0-6-0

—=6— no redundancy

60

— - - two choices
+ - five choices

40

ten choices

20

0 L L L I L |
0 20 40 60 80 100 120 140 160
Cumulative load < x

(b) With caching

Figure 6: CDF of cumulative load at peers for Zipf distributed queries in various networks with different maximum redundant route choices per level,

and the routing process chooses the candidate with least cumulative load (¢ = 0.1).

[3] A.Datta, W. Nejdl, and K. Aberer. Optimal caching for first-
order query load-balancing in decentralized index structures.
In The 4th International Workshop on Databases, Informa-
tion Systems and Peer-to-Peer Computing (DBISP2P), 2006.

[4] P. Ganesan, M. Bawa, and H. Garcia-Molina. Online Balanc-
ing of Range-Partitioned Data with Applications to Peer-to-
Peer Systems. In VLDB, 2004.

[5S] M. Mitzenmacher. The power of two choices in random-
ized load balancing. [EEE Trans. Parallel Distrib. Syst.,
12(10):1094-1104, 2001.

[6] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A
blueprint for introducing disruptive technology into the in-
ternet. In SIGCOMM Comput. Commun. Rev., 2003.

[7]1 M. Raab and A. Steger. Balls into Bins - A Simple and Tight
Analysis. In RANDOM ’98: Proceedings of the Second In-
ternational Workshop on Randomization and Approximation
Techniques in Computer Science, pages 159-170, London,
UK, 1998. Springer-Verlag.

[8] V. Ramasubramanian and E. Sirer. Beehive: O(1) Lookup
Performance for Power-Law Query Distributions in Peer-to-
Peer Overlays. In NSDI, 2004.

[9] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A Scalable Content-Addressable Network. In

Proceedings of the ACM SIGCOMM, 2001.
[10] A. Rowstron and P. Druschel. Pastry: Scalable, distributed

object location and routing for large-scale peer-to-peer sys-
tems. In IFIP/ACM International Conference on Distributed

Systems Platforms (Middleware), 2001.
[11] S. Serbu, S. Bianchi, P. Kropf, and P. Felber. Dynamic load

sharing in peer-to-peer systems: When some peers are more
equal than others. In Montreal Conference on eTechnologies

(MCETECH’06), 2006.
[12] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Bal-

akrishnan. Chord: A scalable peer-to-peer lookup service for
internet applications. In Proceedings of the ACM SIGCOMM,

2001.
[13] Z. Xu and L. Bhuyan. Effective load balancing in p2p sys-

tems. CCGrid, 2006.

