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Abstract

Background : Speaker detection is an important component of many human-computer interaction applications,

like for example, multimedia indexing, or ambient intelligent systems. This work addresses the problem of

detecting the current speaker in audio-visual sequences. The detector performs with few and simple material

since a single camera and microphone meets the needs.

Method : A multimodal pattern recognition framework is proposed, with solutions provided for each step of the

process, namely, the feature generation and extraction steps, the classification, and the evaluation of the system

performance. The decision is based on the estimation of the synchrony between the audio and the video signals.

Prior to the classification, an information theoretic framework is applied to extract optimized audio features

using video information. The classification step is then defined through a hypothesis testing framework in order

to get confidence levels associated to the classifier outputs, allowing thereby an evaluation of the performance of

the whole multimodal pattern recognition system.

Results : Through the hypothesis testing approach, the classifier performance can be given as a ratio of

detection to false-alarm probabilities. Above all, the hypothesis tests give means for measuring the whole

pattern recognition process efficiency. In particular, the gain offered by the proposed feature extraction step can

be evaluated. As a result, it is shown that introducing such a feature extraction step increases the ability of the

classifier to produce good relative instance scores, and therefore, the performance of the pattern recognition

process.
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Conclusions : The powerful capacities of hypothesis tests as an evaluation tool are exploited to assess the

performance of a multimodal pattern recognition process. In particular, the advantage of performing or not a

feature extraction step prior to the classification is evaluated. Although the proposed framework is used here for

detecting the speaker in audiovisual sequences, it could be applied to any other classification task involving two

spatio-temporal co-occurring signals.

Background

Speaker detection is an important component of many human-computer interaction applications, like for

example, multimedia indexing, or ambient intelligent systems (through the use of speech-based

user-interfaces). Recent and reliable speech recognition methods rely indeed on both acoustic and visual

cues to perform (see for example [1]). They require therefore the speaker to be identified and discriminated

from other users or background noise. The advantage of these interfaces, and what make them appealing

for ambient assisted living systems [2], is that they allow to communicate with users in a natural way. This

is of course conditioned to the use of simple material for the system to remain light.

The work presented in this paper addresses the problem of detecting the current speaker among two

candidates in an audio-video sequence using simple material, namely, a single camera and microphone. A

mono audio signal contains no spatial information about the source location, nor does the video signal

alone permits to discriminate between a speaker and a person moving his lips - if chewing a gum for

example. Therefore, the detection process has to consider both the audio and video cues as well as their

inter-relationship to come up with a decision. In particular, previous works in the domain have shown that

the evaluation of the synchrony between the two modalities, interpreted as the degree of mutual information

between the signals, allowed to recover the common source of the two signals, that is, the speaker [3], [4].

Other works, such as [5] and [6], have pointed out that fusing the information contained in each modality

at the feature level can greatly help the classification task: the richer and the more representative the

features, the more efficient the classifier. Using an information theoretic framework based on [5] and [6],

audio features specific to speech are extracted using the information content of both the audio and video

signals as a preliminary step for the classification. This feature extraction step is followed by a
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classification step, where a label “speaker” or “non-speaker” is assigned to pairs of audio and video

features. Whereas we have already described in details the feature extraction step in [7] and [8], the

classification step is defined here in a new way and constitutes the core contribution of this work.

As stated previously, the classifier decision should rely on an evaluation of the synchrony between pairs of

audio and video features. In [6], the authors formulate the evaluation of such a synchrony as a binary

hypothesis test asking about the dependence or independence between the two modalities. Thus, a link can

be found with mutual information which is nothing else than a metric evaluating the degree of dependence

between two random variables [9]. The classifier in [6] ultimately consists in evaluating the difference of

mutual information between the audio signal and video features extracted from two potential regions of the

image. The sign of the difference indicates the video speech source. We have taken a similar approach

in [8], showing, through comparisons with state-of-the-art results, that such a classifier fed with the

previously optimized audio features leads to good results.

In the present work, the classification task is cast in a hypothesis testing framework as well. However, the

objective - thus, the novelty - is to define not only a classifier, but the means for evaluating the multimodal

classification chain - or pattern recognition process - performance. To this end, the hypothesis tests are

defined using the Neyman-Pearson frequentist approach [10] and one test is associated to each potential

mouth region. This way, the ability of the classifier to produce good relative instance scores can be

measured. Moreover, an evaluation of the whole pattern recognition process, including the feature

extraction step, can be introduced. It allows to assess the benefit of optimizing features prior to performing

the classification.

As a result, a complete multimodal pattern recognition process is proposed in this work, with solutions

given for each step of the process, namely, the feature generation and extraction steps, the classification,

and finally, the evaluation of the system performance.

Extraction of optimized audio features for speaker detection: information theoretic

approach

Given different mouth regions extracted from an audio-video sequence and corresponding to different

potential speakers, the problem is to assign the current speech audio signal to the mouth region which

effectively did produce it. This is therefore a decision, or classification, task.
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Multimodal feature extraction framework

Let the speaker be modelled as a bimodal source S emitting jointly an audio and a video signal, A and V .

The source S itself is not directly accessible but through these measurements. The classification process

has therefore to evaluate whether two audio and video measurements are issued from a common estimated

source Ŝ or not, in order to estimate the class membership of this source. This class membership, modeled

by a random variable C defined over the set ΩC , can be either “speaker” or “non-speaker”. Obviously, the

overall goal of the classification process is to minimize the classification error probability PE = P (Ĉ 6= C),

where the wrong class is assigned to the audio-visual feature pair. In the present case, a good estimation of

the class Ĉ of the source implies a correct estimation Ŝ of this source. Thus it implies to minimize the

probability Pe = P (Ŝ 6= S) of committing an error during the estimation. The source estimate is inferred

from the audio and video measurements by evaluating their shared quantity of information. However, these

measurements are generally corrupted by noise due to independent interfering sources so that the source

estimate and thus the classifier performance might be poor.

Preliminarily to the classification, a feature extraction step should be performed in order to possibly

retrieve the information present in each modality that originates from the common source S while

discarding the noise coming from the interfering sources. Obviously, this objective can only be reached by

considering the two modalities together. Now, given that such features FA and FV (viewed hereafter as

random variables defined on sample spaces ΩFA
and ΩFV

) can be extracted, the resulting multimodal

classification process is described by two first order Markov chains, as shown on Fig. 1 [8]. Notice that for

the sake of the explanation, the fusion at the decision or classifier level for obtaining a unique estimate Ĉ

of the class is not represented on this graph. FA and FV describe specifically the common source and are

then related by their joint probability p(FA, FV ). Thus, an estimate F̂V of FV , respectively, F̂A of FA, can

be inferred from FA, respectively, FV . This allows to define the transition probabilities for FA −→ F̂V and

FV −→ F̂A (since p(F̂V |FA) = p(F̂V , FA)/p(FA), and p(F̂A|FV ) = p(F̂A, FV )/p(FV )). Two estimation error

probabilities and their associated lower bounds can be defined for these Markov chains, using Fano’s

inequality and the data processing inequality [5], [8]:

Pe1
> H(S) − I(FA, F̂V ) − 1

log |ΩS |
, (1)

Pe2
> H(S) − I(FV , F̂A) − 1

log |ΩS |
, (2)

where |ΩS | is the cardinality of S, I the mutual information, and H the entropy. Since the probability

densities of F̂A and FA, respectively F̂V and FV , are both estimated from the same data sequence A,
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respectively V , it is possible to introduce the following approximations:

I(FA, F̂V ) ≈ I(F̂A, FV ) ≈ I(FA, FV ). Moreover, the symmetry property of mutual information allows to

define a joint lower bound on the classification error Pe:

Pe = P{e1,e2} > H(S) − I(FA, FV ) − 1

log |ΩS |
. (3)

To be efficient, the minimization of Pe should include the minimization of its associated lower bound. This

is done by minimizing the right-hand term of inequality (3), that is, by introducing a constraint on the

feature extraction step since it requires to maximize the mutual information between the extracted features

FA and FV . In order to both decreases the lower bound on Pe and try to get as close as possible to this

bound, a mutual information based estimator denoted efficiency coefficient [5], [8], is finally defined:

e(FA, FV ) =
I(FA, FV )

H(FA, FV )
∈ [0, 1]. (4)

Maximizing e(FA, FV ) still minimizes the lower bound on the error probability defined in Eq. (3) while

constraining inter-feature independence. In other words, the extracted features FA and FV will tend to

capture specifically the information related to the common origin of A and V , discarding the unrelated

interference information. The interested reader is referred to [8] for more details.

Applying this framework to extract features, we expect to minimize the probability of estimation error.

However, to minimize the probability PE of classification error, the last step leading from Ŝ to Ĉ must be

considered as well. This part deals with the definition of a suitable classifier and will be discussed later on.

Signal representation

Before applying the optimization framework previously described to the problem at hand, both audio and

video signals have to be represented in a suitable way. Notice that the representation chosen here does not

need to be the most optimal since an automatic feature optimization step follows.

Physiological evidence points out the motion in the mouth region as a visual clue for speech. It is

estimated using the Horn and Schunck gradient-based optical flow [11]. This method leads to a pixel-based

representation of the motion and can then capture the complex motions of non-rigid structures like the

mouth. To cope with the curse of dimensionality, one-dimensional (1D) video features are preferred. The

latter consist finally in the magnitude of the optical flow estimated over T frames in the mouth regions

(rectangular regions of size N × M pixels, including the lips and the chin), signed as the vertical velocity

component. The mouth regions are roughly extracted using the face detector depicted in [12]. The set of

{fv,n}n=1,...N×M×(T−1) observations of the video feature forms the sample of the 1D random variable FV .
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Mel-frequency cepstrum coefficients (MFCCs), widely used in the speech processing community, have been

chosen for the audio representation. They describe the salient aspects of the speech signal, while being

robust to variations in speaker or acquisition conditions [13]. The mel-cepstrum is downsampled to the

video feature rate, so that we finally use a set of T − 1 vectors ~Ct, each containing P MFCCs:

{Ct(i)}i=1,...,P with t = 1, . . . , T − 1 (the first coefficient has been discarded as it pertains to the energy).

Audio feature optimization

The information theoretic feature extraction previously discussed is now used to extract audio features

that compactly describe the information common with the video features. For that purpose, the 1D audio

features fa,t(~α), associated to the random variable FA are built as the linear combination of the P MFCCs:

fa,t(~α) =

P
∑

i=1

~α(i) · Ct(i) ∀t = 1, . . . , T − 1. (5)

Thus, the set of (T − 1) P -dimensional observations is reduced to (T − 1) 1D values fa,t(~α). The optimal

vector ~α could be obtained straightaway by minimizing the efficiency coefficient given by Eq. (4). However,

a more specific and constraining criterion is introduced here. This criterion consists in the squared

difference between the efficiency coefficient computed in two mouth regions (referred to as M1 and M2).

This way, the discrepancy between the marginal densities of the video features in each region are taken into

account. Moreover, only one optimization is performed for two mouths resulting in a single set of

optimized audio features. It implies however that the potential number of speakers is limited to two in the

test audio-video sequences. If FV1
and FV2

denote the random variables associated to regions M1 and M2

respectively, then the optimization problem becomes:

~αopt = arg max
~α

{

[e(FV1
, FA(~α)) − e(FV2

, FA(~α))]2
}

. (6)

The probability density functions required in the estimation of the mutual information are estimated in a

non-parametric way using Parzen windowing. A global optimization method such as an Evolutionnary

Algorithm can finally be used to find the optimal set of weights ~α [8].

Hypothesis testing as a classifier and an evaluation tool

The previous section has shown how features specific to the classification problem at hand can be extracted

through a multimodal information theoretic framework. The application of this framework results in

decreasing the estimation error probability. But the question of minimizing the probability PE of
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committing an error on the whole classification process still remains. It relies on the choice of a classifier

able to classify the extracted features as correctly as possible.

Hypothesis testing for classification

Hypothesis tests are used in detection problems in order to take the most appropriate decision given an

observation x of a random variable X. In the problem at hand, the decision function has to decide whether

two measurements A and V (or their corresponding extracted features FA and FV ) originate from a

common bimodal source S - the speaker - or from two independent sources - speech and video noise. As

previously stated, the problem of deciding between two mouth regions which one is responsible for the

simultaneously recorded speech audio signal can be solved by evaluating the synchrony, or dependence

relationship, that exists between this audio signal and each of the two video signals.

From a statistical point of view, the dependence between the audio and the video features corresponding to

a given mouth region can be expressed through a hypothesis framework, as follows:

H0 : fa, fv ∼ P0 = P (fa) · P (fv),

H1 : fa, fv ∼ P1 = P (fa, fv).

H0 postulates the data fa and fv to be governed by a probability density function stating the independence

of the video and audio sources. The mouth region should therefore be labeled as “non-speaker”. Hypothesis

H1 states the dependence between the two modalities: the mouth region is then associated to the measured

speech signal and classified as “speaker”. The two hypothesis are obviously mutually exclusive.

In the Neyman-Pearson approach [10] certain probabilities associated with the hypothesis test are

formulated. The false-alarm probability PFA, or size α of the test, is defined as:

α = P (Ĥ = H0|H = H1), (7)

while the detection probability PD, or power β of the test, is given by:

β = P (Ĥ = H1|H = H1). (8)

The Neyman-Pearson criterion selects the most powerful test of size α: the decision rule should be

constructed so that the probability of detection is maximal while the probability of false-alarm do not

exceed a given value α. Using the log-likelihood ratio, the Neyman-Pearson test can be expressed as follows:

Λ(fa, fv) = log

[

p(fa, fv)

p(fa) · p(fv)

]

T η, (9)
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The test function must then decide which of the hypothesis is the most likely to describe the probability

density functions of the observations fa and fv, by finding the threshold η that will give the best test of

size α.

The mutual information is a metric evaluating the distance between a joint distribution stating the

dependence of the variables and a joint distribution stating the independence between those same variables:

I(FA, FV ) =
∑

fa∈ΩFA

∑

fv∈ΩFV

[

p(fa, fv) log

(

p(fa, fv)

p(fa) · p(fv)

)]

. (10)

The link with the hypothesis test of Eq. (7) seems straightforward. Indeed, as the number of observations

fa and fv grows large, the normalized log-likelihood ratio approaches its expected value and becomes equal

to the mutual information between the random variables FA and FV [9]. The test function can then be

defined as a simple evaluation of the mutual information between audio and video random variables, with

respect to a threshold η. This result differs from the approach of Fisher et al. in [6], where the mouth

region which exhibits the largest mutual information value is assumed to have produced the speech audio

signal. The formulation of the hypothesis test with a Neyman-Pearson approach allows to define a measure

of confidence on the decision taken by the classifier, in the sense that the α-β trade-off is known.

Considering that two mouth regions could potentially be associated to the current audio signal and

defining one hypothesis test (with associated thresholds η1 and η2) for each of these regions, four different

cases can occur:

1. I1(FA, FV1
)>η1 and I1(FA, FV2

)<η2: speaker 1 is speaking and speaker 2 is not;

2. I1(FA, FV1
)<η1 and I1(FA, FV2

)>η2: speaker 2 is speaking and speaker 1 is not;

3. I1(FA, FV1
)<η1 and I1(FA, FV2

)<η2: none of the speaker is speaking;

4. I1(FA, FV1
)>η1 and I1(FA, FV2

)>η2: both speakers are speaking.

The experimental conditions are defined so as to eliminate the possibilities 3 and 4: the test set is

composed of sequences where speakers 1 and 2 are speaking each in turn, without silent states. This

allows, in the context of this preliminary work, to define the simpler following cases: if a speaker is silent, it

implies that the other one is actually speaking. Notice also that a possible equality with the threshold is

solved by attributing randomly a class to the random variable pair.
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Hypothesis testing for performance evaluation

The formulation of the previous hypothesis test gives means for evaluating the whole classification chain

performance. Receiver Operating Characteristic (ROC) graphs allow to visualize and select classifiers

based on their performance [14]. They permit to crossplot the size and power of a Neyman-Pearson test,

thus to evaluate the ability of a classifier to produce good relative instance scores. Our purpose here is not

to focus only on the evaluation on the classifier itself but on the possible gain offered by the introduction of

the feature optimization step in the complete pattern recognition process. To this end, two kinds of audio

features are used in turn to estimate the mutual information in each mouth region: the first ones are the

linear combination of the MFCCs resulting from the optimization described previously; the second ones

consist simply in the mean value of these MFCCs. The results about this comparison are presented in the

next section.

Results

Firstly, the ability of hypothesis testing to act as a classifier is discussed. The evaluation of the possible

gain offered by using optimized audio features with respect to simpler ones is addressed next.

Experimental protocol

The sequence test set is composed of the eleven two-speaker sequences g11 to g22 taken from the CUAVE

database [15], where each speaker utters in turn two digit series (notice that g18 has been discarded as it

exhibits strong noise due to the compression). These sequences are shot in the NTSC standard (29.97fps,

44.1kHz stereo sound). For the purpose of the experiments, the problem has been restricted to the case

where one of the speaker and only one of them is speaking in any case. Therefore, the last seconds of the

video clips where the two speakers are speaking all together, as well as the silent frames - labelled as in [16]

- have been discarded.

For all the sequences, the N × M mouth regions are extracted, using the face detector given in [12] (N and

M varying between 30 and 60 pixels, depending on speakers’ characteristics and acquisition conditions). A

frame example taken from the CUAVE database is shown in Fig. 2, together with the corresponding

extracted mouth regions (white boxes).

The video feature set is composed of the N × M × (T − 1) values of the optical flow norm at each pixel

location (T being the number of video frames within the analyzing window, i.e. T = 60 frames). From the

audio signal, 12 mel-cepstrum coefficients are computed using 30ms Hamming windows.

9



The optimization is done over a 2 second temporal window, shifted by one second steps over the whole

sequence to take decisions every seconds. The output of the classifier for each window is compared to the

corresponding ground truth label, defined as in [16]. The test set is eventually composed of 188 test points

(windows), with one audio and one video instances for each window. The two classes, “speaker1” (speaker

on the left of the image) and “speaker2” (speaker on the right) are well balanced since theirs set sizes are

95 and 93 respectively.

Performance of hypothesis testing as a classifier

The classifier is defined as the test function giving the best test of size α and receives the optimized audio

features at input.

For binary tests, a positive and a negative class have to be defined. We assume the positive class to be the

class “speaker” for each test. More precisely, since the experimental conditions implies that there is always

one speaker speaking, the positive class is the label of the mouth region where the test is performed: i.e,

“speaker1” for test1 (defined between the random variables FA and FV 1), and “speaker2” for test2.

Table 1 compares the power of the tests for given sizes α.

Let us introduce now the accuracy of a test as the sum of the true positive and true negative rates divided

by the total number of positive and negative instances [14]. Table 2 gives the classifier scores for the

threshold corresponding to each test best accuracy: 86.7% and 85.11% for test1 and test2 respectively,

obtained for thresholds η1 = 0.18 and η2 = 0.19.

These results indicate hypothesis test as a good method for assigning a speaker class to mouth regions,

with a given α-β trade-off (thus greater adaptability to changes of the target condition or the classification

requirement). The classifier produces better relative instance scores for test1. However, the thresholds

giving the best accuracy values are about the same for the two tests. This tends to indicate that this

threshold is not speaker dependent. Further tests on larger test sets would be necessary however for a more

precise analysis of the classifier capacity.

Evaluation of the pattern recognition process performance

The advantage of using optimized audio features against simple ones at the input of the classifier is now

discussed. As in the previous paragraph, two tests are considered, with the positive classes being

respectively the “speaker 1” and the “speaker 2”. The ROC graphs corresponding to each test are plotted

on Figs. 3 and 4. An analysis of these curves shows that the classifier fed in with the optimized audio
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features performs better in the conservative region of the graph (northwest region).

Table 3 sums up some interesting values attached to the ROC curve such as the area under the curve

(AUC), or the accuracy with corresponding thresholds. Whatever the way of considering the problem, the

use of the optimized audio features improved the classifier average performance, as stated by the theory.

Conclusions

This work addresses the problem of labeling mouth regions extracted from audio-visual sequences with a

given speaker class label. The system uses a simple material, namely a single microphone and camera. The

detector must then analyze jointly the audio and video information to come to a decision. The problem is

cast in a hypothesis testing framework, linked to information theory. The resulting classifier is based on

the evaluation of the mutual information between the audio signal and the mouths’ video features with

respect to a threshold, issued from the Neyman-Pearson lemma. A confidence level can then be assigned to

the classifier outputs. This allows firstly to adapt the classifier to changes of the target condition or of the

classification requirement. Secondly, this approach results in the definition of an evaluation framework.

The latter is not only used to determine the performance of the classifier itself, but considers rather rating

the whole pattern recognition process efficiency.

In particular, it is used to check whether a feature extraction step performed prior to the classification can

increase the accuracy of the detection process. Optimized audio features obtained through an information

theoretic feature extraction framework feed the classifier, in turn with non-optimized audio features.

Analysis tools derived from hypothesis testing, such as ROC graphs, establish eventually the performance

gain offered by introducing the feature extraction step in the process.

As far as the classifier itself is concerned, more intensive tests should be performed in order to draw robust

conclusions. However, preliminary remarks tend to indicate that a hypothesis-based model can be used

with advantage for multimodal speaker detection. It would also be interesting to consider in future works

the cases of simultaneous silent or speaking states (cases 3 and 4 defined previously).

As a final remark, let us stress that the multimodal pattern recognition framework we propose does not

apply exclusively to speaker detection. It can be used with advantage for other applications, provided

bimodal signals co-occurring in space and time are involved. One might think for example to medical

applications where several synchronized biological signals exist and are to be processed to come to a

diagnostic.
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Figure legends
Figure 1 - Classification process

Graphical representation of the related Markov chains which model the multimodal classification process.

Figure 2 - Frame example from the CUAVE database

Frame example taken from the sequence g13 of the CUAVE database [15]. The white boxes delimited the

extracted mouth regions.

Figure 3 - ROC graph for test1

ROC graph for test 1. The detection probability for the positive class is plotted versus the false-alarm rate.

Figure 4 - ROC graph for test2

ROC graph for test 2. The detection probability for the positive class is plotted versus the false-alarm rate.

Tables
Table 1 - Power of the tests for given sizes

Power β of the tests for different sizes α. The thresholds η defining the corresponding decision functions

are also indicated.

Test1 Test2
α 5% 10% 20% 5% 10% 20%
β 37.9% 81.1% 90.5% 4.3% 24.7% 89.26%
η 0.41 0.25 0.16 0.55 0.45 0.25

Table 2 - β and α for best accuracy values

Power β and size α for each class of each test at its best accuracy value.
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Test1 Test2
Positive class Negative class Positive class Negative class

β 87.4% 86.0% 91.4% 79.0%
α 14.0% 12.6% 21.0% 8.6%

Table 3 - Area under the curves

Area under the curve and accuracy with the corresponding threshold η for each test.

Test 1 Test 2
Input features MFCCs mean Optimized audio features MFCCs mean Optimized audio features

AUC 0.88 0.92 0.75 0.84
Accuracy 84, 6% 86, 7% 73, 4% 85, 1%

η 0.14 0.18 0.10 0.19
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