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Version abrégée

Dans le domaine des turbomachines, les pertes par frottement pariétal sont intensive-
ment étudiées dû à leur influence sur le rendement global de la machine. Son rôle est
essentiel pour l’évaluation de la tendance de détachement de la couche limite et la pré-
diction des pertes. Ainsi, le premier objectif de cette thèse a été la caractérisation du
développement de la couche limite dans le cône d’une turbine Francis. Ensuite, dans la
deuxième partie de ce travail, un nouveau capteur de frottement pariétal multidirectionnel
est conçu, fabriqué et testé pour applications dans les turbomachines.

Ce développement fait partie d’un projet de recherche concernant la prédiction de
l’écoulement dans l’aspirateur pour lequel, l’EPFL a rejoint plusieurs partenaires indus-
triels dans le contexte de l’initiative européenne EUREKA no. 1625.

Dans la première partie de cette thèse, une campagne expérimentale a été menée
dans une turbine Francis de vitesse spécifique nq 92. En utilisant la technique de film
chaud, deux sections - l’entrée et la sortie - du cône de l’aspirateur ont été explorées.
6 points de fonctionnement sont investigués, en couvrant une plage de fonctionnement -
de 70% à 110% par rapport au débit du point de fonctionnement de meilleur rendement
de la turbine. Pour cet aspirateur spécifique, la caractéristique du rendement présente
une chute sévère, près du point de meilleur rendement, et la distribution du frottement
pariétal dans cette région est particulièrement analysée.

Les procédures d’étalonnage et de mesure sont présentées, ainsi que l’étude de la
précision de mesure. L’évolution des valeurs stationnaires de frottement pariétal avec la
position spatiale du capteur dans le cône - 16 positions ont été explorées - et avec le point
de fonctionnement correspondant est analysée. Une tendance de séparation de la couche
limite pour les points de fonctionnement à charge partielle, a été mise en évidence, ainsi
que l’influence du coude sur l’évolution spatiale du frottement pariétal. Ces résultats ont
été utilisés pour la validation des calculs numériques dans l’aspirateur de cette turbine.

Des mesures LDV additionnelles, combinées avec celles du frottement pariétal ont per-
mis la reconstruction de la couche limite. La meilleure approximation de la couche limite a
été obtenue avec une loi puissance composé. Toutefois, la couche limite tridimensionnelle
est un sujet complexe et des investigations supplémentaires sont nécessaires.

Du point de vue non-stationnaire, l’amplitude prédominante des fluctuations de frot-
tement pariétal, est synchrone avec la fréquence de rotation de la roue. Pour les points
de fonctionnement à charge partielle, la valeur de fluctuations principales correspond à la
fréquence du passage de la torche et son amplitude dépend de 2 paramètres : la valeur
du σ et la proximité de la torche par rapport à la paroi.

Pour une meilleure compréhension du comportement de la couche limite dans les turbo-
machines, est nécessaire l’exploration complète des couches limites 3D turbulentes, autant
dans les parties fixes de la machine - cône et directrices - mais aussi dans les parties tour-
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nantes - la roue, foyer des principales pertes par frottement dans une turbomachine. Des
exigences spécifiques pour l’application dans les turbomachines doivent être remplies pour
le développement d’un nouveau capteur:

• La miniaturisation, pour pouvoir l’instrumenter dans les géométries complexes des
turbomachines,

• La sensibilité directionnelle, pour pouvoir reproduire le caractère complexe de
l’écoulement, en principal le caractère 3D de l’écoulement,

• La sensitivité et la dynamique, permettant d’obtenir les principales caractéristiques
non-stationnaires de l’écoulement: le sillage des directrices, le sillage des aubes de
la roue, la fréquence de tourbillon, la fréquence de l’interaction turbine-circuit, etc.,

• Une bonne isolation électrique entre la surface du capteur, qui est en contact avec
l’eau, et l’élément du film chaud.

Ainsi, le deuxième objectif de ce travail a été la conception et le développement d’un
nouveau capteur de frottement pariétal, multidirectionnel, pour l’étude de la couche limite
turbulent dans les turbomachines.

Le développement d’un nouveau capteur multidirectionnel a profité des opportunités
offertes par les technologies MEMS. Ces technologies permettent d’obtenir un produit qui
répond aux impératives de miniaturisation et précision demandés pour ce type de capteur,
à un cout réduit. Le nouveau capteur représente un pont entre 2 différents domaines, la
micro-mécanique et la mécanique des fluides. Le capteur est constitué de trois films chauds
disposées en triangle, ayant chacun une surface globale de 1.12 x 0.1 mm et une épaisseur
de 110nm. Le film, en platine, est maintenu à une température constante de 65◦C, par
un feed-back électronique.

Les principaux processus utilisés dans la procédure de fabrication de ce nouveau cap-
teur sont : la lithographie, le micro-usinage volumique, la déposition des films fins, le
micro-usinage des surfaces, le décollage et le polissage chimique-mécanique. La fabrica-
tion du nouveau capteur de frottement pariétal miniaturisé est basée sur l’association de
toutes ces techniques.

Un développement spécifique est réalisé pour la réalisation d’une surface isolant-
thermique, ayant comme objectif la réduction de transfert de chaleur par conduction
dans le substrat, surface sur laquelle le film chaud est déposé. Cette surface isolante est
obtenue par la fabrication des couches de dioxyde en silicium, très fins, de 4μm, en util-
isant la technique DRIE. Le substrat est réalisé sous la forme de piliers en silicium, qui
sont ensuite oxydés et/ou remplis avec oxyde ou nitrure de LPCVD. Un critère majeur
pour le remplissage des tranchées est l’uniformité de la surface après le remplissage. 2
paramètres ont été optimisés: les dimensions et la disposition des piliers en silicium, pour
obtenir une isolation continue et uniforme. La modélisation numérique, en utilisant An-
sys, a permis l’évaluation de l’épaisseur optime pour une bonne isolation thermique entre
la structure chauffée et les structure environnants.

Les principales étapes de développement ont été: le design d’un nouveau capteur de
frottement pariétal, le développement de chaque étape de fabrication, la validation de ces
étapes et leurs optimisations, la modélisation numérique pour l’étude du comportement
thermique des films chauds, la fabrication de ce capteur et son encapsulation.

Le nouveau capteur a été caractérisé en termes de constante de temps, isolation élec-
trique, fiabilité et robustesse. L’étalonnage du capteur a montré qu’il assure une précision
et une sensitivité suffisante pour les mesures en turbines hydrauliques. Les principales
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innovations, qui font l’originalité de ce capteur, sont: son design qui assure une réponse di-
rectionnelle nécessaire pour l’étude des couches limite 3D turbulents et la surface isolante
utilisée pour réduire substantiellement les pertes par chaleur dans le substrat.

MOTS CLEFS: hydraulique, frottement pariétal, capteur à film chaud, turboma-
chine, microtechnique
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Abstract

In the turbomachines field, friction losses are intensively studied due to their important
influence in the overall efficiency of the machine. The parameter helping in quantifying
these friction losses is the wall shear-stress. Its role is essential for the qualification of the
boundary layer separation tendency and the losses prediction. Thus, the first aim of this
PhD is to characterize the boundary layer development, in the cone of the Francis turbine.
Afterwards, in the second part of this study, a new multidirectional wall shear-stress sensor
is designed, manufactured and tested for the turbomachines applications.

To develop this knowledge and the tools for flows prediction in the draft tube, EPFL
joined major manufacturers in the context of the European initiative EUREKA project
n◦ 1625.

In the first part of the thesis, an experimental campaign is leaded in the cone of the
nq 92 Francis turbine, to characterize the wall stress, using the hot-film technique. 6
operating points were investigated, covering a large operating range - from 70% to 110%
from best efficiency point flow rate. For this specific draft tube, the efficiency characteristic
has a sever drop, close to the best efficiency point, and the wall shear stress evolution in
this region is pointed out.

The calibration and measurement procedures are exposed and the accuracy study is
performed. The evolution of the wall shear-stress steady values related to the spatial
position of sensor -16 positions were explored - and to the corresponding operating point
is analyzed. A boundary layer separation tendency for the part load operating points is
pointed out, as well as the bend influence on the spatial evolution of the wall shear-stress.
These results were used to validate numerical calculation in the draft tube.

Additional LDV measurements combined with the wall shear-stress results allowed
to reconstruct the boundary layer. The best fit for representing the boundary layer is
obtained with a composite power law. However the 3D boundary layer is complex and a
profound knowledge is needed.

From the unsteady point of view, in the runner outlet section, the amplitude of the
wall shear-stress fluctuations obtained synchronous with the runner’s rotating frequency
is predominant. For the partial load operating points, the main fluctuations magnitude is
obtained for the rope passage frequency and its amplitude depends on 2 parameters: the
σ value and the proximity of the rope to the wall.

To increase the knowledge for the boundary layers in turbomachines, it is necessary
to explore fully 3D unsteady boundary layers, both in the fixed and rotating parts of
the machine. Thus a multidirectional sensor with specific requirements is needed for the
turbomachines application:

• a miniature hot film probe, which can be implemented in the complex geometry of
the turbines,
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• a multidirectional one, to take into account the complex character of the flow, mainly
the strongly 3D flow,

• a sensor with a sensitivity and dynamic, allowing to obtain the main flow unsteady
characteristics (guide vanes wake, runner blades wake, rope frequency, turbine-
circuit interaction frequency, etc.),

• a good electrical isolation between the surface of the probe, which comes in contact
with the water, and with the hot-film support.

In this way, the second aim of this PhD becomes the design and development of a
new multidirectional wall shear-stress sensor for turbulent boundary layer research for
turbomachines applications.

The development of the new multidirectional sensor implies technological developments
using microtechnology, as MEMS offers opportunities for developing and manufacturing
sensors with regard to complex applications, allowing, in the same time, a high accuracy
at low cost. The new sensor represents a bridge between 2 different disciplines: micro-
mechanical technology and fluid mechanics. Its concept is based on the heat transfer
generated by a hot film with a general top-area of 1.12 x 0.1 mm and a thickness of
110 nm. The film, in platinum, is maintained at a constant temperature, of 65◦C, by a
feed-back electronic.

Key process steps in fabrication of the new device are lithography, bulk microma-
chining, thin film deposition, surface micromachining, lift-off and chemical mechanical
polishing. The manufacturing of new miniature wall shear-stress sensor is based on a
combination of these techniques.

A specific development is performed for the achievement of an insulating surface to
reduce the heat conduction between the hot film and the sensor body, on which the hot
film is deposed. This surface is obtained by manufacturing silicon dioxide layers, of 4
μm, by DRIE technique, in order to create high-aspect-ratio silicon pillars, which are
then oxidized and/or refilled with LPCVD oxide or nitride. One of the major criteria
for the trenches filling was the surface planarity at the end of the refill. 2 parameters
are optimized: the thickness and the silicon pillars arrangement. Thermal numerical
computations were carried out using Ansys and they allowed the achievement of the
optimum thermal isolation thickness between the heated structures and the surrounding
structures.

During the development of the new wall shear-stress probe, the main topics, achieve-
ments and contributions can be categorized into: design of a new wall shear-stress sensor,
fabrication steps development, validation and optimization of the design, numerical sim-
ulations of the thermal behavior of the heated-films, manufacturing of the new device.

The new sensor is characterized in terms of time response, electrical insulation between
the surface of the probe, which comes in contact with the water, and the hot-film, and
reliability. The sensor is robust, with a good sensitivity for water measurements.

The main improvements, which make the current device distinct, are its design for
a directional response for 3D turbulent boundary layer study and the insulating surface
for substantially reduction of the heat losses by conduction between the film and the
surrounding substrate.

KEYWORDS: hydraulic, wall shear-stress, hot-film probe, turbomachine,
microtechnology
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Notations

BOUNDARY LAYER, HEAT TRANSFER THEORY AND HOT-
FILM CALIBRATION

u General variable for characterizing the turbulent flow
u′ Fluctuating part of a variable in turbulent flow
ū Time independent part of a variable in turbulent flow
δ Boundary layer thickness [m]
τp Wall shear-stress [Pa]
C∞ Mean flow velocity [m/s]
c0 Flow velocity outside boundary layer [m/s]
ρ Water density [kg/m3]
p0 Static pressure [N/m2]
dp
dx

Pressure gradient [N/m3]
μ Water dynamic viscosity [kg/(s·m)]
L Heated element’s length of the heat transfer [m]
c′x, c′y Turbulent velocity fluctuations in x and y directions [m/s]
cx, cy Mean flow velocity components in x and y directions [m/s]
c+ Dimensionless velocity [-]
y+ Dimensionless distance from the wall [-]
cτ Friction velocity [m/s]
τ Total shear stress [Pa]
τt Turbulent shear stress [Pa]
τl Laminar shear stress [Pa]
χ Von Karman constant [-]
C Integration constant [-]
T Averaged temperature [◦C or K]
T ′ Fluctuating temperature [◦C or K]
q̇ Heat flux [J/m2]
λ Thermal conductivity [W/(m · K)]
dT
dy

Temperature gradient [K/m]
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xii NOTATIONS

cp Specific heat at constant pressure [J/(kg · K)]
Λ Thermal diffusion coefficient [-]
δth Thermal boundary layer thickness [m]
T ∗ Dimensionless temperature [-]
Ts Temperature on the wall surface [◦C or K]
T∞ Mean free-stream temperature [◦C or K]
Pr Prandtl number [-]
Prt Turbulent Prandtl number [-]
q̇l Laminar heat flux [J/m2]
q̇t Turbulent heat flux [J/m2]
εh Turbulent thermal diffusion coefficient [-]
ε Turbulent viscosity [m2/s]

WALL SHEAR-STRESS MEASUREMENTS

np Rotation speed of the pump [rot/min]
Q Flow discharge [m3/s]
Ph Pump’s hydraulic power [kW]
A Area of the test vein [m2]
Δp Pressure difference [Pa]
θ Water temperature [◦C or K]
Vpitot Voltage output from the Pitot tube [V]
Vc=0 Reference voltage [V]
R1, Rint Top resistances [Ω]
R Comparison resistance [Ω]
Rvar Probe resistance in the Wheatstone bridge [Ω]
Rc Cables resistance [Ω]
Q̇J Heat transfer by Joule effect [J]
ΣQ̇ Heat transferred to surroundings [J]
dQfilm Thermal energy stored in the film [J]
Q̇conv Heat transferred by convection [J]
Q̇cond Heat transferred by conduction [J]
Q̇rad Heat transferred by radiation [J]
V Voltage across the hot-film probe [V]
Rf Hot-film probe resistance at the operating temperature [Ω]
Tf Operating temperature of the hot-film probe [◦C]
αR Temperature coefficient of resistivity [%/◦C]
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α Thermal diffusivity [m2/s]
T̃ Dimensionless temperature [-]
η Similarity parameter [-]
M Constant [-]
a, b Constants used for obtaining the relationship between dimensionless

parameters y+ and c+ [-]
σ Thoma number [-]
χ Pressure recovery factor [-]
φrunner Runner diameter [m]
ϕ Flow rate coefficient for different operating points [-]
V Output voltage from the hot-film probe [V]
ai Polynomial coefficients [-]
Ae Hot film’s surface [m2]
�T Temperature difference between the sensor and fluid [◦C or K]
H Overheating rate [-]
I Anemometer’s current [A]
A,B Calibration curve coefficients [-]
Vmes Measured voltage value at the hot-film output [V]
θmes Measured temperature value [◦C or K]
Vcor,T Voltage value adjusted to a reference temperature, T [V]
ϕ Discharge coefficient [-]
nq Specific speed [-]
ψ Specific energy coefficient [-]
τ(t) Instantaneous value of the wall shear-stress [Pa]
τ̃(t1) Synchronous average for an instant t1 of the period [Pa]
τ ′(t) Random turbulent fluctuations of the wall shear-stress [Pa]
t1 An instant of a period [s]

BOUNDARY LAYER

cx Tangential component of the velocity [m/s]
cz Axial component of the velocity [m/s]
y Distance from the wall [m]
R Radius corresponding to the measurement cross sectional area [m]
Re Reynolds number [-]
Φ Dimensionless function [-]
κ Universal constant [-]
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C Universal constant [-]
cx′ Tangential velocity component related to the local system

attached to the hot-film probe [m/s]
cz′ Axial velocity component related to the local system

attached to the hot-film probe [m/s]
Reθ Reynolds number based on the momentum displacement thickness [-]

NEW MINIATURE HOT-FILM PROBE

Φ Hot-film probe diameter [m]
L Hot-film impedance [Ω]
α Temperature coefficient of resistance [% / ◦C]
T (y) Temperature distribution in the probe’s substrate [◦C or K]
T |y=0 Hot-film temperature [◦C or K]
T0 Water temperature at the film’s upper surface and

at the lower substrate’s surface [◦C or K]
ksu Heat conductivity of the substrate [W/(m · K)]
H(c) Heat transfer function [-]
c Flow velocity [m/s]
h1 Insulating surface’s thickness [m]
ksu1 Heat conductivity of the insulating surface [W/(m · K)]
ksu2 Heat conductivity of the silicon substrate [W/(m · K)]
h Substrate’s thickness [m]
ĥ Local heat transfer coefficient [-]
Th Temperature of the lower substrate surface for static conditions [◦C or K]
x Biot number [-]
A,B, n Constants [-]
R0 Hot-film’s resistance at the reference temperature T0 [Ω]
T0 Reference temperature [◦C or K]
M Time constant [-]



Chapter 1

INTRODUCTION

Flow understanding in a hydraulic turbomachine is essential for increasing its efficiency
and, thus, the associated output power. An impediment in studying the flow is its complex
character and, thus, many different factors must be taken into account and evaluated.

An important process occurring in most fluid flows, influencing the transport of mo-
mentum, heat and mass is turbulence. In this way, it plays a role in the generation of fluid
friction losses. For understanding the fluid flow behavior and for designing and evaluating
engines, pumps, the turbulence study is essential.

Nevertheless, rapid fluctuations in velocity occur in most flows of practical interest:
boundary layer above wings and fuselage surfaces, wakes behind obstacles in flows, jets
from the nozzles of rockets and gas-turbine engines and flows inside engine components.
These fluctuations have effects on drag, surface shear stress, boundary layer separation,
mixing between fuel and air in engines, turbomachines vibrations and control surfaces.
To understand such phenomena, the velocity fluctuations must be measured accurately.

In a hydraulic turbine, the main part, where an important amount of kinetic energy
is recovered, due to the increasing of the flow section, is the cone of the draft tube.

Moreover, the amount of energy recovered in the cone increases as the opening angle
of the cone increases when no unsteady separations occur. Meanwhile, the flow in the
cone is strongly unsteady and it takes place with an adverse pressure gradient. These 2
factors are favorable for the unsteady separations, which decrease the flow velocity and,
thus, the amount of the energy that has to be recovered.

The unsteady separations limit the efficiency of the turbine and studies must be carried
out, for characterizing the non-stationary phenomena.

One interesting parameter of the flow, in this part of the turbine, important to com-
prehend the performance of various systems, is the wall shear-stress, the friction force
applied by a fluid to a solid wall.

From scientific and engineering perspectives, the wall shear stress is an essential quan-
tity to compute, measure or infer in a wall-bounded turbulent flow. One of the most
important results of boundary layer theory has been the determination of the wall shear
stress, a quantity which largely determines the energy necessary for moving the flow of
liquids and gases over solid walls. Most wall shear stress studies are based on the assump-
tion that the mean flow velocity gradient and the heat transfer rate near/or at the wall
are both proportional to the wall shear stress.

Knowledge of the wall shear stress is very important for many technical applications
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2 1. INTRODUCTION

and for the understanding of all wall-bounded shear flows. Time-averaged values of this
quantity are indicative of the global state of the flow along a surface and can be used to
determine body-averaged properties. The time resolved part of the wall shear stress is a
measure of the unsteady structures in the flow, which are responsible for the individual
momentum transfer events and is an indicator of the turbulence activities. Therefore
one would like to know the magnitude, mean and fluctuating value, and the direction of
the wall shear-stress vector, as well as, its distribution over a surface. The flow may be
compressible or incompressible, laminar or turbulent and can even reverse its direction in
the vicinity of the wall in an adverse pressure gradient.

Spatially distributed values of the instantaneous wall shear stress can be used in a
feedforward or feedback control loop to effect beneficial changes in the boundary layer.

Over the last few decades, a lot of experiments were performed for wall shear stress
measurements. The complexity of the flow, the geometry of the boundaries and the limita-
tions in the measuring device used are studied. Some accomplishments were achieved, like
the wall shear stress distribution along flat plates and on simple bodies of revolution, but
generally, due to difficulties, wall shear stress knowledge and its fluctuating component
are limited.

Wall shear stress is, also, an interesting parameter for some other several, different
technical fields. In aeronautics is intensively studied by NASA, for improving the aircraft
performances, by studying the boundary layer on the wings and developing different wings
profiles. The figure 1.1, evidences the wall shear stress magnitude on the suction side of
a wingtip model, both from the computational and experimental point of view.

Figure 1.1: Comparison of computed (left) and measured (right) wall shear stress on a
wingtip, Chow et al. [1997]

This comparison shows reasonable agreement on the inboard part of the wing, where
the flow is nearly 2D. In the vicinity of the wingtip vortex, where the flow is highly 3D,
substantial differences in wall shear stress magnitude are seen and they are explained by
the turbulence modelling deficiencies in the computed Navier-Stockes solution. Another
example is shown in the wall shear stress distribution on a typical propeller driven fighter,
see figure 1.2.

Nevertheless, the wall shear stress estimation can be also applied to optimize drag
reduction in pipe flow or skin friction in aerodynamics.

Moreover, the measurement of fluid velocity becomes very interesting in many other
industrial and laboratory applications extending to air flows for monitoring and controlling
living and working environments in a building.
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Figure 1.2: Wall shear stress distribution on a typical propeller driven fighter

Another interesting field for the wall shear stress is navy, where there was developed
a technique for reducing frictional drag using a super-water-repellent surface and air
injection. The results are quite impressive, the frictional resistance on the SWR surface
was reduced by 80% for a flow velocity of 4m/s and by 55% for a flow velocity of 8m/s.

In turbomachines field, boundary layer is of interest for CFD codes validation and for
its influences on the flow, for flow prediction by frictional losses and separation studies.

Generally, wall shear-stress is a small magnitude parameter. Some typical values are
worth bearing in mind for the following discussion. A submarine cruising at 30 km/h has
an estimated value of the shear stress of about 40 Pa; an aircraft flying at 420km/h, 2
Pa; and a car moving at 100 km/h, 1 Pa. Such small forces per unit area require very
sensitive measuring devices.

From the calculation point of view, the wall shear-stress allows the validation of the
wall laws used for the turbulence modelling near the wall.

These are the main determinant reasons to study the flow in the cone, for evaluating
the tendency of the unsteady separations, in this part of the turbine, and to validate the
CFD codes.

Using conventional flow measurement techniques, a great part of the turbulence and
wall shear stress characteristics have been investigated and understood. Thermal anemom-
etry is one of the most widely used method for turbulent flows study and for estimating the
wall shear-stress. Meanwhile, due to the limitations in the spatial and temporal resolution
of existing experimental techniques for wall boundary layers, wall shear stress fluctuations
have not yet been accurately measured. New developments in the microtechnology field
allow new perspectives in a lot of research technical fields. By miniaturization, sensors
can be fabricated with increased performances.

The size of a typical MEMS sensor is less than 100 μm in size, meaning at least one
order of magnitude smaller than traditional sensors used for velocity, pressure or temper-
ature measurements. Moreover, due to their size, the inertial mass and thermal capacity
are reduced, making MEMS sensors suitable for dynamic measurements in turbulent flows
where a high-frequency response and a fine spatial resolution are required. Meanwhile,
MEMS sensors are not hand-made, but several in the same time, each unit is fabricated
within extremely small tolerance and at very low cost.
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The sensors performances improvement, resulting in sensitive elements miniaturiza-
tion, is a decisive factor for the progress of the research in many fields, like aerodynamics,
turbomachines, offering new possibilities for profound understanding of the physics of
turbulent wall boundary layers.



Chapter 2

OBJECTIVES

A first aim of this thesis is represented by wall shear-stress measurements performance
in a Francis turbine’s cone, using a classical hot-film probe together with a constant
temperature anemometer and the fluid behavior analysis in this part of the turbine, by
developing and studying the boundary layer.

The thesis begins with the study and the development of the calibration procedure for
the hot-film probe in the hydrodynamic tunnel in Laboratory for Hydraulic Machines in
E.P.F.L. It is described the whole acquisition system used to get through all the stages
needed by the calibration procedure.

Moreover, it is studied the influence of several sensitivity parameters over the mea-
surements, namely water temperature, orientation of the hot-film probe in the flow, con-
tamination of the probe. There are explained all the corrections needed related to those
parameters.

Further, following the calibration of the hot-film probe, measurements in a Francis
turbine’s cone have been performed and they were analyzed. It was studied the tendency
of the unsteady separations using the wall shear-stress, as a reference.

Moreover, the procedure applied for eliminating the influence of the additional para-
meters, like water temperature, probe contamination, over the measurements in turbine,
is presented.

Meanwhile, the experiments showed that main frictional losses of a turbomachine take
place in the runner. Generally, the availability and performance of the commercial hot
film sensors, for boundary layer investigation in this region of a turbomachine, have been
limited by different specific constraints.

The accelerated development of silicon micromachined sensors and actuators has meant
that many new and competitive application areas have arisen, one of these being the use
of silicon sensors in complex flows. Using silicon micromachined sensors, sufficient spatial
and temporal resolution for the measurements of turbulent fluctuating pressure and wall
shear stress for finding the correlation coefficients can be obtained.

A second aim of this thesis reports on the design, analysis and fabrication of a new
multidirectional and miniature sensor specially designed for experiments in 3D complex
turbulent flows. Its operating principle is based on the hot-film anemometry and the sensor
is fabricated on silicon substrate using MEMS technology. The sensor is qualified in a
turbulent flat plate boundary layer. Thus, a detailed analysis of the working mechanism,
and simulation is carried out using finite element analysis method. Finally, the calibration
results and comparisons with the classical hot-film probe are presented.
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Chapter 3

GENERAL ASPECTS

3.1 TURBULENCE AND BOUNDARY LAYER

3.1.1 Turbulent flow

All flows occurring in engineering practice are turbulent, explained by a 3D, time-
dependent, eddying motion with many scales, causing continuous mixing of fluid elements
and often superposed on a simpler mean flow. There is no definition of turbulence, but
one could be "a state of continuous instability".

Turbulence is generated by the friction forces in the flow that takes place over fixed
walls or in the flow, which takes place in layers with different velocities.

A typical feature of turbulent motion is that the velocity and pressure at a fixed point
in space do not remain constant with time.

In turbulent flow, the variables are usually divided in one time-averaged part, ū, time
independent part and one fluctuating part, u′, see equation 3.1.

u = ū+ u′ (3.1)

The variables are decomposed, mainly, from 2 reasons:

• One reason is that when measuring flow quantities, the main interest is reported to
the mean values rather that the time histories;

• Another reason is that when solving the Navier-Stokes equations it would be required
a fine grid to resolve all turbulent scales and a fine resolution in time.

Turbulent flow has a number of characteristics:

1. Irregularity. Turbulent flow is irregular, random as well as chaotic. Even though
turbulence is chaotic it is deterministic and is described by the Navier-Stokes equa-
tions. Probabilistic laws may describe turbulence and they allow the evaluation of
mean values for different parameters like velocity, pressure, and temperature.

2. Diffusivity. In turbulent flow the diffusivity increases. The increased diffusivity
increases also the wall shear stress in internal flows.

3. Large Reynolds numbers. Turbulent flow occurs at high Reynolds number.

7
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4. Three-dimensional. Turbulent flow is always three-dimensional. Meanwhile,
when the equations are time averaged, the flow will be considered as two-dimensional.

5. Dissipation. In turbulent flow, the kinetic energy in the small eddies is transformed
into internal energy.

6. Continuous. It is considered that the turbulent flow is continuous.

The interaction between vorticity and velocity gradients is an essential element for
creating and maintaining turbulence. Disturbances are amplified and they are turned into
three-dimensional, chaotic, random fluctuations, with another words, turbulent flow by
interaction between the vorticity vector and the velocity gradients. There can be identified
2 phenomena in this interaction process: vortex stretching and vortex tilting. Once this
process has started it continues, because vorticity generated by vortex stretching and
vortex tilting interacts with the velocity field and creates further vorticity and so on. The
vorticity and velocity field becomes chaotic and random, which means that the turbulence
has been created.

3.1.2 Boundary layer definition

The layer moving next to a solid object placed in the water, in which the velocity of
the flow modifies from zero value for the surface of the object to the value corresponding
to the outside flow and in which it occurs the intense manifestations of the friction forces
is called the boundary layer.

y

C∞

c(y)τ
p

δ

x

∞

τp

δ∞
x

C∞∞

Figure 3.1: Boundary layer illustration

3.1.3 Boundary layer on a flat plate

Boundary layer begins as a laminar flow with zero thickness at the leading edge of flat
plate or finite thickness on a blunt object. After some distance, downstream, the laminar
flow undergoes transition to turbulent flow, see figure 3.2. The simplest case of boundary
layer study is the boundary layer developed on a flat plate, illustrated in figure 3.1. By
comparison, the flow in the pipes and drains with a given pressure gradient, the main
differences are:
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Figure 3.2: Boundary layer on a flat plate

• the boundary layer develops continuously in the flow direction; its thickness, δ(x)
increases with x;

• the wall shear-stress variation, τp(x), is unknown;

• the exterior part of the flow is made by intermittent motions, turbulent or not;

In this layer, the suddenly increase of the tangential velocity determines great values
for the velocity gradient and, as a consequence, the shear-stresses reach to considerable
values, so the friction forces have great values, comparable with the inertial forces. Outside
this boundary layer, the velocity gradient has a smaller value and the shear stress can be
neglected, so the friction forces become negligible related to the inertial forces.

The main characteristic of the boundary layer is its thickness, which is defined, con-
ventionally, as being the distance δ from the body’s surface, measured along the perpen-
dicular to this surface, where the flow reaches around 99 % from the exterior potential
flow velocity; it is estimated by relation 3.2.

δ = y|c=0.99C∞ (3.2)

The main direction of the flow is along the x axis, with the velocity outside of the
boundary layer, c0(x). Statistics fluctuate with y and is independent of z, so that the
velocity depends both on x and y.

Starting from Bernoulli’s equation, see equation 3.3, and by projecting it on x direction
it is obtained relation 3.4.

−p0 +
1

2
ρ[c0(x)]

2 = cst (3.3)

−dp0

dx
= ρc0

dc0
dx

(3.4)

This relation evidences 2 different cases of boundary layer:

• dc0
dx
> 0 =⇒ dp0

dx
< 0, negative or favorable pressure gradient;

• dc0
dx
< 0 =⇒ dp0

dx
> 0, adverse pressure gradient.
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The adverse pressure gradient leads to the unsteady separations of the boundary layer
from the surface; the 2 cases will be detailed further.

For the present study, as water is the fluid used, there are made some simplified
assumptions:

• incompressible fluid;

• Newtonian fluid.

The boundary layer equation is obtain from the continuity equation and the Navier-
Stokes equations system:⎧⎪⎪⎨⎪⎪⎩

∂cx
∂x

+
∂cy
∂y

= 0

∂cx
∂t

+ cx · ∂cx
∂x

+ cy · ∂cx
∂y

= −1

ρ

∂p

∂x
+ ν(

∂2cx
∂y2

+
∂2cy
∂y2

)

(3.5)

Considering the boundary layer thickness, δ, very small and making the approximation
of the size for the equations terms, the system of equations 3.5, which characterize the
flow in the boundary layer becomes:⎧⎪⎪⎨⎪⎪⎩

∂cx
∂x

+
∂cy
∂y

= 0

cx · ∂cx
∂x

+ cy · ∂cx
∂y

= −1

ρ

∂p

∂x
+ ν

∂2cx
∂y2

(3.6)

Furthermore, as the purpose is to study the flow in the cone, both at the inlet and at
the outlet, and knowing that the flow in this part of a hydraulic turbine is turbulent and
three-dimensional, the system of equations 3.6 has to be transposed corresponding for the
turbulent flow case.

In turbulent flow, every flow parameter is considered to be made up of a temporal part
and a fluctuating part:

c = c′ + c̄, (3.7)

where c′ represents the fluctuating part of the parameter c and c̄ represents the mean
value of c.

Taking into account the relation 3.7 in the system of equations describing the flow in
the boundary layer, equation 3.6, it is obtained the system of equations which characterize
the boundary layer in a stationary flow, see equations 3.8.⎧⎪⎪⎨⎪⎪⎩

∂cx
∂x

+
∂cy
∂y

= 0

ρ
∂cx
∂t

+ ρcx · ∂cx
∂x

+ ρcy · ∂cx
∂y

= −∂p
∂x

+ μ∇2c+ ρfx

(3.8)

Assuming that:

• flow is steady: c(t) = 0,

• fluid is incompressible: ρ = cst,
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there is obtained the momentum equation for the turbulent flow, see relation 3.9.

ρcx · ∂cx
∂x

+ ρcy · ∂cx
∂y

= −∂p
∂x

+ μ
∂2cx
∂y2

− ρ
∂

∂y
(c′xc′y) (3.9)

As the fluid is considered a Newtonian one, Newton’s relation regarding the wall shear
stress is valid, see relation 3.10:

τ = μ
c

L
(3.10)

where μ represents the dynamic viscosity, c is the flow characteristic velocity and L is the
characteristic length of the flow.

If the last two terms of the momentum equation 3.9 are written like ∂
∂y

[μ∂cx

∂y
−ρ(c′xc′y)],

it can be noticed that the fluctuations produce a shear stress evidenced by the term μ∂cx

∂y
.

It can be seen that, in accordance with the boundary layer theory, and by considering
c, the local velocity and y, the distance from the wall in the perpendicular direction to
this wall, the wall shear stress is described by the relation 3.11.

τp = μ
∂c

∂y
|y=0 (3.11)

In the turbulent flows, the flow in the boundary layer is laminar for small distances
and then it goes through a transition zone, for a specified critical velocity, reaching into
a turbulent flow, see figure 3.3.

0
0

1

1

∞
y

laminar zone

turbulent zone with 

flow of constant 

momentum

turbulent zone

∞Cc

δ

Figure 3.3: The three zones of the boundary layer on a flat plate

1. Inner layer

The length of the inner layer depends on the range of the turbulence in the exterior
flow, on the roughness of the surface and on the place of the flat plane in a configuration
of confuzor or diffuser.

Observation. For the present case, it is studied the flow at the runner outlet, which
can be considered as a distributor, so that the flow velocity decreases downstream.
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In this region, because the thickness of the layer is small enough, it can be assumed
that the total friction is, approximate, equal with wall shear-stress, see relation 3.12.

τ = μ
∂cx
∂y

− ρc′xc
′
y ≡ τp (3.12)

In the inner layer, the law of the wall is described by equation 3.13
c

cτ
= f(

cτy

ν
), (3.13)

where f represents an universal function.
It can be remarked that the behavior of the velocity near the wall is independent on

the conditions of the flow far from the wall. The inner layer corresponds roughly to:

y/δ < 0.1. (3.14)

Viscous sublayer

Meanwhile, very close to the wall, the turbulent fluctuations c′x, c′y and the mean values
cx and cy tend to zero, the wall shear stress being almost entirely viscous.

By noting c+ = c
cτ

and y+ = ycτ

ν
, in which cτ represents the friction velocity and it is

defined as cτ =
√

τp

ρ
it is obtained the relation 3.15.

c+ = f(y+) (3.15)

Considering y → 0, the relation 3.12 becomes:

τp = μ
∂c

∂y
, (3.16)

so that c = τp

μ
y and finally, the flow in this sublayer is characterize by the relation 3.17.

c+ = y+ (3.17)

From experiences, see Ryhming [1985], this equation is available for:

y+ < 5. (3.18)

2. Overlap layer

In this region, takes place a suddenly increase of the boundary layer thickness, δ, and
a suddenly change of the velocity; the velocities increase very fast near the wall and they
have the tendency to become uniform along the normal to the wall.

In this zone, the velocity profile is completely determined by:

c = c(y, τp, ρ). (3.19)

As this region is also situated close to the wall, it is considered that the equation 3.20
determines the velocity distribution.

c+ = f(y+) (3.20)
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The motion quantity transfer is produced, mainly, by turbulence, in this region.

τt = −ρc′xc′y = cst (3.21)

The total shear stress in this region, is defined by relation 3.22.

τ = μ
∂cx
∂y

− ρc′xc′y (3.22)

0.1 1

10 20

1

y+

-ρc'
xc

'
y

τ

y/δ∞

μdc'
x / dy

Figure 3.4: Shear stress distribution in turbulent boundary layer, with the wall distance:
near the wall and total

As it is shown in figure 3.4, the two terms μ∂cx

∂y
and −ρc′xc′y, have a very fast variation

near the wall, so that it can be considered that τ is constant and equal with τp, for
0 < y/δ∞ < 0.05. In this way, far from the wall, the velocity increases very fast and then
it flattened, see figure 3.5.

c C∞

0,5

1

0

y C x( )∞ ν 1 2
20 4 6 8 10 12 14

laminar

turbulent

Figure 3.5: Comparison between a laminar and a turbulent velocity profile

In this region of the boundary layer, by replacing the velocity with the velocity gradi-
ent, c→ dc

dy
, the velocity profile will be described by relation 3.23.

dc

dy
=
dc

dy
(y, τp, ρ) (3.23)
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There can be made the following assumptions: the fluctuating parts, c′x and c′y, must
have the same order, so that the turbulent shear stress can be written as relation 3.24.

τt = ρl2(
dc

dy
)
2

, (3.24)

where l represents the characteristic length and defined as l = χy when it is unknown,
and χ represents the Von Karman constant.

In this way, the wall shear stress becomes:

τp = ρχ2y2(
dc

dy
)
2

, (3.25)

finally, obtaining the differential equation 3.26.

dc

dy
yτp

1/2ρ−1/2 =
1

χ
= cst (3.26)

Considering the dimensionless parameters, c+ and y+, defined in the same way as for
the laminar boundary layer, the relation 3.26 can be simplified, becoming the differential
equation 3.27:

dc+ =
1

χ

dy+

y+
(3.27)

The velocity law in this region of the boundary layer is called the log-law velocity profile
and it is described by relation 3.28.

c+ =
1

χ
lny+ + C, (3.28)

where C is the integration constant and it is determined by experiments, see Cousteix
[1989]. This equation is available for

30 < y+ < 500, (3.29)

the value y+ = 500 corresponding to 5 − 15% of the turbulent boundary layer thickness.

3. Outer layer

In this region the velocity law is complex, see relation 3.30 and it is called the over-
drawn speed law ; it is difficult to provide, from the theoretical point of view, the velocity
distribution. The turbulent zone concerns the other 85 to 95% from the boundary layer
thickness. In this layer, one has the velocity-defect law :

C∞ − c

cτ
= Φ(

y

δ
) (3.30)

Φ is a function depending on many factors like Reynolds number, pressure gradient.
The general velocity distribution for the turbulent boundary layer is illustrated in

figure 3.6.
Due to its complexity and difficulty, this region can’t be used for the experimental

evaluation of the wall shear stress, for the studied case.
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Figure 3.6: The distribution c+(y+) in the turbulent boundary layer

3.2 HEAT TRANSFER IN THE BOUNDARY LAYER
The presence of high velocity gradients in the boundary layer lead to very large tem-

perature differences, so that, the temperature effect must be taken into account. In the
same way, when a liquid of non-uniform temperature is caused to move turbulently, it is
found that the turbulent mixing motion creates in it, turbulent fluctuations.

The fluctuating temperature may be represented in analogy with the equation for the
fluctuating velocity, as a sum of a temporal average, T , and a fluctuation, T ′, see relation
3.31.

T = T + T ′ (3.31)

As shown in the part 3.1.3, the boundary layer may be divided, mainly, in 2 parts:

• Laminar boundary layer;

• Turbulent boundary layer.

There is studied the heat transfer in both parts, separately, because the temperature
distribution is different in the laminar zone, than the one in the the turbulent zone, as
the figure 3.7 shows.

3.2.1 Laminar boundary layer

In the laminar part of the boundary layer the molecules are moving in layers, following
strictly the flow direction from the outside of the boundary layer. Here the heat transfer
is realized through the friction of the molecules between the layers moving one next to
each other.

The heat transfer is realized by conduction and it follows the Fourier law, meaning
that the heat flux in the perpendicular direction to the flat plate through the surface unit
is proportional with the temperature gradient, see relation 3.32:

q̇ = −λdT
dy

= −ρcpΛdT
dy
, (3.32)
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where:

• q̇ - heat flux;

• λ - thermal conductivity;

• dT
dy

- temperature gradient;

• cp - specific heat at constant pressure;

• Λ - thermal diffusion coefficient.

T T

y

x

T(y) th δ

∞ ∞

Figure 3.7: Temperature distribution in the boundary layer, on a heated flat plate

For the laminar boundary layer it is defined Prandtl number, which represents the ratio
between the diffusion of the movement quantity and the thermal diffusion, see relation
3.33.

Pr =
ν

Λ
(3.33)

In the same time it expresses the ratio between the hydrodynamic thickness, δ, and
the thermal thickness, δth of the boundary layer, see relation 3.34.

Pr1/3 =
δ

δth
(3.34)

In this part of the boundary layer, the shear stress is given by the relation 3.35.

τl = μ
dc

dy
= ρν

dc

dy
(3.35)

The relationship between the heat transfer and the shear stress, for a flat plate, it is
found by writing the Blasius solution for the boundary layer, see equation 3.36.

d2( c
C∞ )

dη2
+ 0.5f(η)

d( c
C∞ )

dη
= 0 (3.36)

The boundary conditions are:

c(0)

C∞
= 0; (3.37)
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c(∞)

C∞
= 1, (3.38)

and η = y
√

C∞
νx

= y
x
Re1/2

x.
By defining the dimensionless temperature, relation 3.39, where Ts is the temperature

of the wall surface, the equation 3.36 can be rewritten as equation 3.40.

T ∗ =
T − Ts

T∞ − Ts

(3.39)

d2T ∗

dη2
+ 0.5f(η)Pr

dT ∗

dη
= 0 (3.40)

The boundary conditions can be rewritten with the new variable, see relations 3.41
and 3.43.

T ∗(0) = 0 (3.41)

T ∗(∞) = 1 (3.42)

For water, Pr ≈ 1, and for this value the relations 3.36 and 3.40 are similar. This
implies:

T ∗ =
c

C∞
(3.43)

By derivation with y, it is obtained the relation 3.44, and by taking into account the
heat transfer definition, q̇, relation 3.32 and the shear stress, for laminar flow, τ , relation
3.35, it is obtained the relationship between those 2 parameters, see equation3.45.

1

T∞ − Ts

∂T

∂y
=

1

C∞ ∂c
∂y

(3.44)

q̇

τ
= −cpT∞ − Ts

C∞
= cst (3.45)

Conclusion. In the laminar boundary layer, for Pr = 1, the ratio between the heat
transfer and the shear stress is constant.

3.2.2 Turbulent boundary layer

In the turbulent part of the boundary layer, the movement of the molecules takes
no more place in the layers, but it leads to an exchange of movement quantity and an
additional heat transfer. The turbulent heat transfer, due to the macroscopic fluctuations
is illustrated by the relation 3.46:

q̇t = −ρcpc′xT ′ = −ρcpεh
∂T

∂y
, (3.46)
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where εh is the turbulent thermal diffusion coefficient defined by relation 3.47.

εh =
c′xT ′

∂T
∂y

(3.47)

It is defined, by similarity, with the laminar boundary layer, a turbulent shear stress
proportional with the fluctuating velocities:

τt = −ρc′xc′y = ρε
∂cx
∂y

(3.48)

where ε is the turbulent viscosity defined by relation 3.51.

ε =
c′xc′y
∂cx

∂y

(3.49)

Furthermore, in the turbulent boundary layer it can be defined:

• the apparent shear stress:

τ = τl + τt = ρ(ν + ε)
∂cx
∂y

(3.50)

• the apparent heat transfer:

q̇ = q̇l + q̇t = −ρcp(Λ + εh)
∂T

∂y
(3.51)

For the turbulent boundary layer, it is also defined, by analogy with the laminar
boundary layer, a turbulent Prandtl number, which depends on the ε and εh distribution
in the boundary layer, see relation 3.52.

Prt =
ε

εh

(3.52)

Observations

1. The turbulent thermal diffusion coefficient and the turbulent viscosity depend on
the temperature gradient, ∂T

∂y
, respectively on the velocity gradient, ∂cx

∂y
; they are

independent on the physical properties of the fluid.

2. For the similitude reasons between the heat transfer and the movement quantity
transfer it is considered Prt = 1.

In this part of the boundary layer, for finding the relationship between the heat transfer
and the shear stress, for a flat plate, the Reynolds’ analogy for the turbulent convection,
which neglect the laminar and the transient zones of the turbulent boundary layer, has
to be considered, obtaining the relationship 3.53.

q̇

τ
= −cp εh

ε

∂T

∂y
= − cp

Prt

∂T

∂y
(3.53)

Using Reynolds’ similitude between the laminar and the turbulent boundary layers
and considering Prt = 1 it is found that the ratio between the heat transfer and the shear
stress is also constant, see relation 3.54, for the turbulent case, in the same way as for the
laminar boundary layer.

q̇

τ
= −cpT∞ − Ts

C∞
= cst (3.54)
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3.3 TECHNIQUES USED FOR WALL SHEAR-STRESS
MEASUREMENTS

Several techniques for measuring wall shear stress have been developed and they are
used for exploring the boundary layer, nowadays, in the world, depending on the appli-
cation under consideration.

The required spatial and temporal resolutions are specific for each application and
environment. For laminar flows, the sensors must be capable to evaluate the time-averaged
shear stress, while in turbulent flows, both the mean and its fluctuating components are
required.

An attempt to classify the techniques available for wall shear stress measurements was
made by Haritonidis [1989], depending upon whether the wall shear stress is measured
directly or is inferred from other measured properties: the small group of direct methods
- floating element method and oil film interferometry - and the larger group of indirect
methods which must be calibrated. All these techniques are summarized together with
their applications, in table 3.1.

Direct techniques Indirect techniques

Author Flow type Floating
element
balance

Oil-film
interferom-
etry

Preston
tube

Surface
fence

Wall
pulsed
wire

Hot-
wire

Wall
hot-film

Ruderich and Fernholz [1986] Separation and recovery regions down-
stream of a normal plate with a splitter
plate, adverse pressure gradient

- -
√ √ √

-
√

Dengel et al. [1987] Turbulent boundary layer, adverse pres-
sure gradient

- -
√ √ √

-
√

Dengel et al. [1987] Separation and recovery regions down-
stream of a normal plate with a splitter
plate, adverse pressure gradient

- -
√ √ √

-
√

Dengel and Fernholz [1989, 1990] Turbulent boundary layer with and with-
out reverse flow, adverse pressure gradient

- -
√ √ √

- -

Gasser [1992], Gasser et al. [1993] Turbulent boundary layer with and with-
out reverse flow, adverse pressure gradient

√
-

√ √ √
- -

Janke [1993] Separation and recovery regions down-
stream of a backwards-facing step, adverse
pressure gradient

-
√

-
√ √ √

-

Warnack [1996] Turbulent boundary layer, favorable pres-
sure gradient

-
√ √ √

-
√

-

Table 3.1: Wall shear-stress technologies and their applications

A comparison between 4 wall shear-stress measuring techniques, namely wall hot-wire,
wall pulsed-wire, oil-film interferometry and surface fence in turbulent wall-bounded shear
flows was presented, see Fernholz et al. [1996]. They showed that oil-film interferometry
and wall hot-wires may safely be applied in attached boundary layers and wall bounded
shear layers with variable pressure gradients, while for wall hot-wires no reversal flow
is required. Moreover, in highly accelerated boundary layers the surface-fence can not
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be used and in flows where direction reverses Preston tubes must not be used. They
concluded also that the wall-pulsed wire, the oil-film and the surface-fence techniques may
be used in such flows with small deviations occurring for the surface-fence measurements
close to separation and re-attachment due to probe small asymmetries.

The direct techniques are based on the mechanical evaluation of the force applied on
an element with a floating wall. Meanwhile, the indirect techniques are based on the
analogy between the wall shear-stress and other physical parameters.

Since there is a large number of different methods, it is beyond the scope of this work to
review each technique. A trend common to all measurements and methods can, however,
be highlighted. Since the mid 1950s, the evolution of the probes used has been directed
towards utilizing smaller and smaller sensors to improve the accuracy, flexibility and
resolution. There are several review papers that describe shear stress sensors and discuss
in detail the merits and drawbacks of the methods used in a vast variety of flow situations.
To citet a few, Winter [1977] gives a comprehensive review of available conventional
methods and a good discussion of measurements in turbulent flows. Haritonidis [1989]
summarizes conventional methods and introduces the first micromachined wall shear stress
sensor. Hakkinen [1991] lists the merits and drawbacks of conventional techniques. Most
recently, Hanratty and Campbell [1996] discuss the relevant experimental issues associated
with the use of various wall shear stress sensors.

3.3.1 Direct techniques

Direct techniques for the wall shear-stress measurements relays on detection of the
total amount of viscous drag experienced by a surface-mounted force balance. The force
needed to maintain the floating element in equilibrium is a measure of the wall shearing
stress. This technology implies a large area and a very sensitive technique to determine
small forces. It allows a very accurate measurement of the steady wall shear-stress values,
about ±2%. The system frequency response is limited by the floating element size.

Floating element balance

The floating element balance, illustrated in figure 3.8, is one of the old device for wall
shear-stress measurements implying a large area. It’s a very sensitive technique for small
forces determination.

Kempf [1929] used such a floating element balance for subsonic flow and, as the area
of the balance could be reduced due to the high wall shear-stress, this technique could
be applied in compressible boundary layers. An detailed survey on the design and ap-
plications of these balances was provided by Winter [1977], while a list of test cases in
compressible boundary layers is presented by Fernholz and Finley [1977], Fernholz and
Finley [1981].

For subsonic flows there are two more recent developments of floating element bal-
ances: so called "Bechert balances", designed mainly to compare the skin shear-stress of
aerodynamically smooth and riblet (small-ribbed) surfaces, see Bechert et al. [1985] and
Bechert et al. [1992], and balances developed by Dickinson [1965], which can be used only
in flows with zero pressure gradient

The force measurement can be obtained by gauges or piezo-resistive elements. For
improving the frequency response of the system, miniaturization of these types of sensors
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Flow velocity

Floating element

Spring

Figure 3.8: Floating element technique

are performed, see Huang et al. [2000], Jiang et al. [1996] and Löfdahl and Gad-el Hak
[1999].

The main drawback of the floating-element sensors is that they have poor spatial and
temporal resolution for low-magnitude shear stress measurement, offers a shear-stress
value, integrated over a larger or a smaller area and fails in providing exact pointwise
measurements. To obtain a measurable output signal in a low-shear environment, a large
sensing element is required, leading to a loss of spatial resolution. Hence it is not possible
to simultaneously achieve a high sensitivity and high bandwidth.

Oil-film interferometry

This technique is based on the measurement of a oil drop’s deformation, which is de-
posed on the test facility flow, see figure 3.9. The oil film is developed by drop’s spreading
due to the shearing. The thinning ratio of the oil film measured by interferometry is
determined by interference fringes produced by a monochromatic light source.

Figure 3.9: Oil-film interferometry technique

A first attempt of wall shear-stress evaluation from the movement of interference fringes
of a thin oil film was realized by Tanner and Blows [1986]. A complete theory of the
application of this technique have been described by Janke [1993].

As no calibration and no complex instrumentation for implementing it to the wall
are needed - requiring only an optic access to the measurement zone-, this technique is
attractive. Moreover, it does not require any assumptions concerning the flow field.

An accurate measurement of the mean wall shear-stress is acquired using this tech-
nique, being capable, in the same time, to measure reverse flow. The accuracy of the oil
film method can be better, than within ±4%. Meanwhile, it is easy to apply and needs
little instrumentation. Thus, a precise knowledge of the oil’s viscosity is required.
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The main disadvantages of this method are:

• measuring time is relatively high, between 10 minutes and 3 hours are required,
depending on the oil viscosity and wall shear-stress magnitude;

• oil’s film speed should not be too high;

• a minimum wait time, 1-2 minutes, is necessary to obtain a steady state.

3.3.2 Indirect techniques

In indirect techniques, the wall shear stress is extracted from other measured physical
parameters, like pressure, wall temperature, that are related to the shear stress.

Preston tube

For turbulent boundary layers, one of the most commonly used instrument for wall
shear-stress measurements is the Preston tube illustrated in figure 3.10. The validity of
this measuring technique depends on the validity of the logarithmic law of the wall.

Preston tube

WallWall

Figure 3.10: Preston tube technique

The dimensionless diameter must lie in the logarithmic region for calibration curves of
Patel [1965], or Head and Vasanta Ram [1971] use, while user-friendly calibration curves
were suggested by Bechert [1995] and Zurfluh [1984].

The accuracy of the Preston tube method is about ±3% and less for adverse pressure
gradients, see Patel [1965] and Hirt and Thomann [1986]. A complete presentation of
Preston tube applications for compressible boundary layers is given by Finley and Gaudet
[1995].

The main disadvantage of this technique, is that it allows only the mean wall shear
stress value measurement.

Surface fence

Surface fence method has the advantage that it’s easy to build and it needs only a
precise manometer for pressure difference reading, between the upstream and downstream
of the fence, see figure 3.11.

The surface fence or sublayer fence’s first application for measuring the magnitude and
direction of the wall shear-stress was carried out by Konstantinov and Dragnysh [1960].
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Δp

c
h

Figure 3.11: Surface fence technique

Head and Rechenberg [1962] and Vagt and Fernholz [1973] describe in detail the use of
this technique.

Some constraints are required for its geometry, namely its height should not to exceed
a value, corresponding to y+ = 5, for measuring within the viscous sublayer and becoming
in this way independent of the validity of the logarithmic law of the wall.

The accuracy of a surface fence, used together with the Preston tube as a calibration
device, is about ±4% and it may decrease if the turbulence structure of the studied flow
differs strongly from the turbulence structure of the calibration flow.

Meanwhile one of its disadvantages is that it can be used only for the Reynolds numbers
between 0.25 and 25. In the same time, due to the small size of the fence and the
manufacturing tolerances, a calibration is needed for each fence. Moreover, this technique
together with the oil interferometry method have poor resolution.

Wall pulsed wire

Wall pulsed wire consists in 3 wires parallel mounted in a plane parallel to the wall,
in the way illustrated in figure 3.12.

Heated wireTemperature
sensors

Figure 3.12: Wall pulsed wire technique

The central wire is heated by a very short electrical pulse, which generates a heat
tracer. The 2 sensors are operated as temperature sensors and note the arrival of the
heat tracer. The flight time of the heat tracer is a measure of the instantaneous wall
shear-stress value.

The principle of the wall pulsed-wire was described in detail by Bradbury and Castro
[1971], while its first application was made by Ginder and Bradbury [1973].

This technique is capable of measuring the instantaneous wall shear stress in highly
turbulent flows with flow reversal, in the same way as oil-film interferometry or surface
fences which, otherwise, have poor temporal resolution. The wall pulsed wire is usually
calibrated against a Preston tube.
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The wall pulsed-wire probe is not well suited to obtain spectra due to its low sampling
rate, about 40 Hz. The combined errors of calibration and time of flight measurement, the
resolution of the time of flight counter having an estimated error for high wall shear-stress
values, typically 1% can lead to an overall error of about ±4%.

Main disadvantage of this technique is that the range of the wall shear stress covered
by the probe is limited by requirements that the probe should not extend the viscous
sublayer. The range of wall shear-stress of such a probe lies within ±2Pa. Another
disadvantage is that the thick pulsed wire gives a strong signal, producing, in the same
time, larger wake.

Hot-wire

This indirect technique consists in measuring the velocity gradient in a boundary layer
very close to the wall. Shear stress is determined by applying Newton’s law which links
the flow deformation ratio and the shear stress. Wall shear-stress values obtained are
instantaneous local values.

For the flow velocity it is used, generally, the hot-wire anemometry. The evaluation
of the instantaneous wall shear-stress values by hot-wire measurements of the velocity
gradient in the viscous sublayer is strongly affected by the proximity of the wall, while
the distortion of the temperature field affects only the sensitivity of the probe, and not
its frequency response.

For correct results, the velocity measurement must be performed in the viscous sub-
layer of the boundary layer. Several studies were carried out for investigating the wall
distance dependence of hot-wire probes, see Janke [1987]. It found a single relationship
for correcting the mean flow velocity both in laminar and turbulent boundary layers,
showing in this way that the mean response of the wall hot-wire probe is independent on
the turbulence structure of the flow.

Wall hot-wire probes, illustrated in figure 3.13, are mainly used for their capacity of
retaining their dynamic sensitivity and of their facility of adaptation for heat transfer
effects to the wall, see Wagner [1991].

Hot wire h

Figure 3.13: Wall hot-wire technique

Most common materials used for the wire are tungsten, platinum and their alloys.
Tungsten wires, the most popular, are characterized by a high temperature coefficient
of resistance, but their poor oxidation resistance makes them impossible of use at high
temperatures in many gases. Platinum possesses a good temperature coefficient and a
good oxidation resistance, but is very weak at high temperatures. The alloys have a
good oxidation resistance, and they are more strength than platinum, but with a low
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temperature coefficient of resistance. Usually, a thin platinum is coated for improving
bond with the plated ends and the support needles.

The wall hot wire calibration must be performed in a fixed position, against another
instrument measuring the local wall shear-stress. A first approach was carried out by
Bradshaw and Gregory [1959], who determined only the mean wall shear-stress value,
while Alfredsson et al. [1987] used this instrument in a turbulent zero-pressure-gradient
boundary layer, evidencing that at high Reynolds numbers, acceptable results both for
the mean and for the RMS value of the wall shear stress are obtained.

Meanwhile, the wall hot-wire probe sensitivity decreases with the Reynolds numbers
decrease, leading to a limited maximum distance from the wall. This technique can
be applied only for the cases where the viscous sublayers are thick enough, due to the
difficulty of measuring the flow velocity by hot wire to a distance from the wall lower than
0.25mm.

The accuracy of the mean wall shear-stress value measured using this technique is
about ±4% for an accuracy of the calibration device of ±3%.

Its main disadvantage is that it can’t be mounted too close to the wall, for maintaining
both its sensitivity and linearity.

Wall hot-film

This technology is based on the analogy between the wall shear-stress and the heat
transfer, see figure 3.14. It consists in measuring the convected heat flux induced by a
heated film maintained at a constant temperature. Wall hot-film probes have been used
to measure the instantaneous local wall shear stress.

Hot film

Flow velocity

Figure 3.14: Wall hot-film technique

The wall-mounted hot films can be used for time-resolved measurements when the
conductivity of the fluid is superior to the conductivity of the wall material. Its applica-
tions lay in water and oil, but they can’t be used for air, as a reduced dynamic sensitivity
of the hot film is recorded, see Tardu et al. [1991]. Although, this effect can be decreased
by reducing the thermal conductivity of the substrate, Alfredsson et al. [1987] and Den-
gel et al. [1987] showed that RMS value of the wall shear stress recorded in turbulent
boundary layers can be underestimated by up to 25%.

The analogy linking the heat transfer to the wall shear-stress is accepted only when the
thermal boundary layer developed on the heated film is in the viscous sublayer, y+ < 5.
In this way, a restriction in the longitudinal dimension of the sensitive element is imposed.

Generally, the sensor is made up of a metallic film deposed on a substrate, which
is heated by an electrical current and maintained at a constant temperature using an
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electronic device containing a Wheatstone bridge, named hot-wire anemometry. Most
films are made of platinum due to its good oxidation resistance and long-term stability.

By comparison with hot wires the wall hot-films offer, mainly, some advantages:

• more design flexibility, by availability of different surface shapes: wedge, conical,
parabolic and flat,

• reduced heat conduction to the supports due to a low thermal conductivity of the
substrate material,

• better frequency response because of the distribution on the surface of the sensor’s
sensitive part rather than including the wire’s entire cross section,

• easier to clean due to the thin quartz coating on the surface,

• more robust for water applications.

Several difficulties are, although, encountered when using this technique:

• a considerable amount of the measured power is transformed in thermal conduction
through the wall,

• flow temperature variation is influencing the measurements.



Chapter 4

WALL SHEAR-STRESS PROBE
CALIBRATION

4.1 DEFINITION AND PRINCIPLE
Calibration means the act of checking or adjusting, by comparison with a standard,

the accuracy of a measuring instrument. Hot-film probe calibration means the correlation
of the output voltage induced by the hot-film resistance variation, with the wall shear
stress.

The wall shear stress depends on the flow velocity, meaning that it also depends on the
friction velocity directly connected to the boundary layer. The calibration is performed
in a specific configuration, the simple case of a flat plate, where a zero-pressure gradient
boundary layer is developed and well-known, presented in chapter 3.

4.2 EXPERIMENTAL SET-UP

4.2.1 Hydrodynamic water tunnel

Main characteristics

The calibration of the hot-film probes is performed in the water tunnel of the Labora-
tory for Hydraulic Machines of Ecole Polytechnique Féderale de Lausanne, see figure 4.1,
having the main characteristics:

• the maximum rotation speed of the pump: np = 917 rot/min;
• the maximum discharge: Qmax = 0.452 m3/s;
• the maximum velocity of the flow in the center section of the test section: cmax =

7.2m/s;
• the maximum hydraulic power of the pump: Ph = 10.25 kW ;
• the maximum power of the electrical machine: P = 32 kW ;
• the area of the vein: A = 0.2722 = 0.07398 m2;

The LMH water tunnel is a single closed loop, closed test section, see figure 4.2. In
this configuration, a maximum velocity of 7.2 m/s and a Reynolds number up to 1.96 ·106

can be obtained in the center section of the test section.

27
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test section

upper wall

Flow direction

Figure 4.1: Test section area in the calibration tunnel

The calibration performance takes place in the test section, on the upper wall, by
placing all the necessary instruments in the way shown in figure 4.3.

The measurement system, see figure 4.4 is made up by 2 different arms: one corre-
sponding to the velocity acquisition and the second one corresponding to the hot-film
probe output acquisition. The instrumentation used is detailed in annexe A.

Experimental condition monitoring and control

The main parameters monitored and controlled during the calibration procedure, in
the hydrodynamic water tunnel are:

1. flow velocity,

2. pressure,

3. water temperature.

The flow velocity is controlled in the calibration tunnel by controlling the pump speed,
which is monitored on a tachometre, on the test stand. The pressure, in the tunnel, is
controlled by keeping constant the level in the overflow, while the temperature water
tunnel is surveyed with the thermometer placed next to the tachometre.

Mean flow velocity variation with the pump speed

Before any hot-film probe calibration or measurement, there must be calibrated the
water tunnel where the probe calibration will be performed, by obtaining the variation of
the flow velocity in the tunnel with the pump speed. This relationship facilitates the way
to obtain a desired flow velocity of the water in the tunnel. In this way it is established
the pump speed, and using the relationship between those 2 parameters, it is evaluated
the flow velocity, see equation 4.1.

C∞ = 0.007927278 · np − 0.016329334 (4.1)
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Figure 4.5: Flow velocity variation with the rotating speed of the tunnel’s pump

4.2.2 Procedure for velocity measurements

Measuring the mean flow velocity using the Pitot tube, implies the accomplishment of
several stages:

1. The drain of the measurement circuitry

Before the beginning of the measurements, it is always necessary to drain the
tubes. The main reason for doing this drain is that in the connection tubes there
are a lot of air bubbles which can affect the measurements.

The drain is realized using the carriage of survey for the pressure sensors. After
the accomplishment of all the necessary steps, it should be verified that in the
connection tubes there are no more air bubbles. If the bubbles are still present this
means that the drain was incomplete and it had to be done one more time or several
times, until all the bubbles disappear.

2. The offset settlement

After the drain of the measurement circuitry, it must be established the offset for
the flow velocity.

The signal coming from the sensor is acquired under the form of an electrical
signal, a voltage, on the base of which it is calculated the pressure difference -
dynamic pressure - with the calibration equation of the Pitot tube:

p1 − p2 = −0.0013 · (V 2
pitot − V 2

c=0) + 0.2056 · (Vpitot − Vc=0) (4.2)
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where: Vpitot - the voltage acquired from the Pitot tube;

Vc=0 - the voltage acquired when the pump is stopped;

p1 − p2 - the difference between the total pressure and the static pressure,

i.e. the dynamic pressure.

Knowing the pressure difference, it can be calculated the flow velocity using the
relation 4.2 by taking also into account the influence of the temperature over the
water density.

Therefore to establish the offset for the voltage, it will be measured the voltage
coming from the Pitot when there is no flow, Vc=0.

This step is necessary to be repeated every time, before any measurement per-
formance.

3. Measurements performance

Having done the drain of the measurement circuitry and the settlement of the
offset for the velocity, the measurements can be performed.

4.3 HOT-FILM PROBE CALIBRATION PROCEDURE

4.3.1 Operation theory for the hot-film probe

The hot-film probe is working on the principle that the heat transfer from a sufficiently
small heated surface depends only on the flow characteristics in the viscous region of the
boundary layer. By similarity, between the heat and the gradient transport of momentum,
the amount of the heat transfer into the fluid gives a measure of the wall shear-stress, τp,
see figure 4.6.

y

x
Qcond

Qconv

T=Tf T=Tf + T(Δx)

δc

δt

c

Figure 4.6: Main heat transfer components on a heated element
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The energy balance at the upper surface, covered by the film, is:

Q̇J = ΣQ̇+
dQfilm

dt
, (4.3)

where:

• Q̇J - heat power transferred by Joule effect;
• ΣQ̇ - heat transferred to surroundings;
• dQfilm - thermal energy stored in the film.

For equilibrium conditions, the heat storage is zero and the joule heating becomes
equal with the heat transferred to surroundings.

dQfilm = 0 =⇒ Q̇J = ΣQ̇ (4.4)

The heat transferred to the surroundings is made up of 3 components:
• convection from film to surrounding fluid;
• conduction to film support;
• radiation to surroundings.

ΣQ̇ = Q̇conv + Q̇cond + Q̇rad (4.5)

There are made several assumptions:

• conduction to support is minimized by using insulating material, so it can be ne-
glected;

• radiation losses are negligible.

Taking into account all the assumptions made above, the energy balance can be writ-
ten as the equality between the joule heating and the average heat transferred to the
fluid, directly, from the heating surface and, indirectly, through the heated portion of the
substrate, see relation 4.6.

Q̇J = Q̇conv (4.6)

The electrical power generated by Joule effect can be written, for a hot-film probe, as:

Q̇J =
V 2

Rf

, (4.7)

where: V represents the voltage value across the hot-film probe, while Rf is the resistance
value of the hot-film probe at the operating temperature, Tf , maintained constant by a
constant temperature anemometer.

Knowing the resistance value of the hot-film, Rc, at a temperature Tc, the resistance
value of the probe at the temperature Tf can be rewritten as:

Rf = Rc[1 + αR(Tf − Tc)] (4.8)

where αR represents the temperature coefficient of resistivity.
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To rely the heat transfer by convection to the wall shear-stress τp it is assumed that
the thermal boundary layer developed on the probe is within the viscous sublayer of a
pre-existing momentum boundary layer.

The relationship between the Q̇conv and τp is obtained by derivating the thermal energy
transport equation near the wall, for 2D flow:

c
∂T

∂x
= α

∂2T

∂y2
, (4.9)

where x represents the streamwise coordinate, y the normal-to-wall coordinate, T the
temperature, c flow velocity in x direction and α the thermal diffusivity. As at the sensor
upstream, the flow is assumed unheated, the incoming flow temperature is the same as
the free-stream temperature T∞.

In the viscous sublayer, the flow velocity can be approximate:

c =

(
∂c

∂y

)
p

y, (4.10)

where
(

∂c
∂y

)
p

represents the mean velocity gradient at the wall and by considering μ as

the dynamic viscosity of the fluid, the wall shear-stress is:

τp = μ

(
∂c

∂y

)
p

(4.11)

T̃ =
T − Tf

T∞ − Tf

(4.12)

By introducing the non-dimensional temperature, T̃ , defined by relation 4.12, the
equation 4.9 becomes:(

∂c

∂y

)
p

y
∂T̃

∂x
= α

∂2T̃

∂y2
(4.13)

The boundary conditions are:

T̃ = 0 for y = 0 (4.14)

T̃ = 1 for y → ∞ (4.15)

T̃ = 1 for x = 0 (4.16)

By introducing the similarity parameter, η defined by relation:

η =

y

(
∂c
∂y

)1/3

p(
3αx

)1/3
, (4.17)
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the equation 4.13 can be rewritten as an ordinary differential equation, see relation 4.18:

T̃ ′′ = η2T̃ ′ (4.18)

In this way, the boundary conditions in term of η becomes:

T̃ = 0 for η = 0 (4.19)

T̃ = 1 for η → ∞ (4.20)

By introducing, in the same time, the constant M , defined, by the relation 4.21, the
solution of the ordinary differential equation is obtained and it is illustrated by the relation
4.22.

M−1 =

∫ ∞

0

e−η3/3 dη =
1

3
Γ

(
1

3

)
= 0.893 (4.21)

T̃ = M

∫ η

0

e−η3/3 dη (4.22)

The heat flux at the surface is given by:

q̇ = −k
(
∂T

∂y

)
f

(4.23)

Taking into account the equations 4.12, 4.22 and by considering:

∂T̃

∂y
=
∂T̃

∂η

∂η

∂y
, (4.24)

the heat flux at the surface become:

q̇ = Mk(T∞ − Tf )

(
∂c
∂y

)1/3

p(
3α

)1/3
. (4.25)

Assuming that the hot-film is a rectangle surface having a constant length, l, in the
streamwise direction and width w in the spanwise direction, the average heat transfer,
Q̇conv integrated over l and w becomes:

Q̇conv = w

∫ l

0

q dx =
3

2
Mk(T∞ − Tf )

(
∂c
∂y

)1/3

p(
3α

)1/3
, (4.26)

By taking into account the relation 4.11, the average heat transfer, Q̇conv, is:

Q̇conv =
3

2
Mk(T∞ − Tf )

(
τp

μ

)1/3

(
3α

)1/3
, (4.27)
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By using in equation 4.6, the relations 4.7 and 4.27, and taking into account that
the film temperature Tf and the free-stream temperature T∞ are constants, it can be
concluded that for a calibration it should be possible to determine the wall shear-stress
value τp by measuring the anemometer’s output voltage E, see relation 4.28 and illustrated
in figure 4.7.

E2

Tf − T∞
∝ τ 1/3

p (4.28)

τ
p

1/3

E
2

Figure 4.7: Wall shear stress evolution with the anemometer’s output voltage

4.3.2 Flow velocity evolution in the boundary layer

To calibrate the hot-film probe there must be determined the friction velocity using the
Preston tube, in the constant flux part of the boundary layer - to verify the logarithmic
shape, at less that 2 mm. It is accepted the hypothesis for the logarithmic boundary
layer, at less that 0.06 mm, that means a linear variation of the flow velocity with the
boundary layer’s thickness.

For friction velocity evaluation, the variation of the flow velocity, c, with the wall
distance, y must be known. This relationship is determined by considering the equation
of the turbulent boundary layer at the flow of constant momentum, in the logarithmic
region, see Schlichting [1979]:

c+ =
1

χ
ln y+ + C (4.29)

By considering the dimensionless parameters, it is obtained:

c+ = c̄
cτ

y+ = ycτ

ν

}
⇒ c

cτ
=

1

χ
ln(

ycτ
ν

) + C (4.30)

In the same time, the experiments show:

c

c∞
= a ln(

yc∞
ν

) + b (4.31)
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For finding a relation similar as the experiments show, the equation 4.30 will be rewrit-
ten as it follows:

c

c∞
· cτ
c∞

=
1

χ
ln(

yC∞
ν

· cτ
C∞

) + C (4.32)

c

c∞
· cτ
c∞

=
1

χ
ln(

yC∞
ν

) +
1

χ
ln(

cτ
C∞

ν) + C (4.33)

c

c∞
=

cτ
C∞χ

ln(
yC∞
ν

) +
cτ
C∞χ

ln(
cτ
C∞

ν) + C (4.34)

By comparing the experimental relationship, the relation 4.31 with the one obtained
relation 4.34, it is found the value for the constant a, after which it is obtained the
relationship between the flow velocity and the friction velocity:

a =
cτ
C∞χ

(4.35)

It is known that the relation between wall shear-stress and the friction velocity is

τp = ρcτ
2 (4.36)

and, finally, it is showed that:

τp = ρ(aχC∞)2 (4.37)

In this way it is found out the relationship between the wall shear stress and the flow
velocity and so, for a given flow velocity it can be established the wall shear-stress value,
see relation 4.37.

The wall shear-stress was determined for flow velocities between 1 and 5m/s, see Jan-
dard [2000]. For a mean flow velocity of 1.95m/s the coefficients, a and b, are determined,
equation 4.31, in figure 4.8. There was obtained a friction velocity using equation 4.35,
of 0.0869m/s, as well as the wall shear-stress value using equation 4.37, of 7.5333 Pa.

Now the dimensionless parameters, c+ and y+ can be calculated and it can be repre-
sented the variation c+(y+), see figure 4.9.

For the calibration curve one has to know the variation of the flow velocity, measured
by the Pitot tube, with the velocity in the boundary layer, measured with the Preston
tube. This relation is not changing because it depends strictly on the flow conditions and
it is illustrated by the equation 4.38. The study of this variation was made by Jandard
[2000] and is presented in figure 4.10.

cτ = 4.4195 · 10−2C∞ (4.38)
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4.3.3 Calibration parameters for hot-film probe measurements

The hot-film probe used is generally described in annexe A. The probe is located in
the flow and that it is consequently cooled by it. In this time, between the probe and the
flow takes place the heat transfer by convection. The magnitude of this convective loss
depends on a number of parameters such as:

• the angle made by the hot-film probe with flow;
• the temperature difference between the water and the hot-film sensor;
• the aging of the hot-wire probe.

Therefore, for setting up the relation between the voltage given by the probe and
the flow velocity, which is a non-linear relation, several steps must be accomplished by
taking into account the influence of each one of the parameters reminded above over the
measurements.

1. Probe orientation influence

Preliminary step, before starting to find out the relation between the voltage coming
from the hot-film probe and the flow velocity, is the sensor’s localization in the flow. It is
known that the maximum heat dissipation between the probe and the water takes place
when the longitudinal direction of the film is perpendicular on the direction of the flow.

To find this position of the hot-film probe, the voltage for different angular positions
is evaluated as it follows:

• it is chosen an initial position and measured the output voltage;
• the sensor position in the flow it is changed and measured the voltage corresponding

to that angle, considering that turning on the right side of the initial position there
are obtained positive angles and on the left one, negative angles;
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• measurements validation by repeating them.

Observation For all measurements, the water temperature is recorded.

2. Probe-water temperature difference influence

One of the major influence over the measurements is given by the variation in the
tunnel, of the water temperature. Due to the fact that the calibration tunnel is a closed
loop, the water temperature tends to increase. In the same time, the hot-film’s tempera-
ture is kept constant, so that its resistivity changes with the water temperature and it is
needed to quantify this influence. Water temperature is measured with the thermometer
placed next to the tachometer, which allows the pump speed reading, as well as with
a temperature sensor mounted on the upper wall of the tunnel. For finding the way in
which this parameter influences the measurements, one must do the followings:

• fix the flow velocity;
• measure the voltage given by the hot-wire probe while the temperature increases

with 0,1◦C;

The relation obtained between the voltage and temperature will be used to correct all
the measured data.

3. Calibration curve of the sensor

Having the sensor placed in the flow and knowing the influence of the temperature
over the measurements one is able to start finding the relationship between the voltage
given by the probe and the flow velocity.

The measurements are performed, by increasing the velocity, gradual, until the maxi-
mum is reached, by acquiring, simultaneously, the voltage and the velocity.

4.3.4 Hot-film probe calibration procedure

The calibration curve of the hot-film probes expresses the relationship between the
wall shear-stress and the voltage given by the anemometer. To settle this curve, several
stages have to be accomplished.

Three parameters are considered for the hot film probe measurements:

1. the orientation of the probe related to the flow direction;
2. the variation of the sensor voltage with the temperature difference between the water

and the film;
3. the relationship between the voltage given by the sensor and the wall shear stress.

All the calibration stages can be summarized in a schematic representation, see figure
4.11.

Furthermore every block from the scheme is detailed, obtaining, finally, the calibration
equation for the hot-film probe and it is evidenced the relationship between the wall shear
stress and the flow velocity.

Meanwhile, the preliminary step for using a hot-film probe is its surface cleaning.
Before mounting the hot-film probe in its support, on the test section upper wall, it must
be cleaned as it follows:
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V=f(α)

αcor 

V=f(θ)

Vcor(θ)

V=f(C∞ )

τp=f(C∞ )

τp=f(C∞  ,cτ)

Figure 4.11: Calibration procedure systematized

1. Use a microscope to survey the probe’s surface,

2. The surface cleaning, to remove the greases on the film, using a cotton rod covered
by a Kodak lens cleaning paper impregnate with alcohol at 90◦,

3. Rinse with distill water, not to break the insulating layer on the surface of the probe

4. Control the surface of the probe on the microscope and redo the cleaning if needed.

One of the sources of error in using heated films is the positioning of the probe: it
must be flush mounted relative to its support and to the wall. Therefore, the probe is
flush mounted to the wall in the test section, the way illustrates in figure 4.12.

FLOW SYSTEM

TOP VIEW OF PROBE

Constant

Temperature 

Anemometer

Hot

Film

Nickel Film

Pyrex Rod

Gold Electrical 
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 0.2 mm
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Wall
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Figure 4.12: Uni-directional hot-film probe mounting in the calibration tunnel
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Chapter 5

WALL SHEAR-STRESS
MEASUREMENTS IN THE CONE

5.1 BACKGROUND

The draft tube of a Francis turbine converts the residual kinetic energy at runner
outlet in pressure energy and, in this way, it increases the pressure difference between the
inlet and the outlet of the turbine. This recovery of energy can represent a significant
part of the total energy of the turbine, in particular, for the case of the low heads, and
the correct operation of the draft tube is, from this point of view, an important quality
factor for the turbine. The kinetic energy conversion into pressure energy in the draft
tube is related to the increasing flow section, and the maximum opening angle of a conical
diffuser is searched. The cone angle is limited by the onset of flow separation, because
this separation decreases the flow section; the corresponding increasing of the flow velocity
produces a decreasing of the pressure recovery.

In the presence of a rotating flow at the draft tube inlet, the fluid particles have a
lengthened trajectory related to the flow without rotation. For this reason, the pressure
gradient ∂p

∂s
experienced by the particle on its trajectory is reduced, and for relatively

important opening angles of the draft tube, separation appears. The design responsibility
becomes, in this way, the definition of the transversal areas evolution, assuring in the
same time a flow without separation for the entire functioning domain of the machine, by
reducing at maximum the dimensions - see figure 5.1.

In the same time, the flow in the cone is strongly unsteady and it takes place with
an adverse pressure gradient. Depending on the operating point of the turbine, many
unsteady phenomena can take place at this level of the draft tube: the swirl flow at
the runner frequency, the wakes of the runner blades, the rope of the correspondent
vortex for the low discharge operating points. All of these unsteady phenomena represent
a supplementary difficulty for the optimal cone-opening angle design. The numerical
simulations of the flow in this region are based, for the wall region, on the steady models of
boundary layer and separations are not predicted. One of the most interesting parameter
of the flow, in this part of the turbine, is the wall shear-stress, which is an indicator of the
boundary layer’s status and of the possible unsteady separations. From the calculation
point of view, the wall shear-stress allows us to control the validation of the wall laws
used for the turbulence modelling near the wall.

43
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Figure 5.1: Area evolution in FLINDT draft tube

For these reasons, it is important to study the flow in the cone, to see the tendency of
those unsteady separations and to validate the CFD codes.

There will be described the measurement procedure as well as the analysis of the
results for wall shear-stress measurements performed at the runner outlet of the Francis
turbine, to understand the behavior of the flow in this part of the turbine.

The wall shear-stress measurements are performed in 2 sections, at a distance of
0.25φrunner from the runner outlet and 0.7φrunner of the cone for each FLINDT II operat-
ing points. The global measurements of flow, head and efficiency are performed following
IEC recommendations at LMH (Laboratory for Hydraulic Machines), **** [1993].

There are explored 4 "standard" and 1 off-design operating point, for 2 σ values, to
characterize the drop of the draft tube efficiency, see Arpe [2003]. The operating points
are presented on the turbine efficiency hill chart in figure 5.2.
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5.2 HOT-FILM PROBE CHARACTERIZATION

For the wall shear-stress measurements it is used a flush mounted hot-film probe,
55R46, produced by DANTEC Measurement Technology, see figure 5.3.

3

Color code:
Red: Air use
Blue: Water use

Cable, length 1 meter

Color code:
Red: Air use
Blue: Water use

2

2 15 8

2.1

2.1

Figure 5.3: Flush mounted hot-film probe - detailed view

This probe is specially intended for measuring the wall shear-stress in both laminar
and turbulent boundary layers.

They work on the principle of the similarity between temperature and velocity profiles
in the viscous sublayer.

55R45 (0.5 μm coating)
55R46 (2 μm coating)

0.75

0.2

Figure 5.4: Flush mounted hot-film probe - front view

The sensor is embedded on a quartz cylinder, see figure 5.4. This quartz layer ensure
an insulating protection of the probe and therefore, any voltage difference, between the
water and the anemometer ground wire, can cause a breakdown in the insulating quartz
coating destroying in this way the probe. That is why one have to pay attention and
never forget to ground the water near the probe.

Thickness
of quartz
coating

Sensor
mater-
ial

Sensor di-
mensions

Sensor
resistance
R20

(approx.)

Leads re-
sistance

Temperature
coefficient
of resistance
(TCR) α20

(approx.)

Max.
sensor
tempera-
ture

Max.
ambient
tempera-
ture

Max.
ambient
pressure

Frequency
limit
fcpo

2 μm nickel 0.75x0.2
mm

11.9 Ω 1.4 Ω 0.47%/C 150◦C 100◦C 70 bar 30 kHz

Table 5.1: Technical data for the 55R46 flush mounted hot-film probe
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Figure 5.5: Rotating support and hot-film probe

Hot-film probe supports are designed so that they are adapted both to the test section,
for the calibration and to the cone turbine section, see figures 5.5 and 5.6. They allow, in
the same time, the angular rotation of the probe with about 260 degrees, every 10 degrees
or 130 degrees, every 5 degrees.

Figure 5.6: Rotating support for hot-film probe, mechanical design

Placing the hot-film probe in the flow requires the accomplishment of 2 steps:

1. A preliminary mechanical adjustment. The probe is mounted in its support and it
is controlled on a microscope for placing it flush mounted related to the support.
Once the probe is verified to be flush mounted in the support, the control of the
angular position of the film related to its support is needed. It is parallel orientated
with the direction of the support length, see figure 5.7, using a microscope.

2. Probe orientation in the water tunnel. Finally in the calibration tunnel, the hot-
film probe in its support is perpendicularly orientated to the flow direction
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Flow direction

Hot film

Support

Screw

Figure 5.7: Hot-film probe orientation

5.2.1 Calibration curve

The voltage given by the hot-film probe is acquired simultaneously with the water
temperature and the flow velocity, measured with the Pitot tube. The results are presented
in figure 5.8.
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Figure 5.8: Output voltage variation with the mean flow velocity

The relation between the sensor voltage and the mean flow velocity is a polynomial
one. The polynomial coefficients varies for each probe, depending on its characteristics:

C∞ = a3 · V 3 + a2 · V 2 + a1 · V + a0. (5.1)

For this sensor: a3 = −0.5378, a2 = 11.055, a1 = −72.55, a0 = 155.75.
The calibration relation is found by taking into account the equation 5.2 that describes

the behavior of the hot-film probe, Goldstein et al. [1983].

q

�T = 0.807
c
1/3
p λ2/3

L1/3μ1/3
(ρτp)

1/3 (5.2)
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It is known that the heat transfer is associated with the heated current and with its
resistance by equation 5.3.

q =
I2R

Ae

(5.3)

By replacing the relation 5.3 in the equation 5.2 and taking into account that the term
0.807Ae

c
1/3
p λ2/3

L1/3μ1/3 depends only on the temperature, so that it can be considered A(θ) =

0.807Ae
c
1/3
p λ2/3

L1/3μ1/3 it is obtained the relation 5.4.

I2R

ΔT
= A′(ρτp)1/3 (5.4)

From the experiences, see Goldstein et al. [1983], the relation 5.4 becomes:

I2R

ΔT
= A′(ρτp)1/3 +B′ (5.5)

where B’ is the term that characterize the heated losses, which do not arrive directly in
the water.

ΔT =
H − 1

α
(5.6)

For a very small temperature range, ΔT → 0, it is known that the relation 5.6 is valid,
so that the relation 5.5 becomes:

I2R

H − 1
=
A′

α
(ρτp)

1/3 +
B′

α
(5.7)

and by considering:

A = A′
α

B = B′
α

(5.8)

the relation 5.7 take the form of relation 5.9.

I2R

H − 1
= A(ρτp)

1/3 +B (5.9)

The anemometer is a constant temperature one and at his output a voltage and not
a current is obtained; hence by applying the Ohm’s law in the Wheatstone bridge the
anemometer’s output voltage can be detailed by the relation 5.10.

V = I · (Rvar +Rint +Rc +R1) = I ·Rtot (5.10)

In this way, the relation 5.9 can be rewritten as:

V 2R

Rtot
2(H − 1)

= A(ρτp)
1/3 +B (5.11)
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and the calibration curve becomes:

τp =
1

ρ
(

V 2R

Rtot
2(H − 1)A

− B

A
)3 (5.12)

The 2 coefficients of the calibration curve, A and B are determined considering the
relation between wall shear-stress and the friction velocity, see relation 4.36, and the
relation determined between the friction velocity and the flow velocity, see relation 4.38.
One example of calibration coefficients determination is illustrated in figure 5.9 and their
values in 5.13.
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Figure 5.9: Calibration coefficients, A and B, determination

A = 0.025606
B = 0.437984

(5.13)

Finally, the calibration curve is obtained, figure 5.10, and the global accuracy of the
calibration is less than 2% of the measured value. Its final equation is illustrated by the
equation 5.14.

τp =
1

ρ
(1.149879 · V 2 − 17.104741)3 (5.14)
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Figure 5.10: Hot-film probe calibration curve

Observation The measurements accuracy, for a parameter a, is calculated using the
relation 5.15:

Accuracy =
acalculated − ameasured

ameasured

· 100 (5.15)

5.2.2 Sensitivity parameters

The heat transfer by convection between the hot-film probe and the flow is not de-
pending only on the flow velocity, but also on three supplementary parameters:

1. the difference between the water and probe temperature;
2. the angle between the hot-film probe direction and the flow direction;
3. the contamination of the hot-film probe.

All these three parameters represent noise sources for the wall shear-stress measure-
ment and their effects must be evaluated and integrated in the calibration procedure for
the hot-film probe, because their variations can introduce wall shear-stress measurement
errors of many percentages (10 to 50).

1. Temperature gradient influence

The temperature of the water gives one of the major impact over the measurements.
This is due to the fact that between the water and hot-film probe takes place a heat
exchange.

The hot-film probe is actually an electrical resistance maintained at a constant temper-
ature and by its physical property, depends linear on the temperature difference between
film and medium where it is placed.

The constant-temperature anemometer is adjusted for an established temperature gra-
dient between the water and the hot-film. But since in the hot-film probe calibration, the
water temperature can’t be controlled and kept constant at a initial calibration value, this
temperature varying continuously, with about 0.1◦C every 30 minutes, the overheating
rate for which the anemometer was calibrated is, also changing. So, it becomes obvious
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the necessity of a correction of the calibration relationship when the water temperature
modifies from its calibration value. For these reasons, the influence of this parameter over
the measurements should be known.

For every hot-film sensor there are performed 2 steps:

1. anemometer calibration;
2. relationship estimation used to correct the data.

The description of the procedure for the calibration of the CTA and the results are
presented in the annexe B.

Once the anemometer calibration performed, the measurements are done by fixing
the pump speed and through it, the velocity of the flow. The water temperature is
acquired together with the voltage coming from the hot film probe, and it is determined
the relationship between those 2 parameters, see figure 5.11.
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Figure 5.11: Method used to adjust the voltage drift due to the water temperature changes

The variation of the electrical resistance versus temperature is a linear one, so that the
relation between the voltage and temperature can be considered also a linear relationship,
given by equation 5.16.

V = a · θ + b (5.16)

Further, having found the 2 constants a and b, it is found the relation that allows the
correction of the output voltage given by the hot-film probe with the water temperature.
All the data will be reported to the temperature of the anemometer’s calibration, that
is 21, 1◦C and all the time they will be corrected to the values corresponding to this
temperature.

For finding the coefficients values and for establishing the relation that allows the
correction of the voltage values given by the hot-film probe, it is assumed that it is
measured a value Vmes, for the flow velocity of C∞ and at the temperature θmes, different
from the anemometer’s calibration temperature of 21, 1 ◦C.

Moreover, it is known that the output voltage changes with the temperature according
to the relation:

V + v = a · θ + b (5.17)
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For a measurement point it is found the value of v:

v = a · θmes + b− Vmes (5.18)

Starting from the relation 5.18, it can be deduced that the voltage measured for a
different temperature will be corrected using the following relation:

Vcor21,1 = a · (21.1 − θmes) + Vmes (5.19)

For this calibration, the influence of the water temperature on the output voltage of
the hot-film probe is illustrated by the relation 5.20 and it is represented in figure 5.12.

V = −0.1233 · (21.1 − θ) + 9.6222 (5.20)
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Figure 5.12: Hot-film probe output voltage evolution with the water temperature
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2. Orientation of the hot-film probe in the flow

The maximal heat dissipation is obtained when the longitudinal direction of the film
is perpendicular to the flow direction; this means maximum voltage value at the output
of the anemometer.

For finding the maximum value of the voltage it is imposed the value for the flow
velocity and kept constant, while the angle made by the film’s sensor with the direction
of the flow is modified, step by step, by 10◦, considering that when the sensor is turned
on the left side, the angle is negative and, in the other side, positive. For a constant wall
shear-stress value, the variation of the measured voltage with the probe angle is presented
in the figure 5.13.
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Figure 5.13: Angular variation of the voltage given by the sensor

Taking into account that the film was aligned with the support, while this one was
mounted initially perpendicular to the flow in the tunnel, corresponding to 0◦ in the
graphic, it is found that the hot-film probe reaches the maximum value of the voltage for
the angle α = 90◦ between the direction of the film and the mean direction of the flow.
Another observation concerns the non-symmetry of the 2 maxima/minima of the angular
validation curve, see figure 5.13. An explanation for this thing can be the non-symmetry
of the sensor geometry, linked to the insulating layer which surrounds the film.

To determine the angle of the probe in the cone there was approximated the evolution
of the voltage versus the angle with a function composed by an constant and a sum of 2
sinus and the results obtained are presented in the figure 5.14.

Observation It is detailed only the variation of the angle between −30◦ and +30◦,
because it is known that the maximum value for the voltage is around 0◦, see figure 5.14.

It can be concluded that for the calibration, the film’s sensor should make with the
direction of the flow 90◦.
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Figure 5.14: Angular variation of the wall shear-stress

3. Contamination of the hot-film probe

The third parameter taken into account is the contamination of the hot-film probe with
the water impurities. For finding the influence of this parameter, the calibration curve
is repeated after a measurement day and the 2 calibration curves obtained are compared
in the figure 5.15 and the figure 5.16. The coefficients of the 2 calibration curves are
presented in the table 5.2.

Measurement day A′ B′

First day 0.0256 0.4379
Following day 0.0248 0.4945

Table 5.2: Calibration curves coefficients
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Figure 5.15: Coefficients calculation of the 2 calibration curves



5. WALL SHEAR-STRESS MEASUREMENTS IN THE CONE 55

5.5 6 6.5 7
5

10

15

20

25

30

35

40

45

50

Output voltage [V]

W
a

ll 
s
h

e
a

r-
s
tr

e
s
s
 [

P
a

]

Second day ca libra tion curve
In itia l ca libra tion curve

Figure 5.16: Probe contamination influence on the calibration curves

By comparison between the 2 calibration curves it can be noticed that the calibration
curve changes day by day. The magnitude of the contamination error is about 1,4% of
the measured value. The reasons for this are the impurities from the water, which are
laid on the hot-film probe’s surface.

This inconvenient can be eliminate in 2 ways:

• if the difference between the 2 calibration curves is smaller than 3%, a cleaning of
the hot-film probe is enough;

• if the difference is, yet, bigger than 3%, the calibration of the hot-film probe must
be redone.

5.3 MEASUREMENT OF THE WALL SHEAR-STRESS
IN A FRANCIS TURBINE’S CONE

5.3.1 Experimental set-up

In the framework of FLINDT, Flow Investigation in Draft Tubes, research project,
EUREKA no. 1625, the wall shear-stress measurements are performed, Berca and Ciocan
[2002], in the cone of a ν = 0.56, nq = 92, industrial high specific speed Francis turbine
scale model, located in the test rig PF III from the EPFL, Laboratory for Hydraulic
Machines, see figure 5.17.

The general characteristics of this turbine are:

• impeller blades number: 17;
• stay vanes: 10;
• guide vanes: 20;
• runner’s diameter: 0.4m.
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Figure 5.17: FLINDT Francis turbine scale
model

0.80

0.70

0.60

0.50

0.40

0.30

0.30 0.35 0.40 0.45
ϕ [-]

[-]χ A

B

C
D

Figure 5.18: Draft tube pressure recovery

The global measurements of flow, specific energy and efficiency are performed accord-
ing to IEC recommendations **** [1993] at the EPFL, Laboratory for Hydraulic Machines.
Four standard operating points are selected to characterize the draft tube characteristic,
see figure 5.18, and 1 off-design operating point for 2 σ values, to characterize the drop
of the draft tube efficiency, see table 5.3. The model characteristics and the selected
operating points are described in Arpe [2003].

Discharge coefficient Energy coefficient Thoma number
ϕ[−] ψ[−] σ[−]

OP A 0.34 1.18 -
OP B 0.368 1.18 -
OP C 0.38 1.18 -
OP D 0.41 1.18 -

OP with vapor phase 0.256 1.18 0.38
OP without vapor phase 0.256 1.18 0.26

Table 5.3: Studied operating points characterization

For the wall shear-stress measurements, two sections are investigated, inlet and outlet
sections of the turbine model cone, figure 5.19. The wall shear-stress distribution in the
turbine’s cone is realized by embedding the hot-film probe, see figure 5.20, at the cone
inlet section in 9 different locations, and at the cone outlet section, in 7 different locations.

The data acquisition for the measurements in the cone was performed using the same
acquisition module CA-1000 from the National Instruments, as for the calibration. How-
ever, for acquiring measurements synchronous with the runner rotation, the sampling
frequency was limited at 3kHz, during 9 seconds. So, there were acquired 11 sets of 27000
data samples for each operating point as well as for each spatial position of the sensor.
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Figure 5.19: Wall shear stress measurement sections
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Figure 5.20: Wall shear stress sensors locations

5.3.2 Wall shear stress measurements procedure

For the wall shear-stress measurements in a Francis turbine, the influence of the three
calibration parameters must be quantified in the cone configuration, Ciocan et al. [2002].

Water temperature correction

The first parameter to be taken into account during all the measurements is the water
temperature. In the turbine test rig the temperature control step is 2◦, that transposed in
wall shear-stress represents a 30 Pa variation, meaning 15% of the mean wall shear-stress
value.

The main reason for evaluation of this parameter is explained by water temperature
variation, as mentioned above, in the turbine. Moreover, there must be taken into account
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the change in sensor’s mounting configuration. In the hydrodynamic water tunnel, the
hot-film probe is mounted on a steel plate, while in the Francis turbine’s cone it is mounted
on a plexiglas interface. As the sensor’s interface is bronze, it’s expected a change in the
heat transfer due to the 2 different configurations, which should be quantified.

To eliminate the influence of this parameter in the wall shear-stress measurements, the
water temperature is acquired simultaneous with the wall shear-stress. Each instantaneous
value of shear-stress is corrected with the instantaneous water temperature.

The relationship between the voltage given by the hot-film probe and the water tem-
perature in the cone, see figure 5.21 is given by relation 5.21.

V = −0.1382 · θ + 10.5236 (5.21)

19.5 20 20.5 21 21.5 22 22.5 23
7.35

7.4

7.45

7.5

7.55

7.6

7.65

7.7

7.75

7.8

7.85

Water temperature [°C]

O
u

tp
u

t 
v
o

lt
a

g
e

 [
V

]

19.5 20 20.5 21 21.5 22 22.5 23
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Water temperature [°C]

A
c
c
u
ra

c
y
 [
%

]

Figure 5.21: Variation of the output voltage of the hot-film probe with the water temper-
ature in the cone

By comparison between the 2 temperature curves, see figure 5.22, in the calibration
tunnel and in the cone of the Francis turbine, there can be noticed that the hot-film



5. WALL SHEAR-STRESS MEASUREMENTS IN THE CONE 59

probe is more sensible in the cone - the sensibility of the hot-film probe in the cone being
0.138V/◦C, related to the one in the tunnel, 0.123V/◦C. As sensor’s interface is from
bronze, the heat transfer between the bronze and steel, the hot-film probe being mounted
on a steel plate in the tunnel, is higher than the heat transfer between the bronze and
plexiglas, the hot-film probe being mounted on plexiglas in the cone.

20 20.5 21 21.5 22 22.5 23
7.5

7.6

7.7

7.8

7.9

8

8.1

Water temperature [°C]

O
u
tp

u
t 
v
o
lt
a
g
e
 [
V

]

Calibration tunnel
Cone

Figure 5.22: Temperature curves comparison obtained in the cone and in the calibration
curve

For wall shear-stress measurements performed in the cone of a Francis turbine, the
relation used to correct the measurements related to the anemometer’s calibration tem-
perature is illustrated by relation 5.22.

Vcor = −0.1382 · (21.1 − θmes) + Vmes (5.22)

The orientation of the hot-film probe in the flow

As the calibration showed, the maximal heat dissipation is obtained when the longi-
tudinal direction of the film is perpendicular to the flow direction, meaning maximum
voltage value at the output of the anemometer. For each operating point and for each
spatial position of the probe in the cone, it is researched the maximum value for the
voltage coming from the hot-film probe. For a constant mean wall shear-stress value, the
variation of the measured wall shear-stress with the probe angle in the flow is presented
in figure 5.24.

Figure 5.23: Angle made by the longitudinal direction of the hot film with the flow
direction
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Figure 5.24: Influence of the hot-film probe orientation on the wall shear-stress

For the explored operating points, see Iliescu et al. [2002], the flow at the runner outlet
is unsteady and the velocity angle variations near the wall are ±8◦, see figure 5.24, Ciocan
et al. [2000]. As for the unsteady measurements, the hot-film probe was orientated on
the mean flow direction, the change of the flow velocity direction with ±8◦ leads to an
estimated error for the unsteady component of about ±0.5Pa. Related to the mean wall
shear-stress value of 17Pa, this represents a systematical error of 3 %.

Water contamination influence

As the calibration procedure has shown, due to the contamination of the hot-film
probe with water impurities, during the measurements, the calibration curve changes.
Due to the slope of the curve, deviations are observed and a calibration before and after
each measurement, in a turbine configuration, can’t be performed. To eliminate this
inconvenient, one has to control and correct the slow drift of the calibration curve in the
measurement zone. This inconvenient can be eliminated in 2 ways:

• if the difference between the wall shear-stress analogue values corresponding to the 2
calibration curves is smaller than 3%, the drift correction is performed, correspond-
ing to figure 5.25;

• if the difference between the wall shear-stress analogue values corresponding to the
2 calibration curves exceed 3%, the coefficients of the calibration curve should be
corrected.
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Figure 5.25: Drift correction scheme
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For the turbine, 4 operating points, the nominal point for 4 different runner speeds,
for each spatial position, are measured after the calibration and the wall shear-stress
values are considered as reference. The reference operating points are measured at the
beginning and at the end of the measurements day, corresponding to an spatial position
of the hot-film probe in the cone.

For the first case mentioned above, the scheme for calculating the drift correction is
presented in the figure 5.25. Because the difference between the analogues points does
not exceed 3%, it can be applied the linear drift method, assuming that the measurement
point it is placed on the line that gets together the middle of the distance between those
analogue points, see figure 5.26.
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Figure 5.26: Method for correction the measurements

If the difference between the wall shear-stress analogue values corresponding to the 2
calibration curves exceeds 3%, the coefficients of the calibration curve are corrected in the
way to obtain the same wall shear-stress values for the reference points before the drift,
see figure 5.27.

These operations are repeated before and after every new operating point and for each
spatial position of the hot-film probe in the cone.
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Figure 5.27: Measurements correction procedure
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5.4 THE ANALYSIS OF THE RESULTS AT THE RUN-
NER OUTLET

Wall shear stress measurements are performed at the runner outlet for 4 standard
operating points and 1 "partial load" operating point for 2σ values. 9 spatial positions in
the cone are explored, see figure 5.28.
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Figure 5.28: The spatial positions of the wall shear-stress probe in the measurement
section at the runner outlet

The measurement system used for the signals acquisition in the cone is the same as
the one used in the calibration procedure, right arm, see figure 4.4. The only difference
is the synchronization of the signals acquisition with the runner position, realized by an
optical encoder mounted on the runner shaft.

For the cone measurements, it is used the sampling frequency of 3kHz; there are
acquired samples of 27000 data, meaning an acquisition time of 9 seconds. For every
measurement, corresponding to an operating point, there were performed 11 acquisitions.

5.4.1 Near BEP operating points

Steady analysis

The purpose of the steady analysis regarding the wall shear-stress values, is to evaluate
the distribution of the mean wall shear-stress and to offer informations regarding the
boundary layer’s tendencies of separation.

An analysis of the evolution of the wall shear-stress related to the operating points is
proposed. The first representation, see figure 5.29, is related to the distribution of the
wall shear-stress values with the spatial position and operating point. For each operating
point the repartition is quite uniform. The same tendency is noticed for the mean pressure
distribution, in the same section, at the cone inlet, see 5.30.

In a constant section, without separation tendencies, the wall shear-stress increases
proportionally with the mean flow velocity. For all positions, in the present case, the
tendency is opposite: the wall shear-stress decreases with the increasing of the mean flow
velocity, see figure 5.31; this shows a separation tendency of the boundary layer.

As the draft tube characteristic, see figure 5.18, evidenced an important drop between
ϕB = 0.368 and ϕC = 0.38 operating points, it is interesting to see, if this drop is due to
a boundary layer separation. As figure 5.31 shows, the boundary layer is quasi identical



5. WALL SHEAR-STRESS MEASUREMENTS IN THE CONE 63

0 50 100 150 200 250 300 350
90

100

110

120

130

140

150

160

170

180

Angular position of the hot-film probe [°]

W
a

ll 
s
h

e
a

r-
s
tr

e
s
s
 [

P
a

]

OP A

OP B

OP C

OP D

0.80

0.70

0.60

0.50

0.40

0.30

0.30 0.35 0.40 0.45
ϕ [-]

[-]χ A

B

C
D

Figure 5.29: Steady wall shear-stress distributions at a distance of 0.25φrunner from the
runner outlet

0 50 100 150 200 250 300 350
-0.32

-0.3

-0.28

-0.26

-0.24

-0.22

-0.2

-0.18

-0.16

Angular position of the pressure sensor [°]

M
e

a
n

 p
re

s
s
u

re
 [

b
a

r]

OP A
OP B
OP C
OP D

Figure 5.30: Mean pressure distribution with the operating point and the pressure sensor
spatial position

0.34 0.35 0.36 0.37 0.38 0.39 0.4 0.41
90

100

110

120

130

140

150

160

170

180

ϕ [−]

W
a

ll 
s
h

e
a

r-
s
tr

e
s
s
 [

P
a

]

Position 12°

Position 45°

Position 78°

Position 102°

Position 180°

Position 225°

Position 270°

Position 315°

Position 348°

Figure 5.31: Wall shear stress distribution with the operating point and the hot-film probe
spatial position



64 5. WALL SHEAR-STRESS MEASUREMENTS IN THE CONE

between ϕB = 0.368 and ϕC = 0.38 operating points, meaning that the boundary layer is
not very sensitive to the velocity distribution in the section, Ciocan et al. [2000].

Figure 5.32: Tangential velocity components at the runner outlet

The stability of the runner outlet velocity profile, see figure 5.32, can be the main
reason of the characteristic drop and not a boundary layer separation, see Susan-Resiga
et al. [2006]. For this stability analysis of the runner outlet velocity profile, the boundary
layer is no considered.

A comparison with the classical models of boundary layers, see figure 5.33, used by
the classical CFD codes, is also presented, for 4 angular positions: 78◦, 180◦, 270◦ and
348◦, see Mauri [2002]. The computed wall shear-stress values are underestimated with
about 25% and there is not a significant difference between the different spatial positions
of the hot-film probe.
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Figure 5.33: Comparison with the numerical approaches
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Unsteady analysis

The method used to separate the periodical fluctuations from the general fluctuations
of the wall shear stress is called synchronous average (phase average). This method allows
to notice the influence of the runner position over the shear-stress distribution.

Thus, the instantaneous wall shear stress may be decomposed, for a period T of the
blades passage, as it follows:

τ(t) = τ̄ + (τ̃(t1) − τ̄) + τ ′(t) (5.23)

expression where:

• τ(t) - instantaneous value of the wall shear-stress;

• τ̄ - statistical average;

• τ̃(t1) - synchronous average for an instant t1 of the period;

• τ ′(t) - random turbulent fluctuations;

• t1 - an instant of the period T , corresponding to an angular position, ϕ of the runner:
t1 = ϕT

2π

t

τ

τ

SYNCHRONISATION IMPULSE

t1

T

2°

'~+τ τ

t?t?

τ~

Figure 5.34: Phase average scheme

The spectral analysis evidences, for all spatial positions of the hot-film probe, two main
characteristic frequencies: runner’s rotating frequency and the blade passage frequency,
see figures 5.35, 5.36, 5.37 and 5.38. The guide vanes frequency exists for several spatial
positions of the probe, but with a small amplitude.

The synchronization of the signal acquisition and the runner position is realized by an
optical encoder mounted on the runner shaft. It delivers a synchronizing signal with 1
pulse per rotation and a second signal with 9000 pulse per rotation. In this way, a phase
average is performed for each of these characteristic frequencies.
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Figure 5.35: Spectral analysis of the wall shear-stress for operating point A
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Figure 5.36: Spectral analysis of the wall shear-stress for operating point B
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Figure 5.37: Spectral analysis of the wall shear-stress for operating point C
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Figure 5.38: Spectral analysis of the wall shear-stress for operating point D
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Figure 5.39: Wall shear stress phase average with runner rotation, operating point A
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Figure 5.40: Wall shear stress phase average with runner rotation, operating point B
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Figure 5.41: Wall shear stress phase average with runner rotation, operating point C

A drop is evidenced for the phase average performed with the runner’s rotating fre-
quency, corresponding to all spatial positions, see figures 5.39, 5.40, 5.41 and 5.42.

As all acquisitions are started at the same spatial runner position, and the angular
position of the sensor are known in the cone, there are represented all the phase averages
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Figure 5.42: Wall shear stress phase average with runner rotation, operating point D

for the same absolute angular position. So, the drop position corresponds spatially at the
spiral casing tongue location.

At the runner outlet, the wall shear-stress distribution reproduces the non-uniformity
in the spatial pressure and velocity distributions in the same section, see Ciocan [1998],
modulated with the runner speed.
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Figure 5.43: The signals in phase corresponding to all standard operating points
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The fluctuation magnitudes are 20% of the wall shear-stress mean value for the values
synchronous with the runner rotation.

The phase average performed for the runner’s rotating frequency has evidenced also
that a signal was shifted related to the others; figure 5.43 shows 3 signals corresponding
to 3 sensor’s positions: 180◦, 270◦ and 348◦ which are in phase for all 4 operating points;
for the 78◦ position, the signal is shifted with a half of the blade passage period, see figure
5.44, explained by the elbow effect. The phase shift represents a flow deceleration or
acceleration related to the hot-film spatial position and induced by the pressure gradient
between the elbow’s upstream and downstream sections. The same characteristics are
obtained on the unsteady wall pressure measurements, see Ciocan et al. [2001].
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Figure 5.44: The signal shifted evidenced for all standard operating points

The phase average, made on the blade passage evidences that the fluctuation amplitude
represents 2.5% of the mean wall shear-stress value, see figure 5.45, for all standard
operating points. These results are coherent with the phase average velocity measurements
- see Ciocan et al. [2000].
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Figure 5.45: Wall shear stress phase average with the blade passage

5.4.2 Partial load operating points

Steady analysis

The distribution of the wall shear-stress values with the spatial position related to the
partial load operating points at the cone’s inlet is shown in figure 5.46.
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Figure 5.46: Steady wall shear-stress distributions at the cone’s inlet, for both the near
BEP and partial load operating points
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It is noticed that the steady wall shear-stress values obtained for both partial load
operating points, with and without vapor phase, are higher than the ones obtained for
the standard operating points. Moreover, it is evidenced that for every spatial position of
the hot-film probe in the section there is no difference between the steady wall shear-stress
values corresponding to the 2 partial load operating points, with high σ and low σ.

Unsteady analysis

The spectral analysis performed for every partial load operating points evidences one
characteristic frequency: vortex’s rotating frequency, see figures 5.47, 5.49, 5.51, 5.53,
5.55, 5.57, 5.59, 5.61 and 5.63, corresponding to every angular position of the hot-film
probe at the runner outlet.

For this characteristic frequency there was performed the phase average, for every
spatial position of the probe at the cone inlet, and for every partial load operating point,
see figures 5.48, 5.50, 5.52, 5.54, 5.56, 5.58, 5.60, 5.62 and 5.64.

For every angular position of the probe, the same tendency is noticed: the rope fre-
quency is dominant and its amplitude is higher (15%) for the high σ value (without vapor
phase); it decreases with the increasing of the vapor phase. This higher amplitude is
explained by the proximity of the rope to the wall.
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5.5 THE ANALYSIS OF THE RESULTS AT THE CONE
OUTLET

Wall shear stress measurements are also performed at the cone outlet for the same
4 standard operating points and 1 partial load operating point for 2σ values, as at the
runner outlet; 7 spatial positions in this cone section are explored, see figure 5.65.

S 1.75S 1.75 24 (12°) 

20 (78°) 18 (102°) 

12 (192°) 

8 (258°) 

2 (348°) 

UPSTREAM
DRAFT

TUBE

6 (282°) 

Figure 5.65: The spatial positions of the wall shear-stress probe in the measurement
section at the cone outlet

5.5.1 Near BEP operating points

Steady analysis

An analysis of the evolution of the wall shear-stress related to the operating points at
the cone’s outlet is proposed. The first representation, see figure 5.66, is related to the
distribution of the wall shear-stress values with the hot-film probe’s spatial position and
operating point. In this section it is remarked the bend influence over the wall shear-
stress distribution. As a matter of fact, around 180◦ position, that corresponds to the
bend position, the wall shear-stress values are 25% less than the values corresponding to
the upstream positions. As at the cone inlet, at the cone outlet, the wall shear-stress
distribution has the same tendency as the mean pressure distribution, see figure 5.67.
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Figure 5.66: Steady wall shear-stress distributions at the Francis cone outlet
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Figure 5.67: Mean pressure distribution at the cone outlet with the operating point

The second representation, see figure 5.68, concerns the comparison between the steady
wall shear-stress distributions with the angular position and operating point, for the 2
measurement sections, the cone inlet and outlet. The wall shear-stress values are about
1/3 of the runner exiting values for all standard operating points.
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Figure 5.68: Steady wall shear-stress distributions at the cone inlet and outlet

For the cone outlet the same tendency like at the runner outlet exists: the wall shear-
stress decreases with the increasing of the mean flow velocity, see figure 5.69; this shows
a separation tendency of the boundary layer with the flow rate increasing.

As in the runner outlet section, the boundary layer is quasi identical between ϕB =
0.368 and ϕC = 0.38 operating points.

It is noticed that the hot-film probe was placed in 4 common spatial positions in the
2 measurement sections: positions 12◦, 78◦, 102◦ and 348◦. By comparison between those
common angular positions of the hot-film probe, see figure 5.70, it is remarked the major
difference in the wall shear-stress values obtained at the same angular position of the
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Figure 5.69: Wall shear stress distribution with the operating point and the spatial posi-
tion, at the cone outlet

probe in the 2 sections and that the values obtained at the inlet are 3 times higher than
the ones obtained at the outlet.
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Figure 5.70: Wall shear stress distribution with the operating point for the same spatial
positions, at the cone inlet and outlet

Unsteady analysis

The spectral analysis performed for the near BEP operating points does not evidence,
for any spatial position, any characteristic frequency see figures 5.71 to 5.77. The runner
characteristic frequency appears, for some operating points and several angular positions
of the hot-film probe at the cone outlet; its amplitude is rather small - around 3% of the
mean wall shear-stress value.
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Figure 5.71: Spectral analysis of the wall shear-stress corresponding to the 12◦ angular
position of the hot-film probe
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Figure 5.72: Spectral analysis of the wall shear-stress corresponding to the 78◦ angular
position of the hot-film probe



86 5. WALL SHEAR-STRESS MEASUREMENTS IN THE CONE

0 2 4 6 8 10 12 14 16 18 20
0

5

10

Frequency / Runner frequency [-]

Position 102°

0 2 4 6 8 10 12 14 16 18 20
0

5

10

Frequency / Runner frequency [-]

0 2 4 6 8 10 12 14 16 18 20
0

5

10

Frequency / Runner frequency [-]

0 2 4 6 8 10 12 14 16 18 20
0

5

10

Frequency / Runner frequency [-]

F
lu

c
tu

a
ti
o
n
 a

m
p
lit

u
d
e
 /
 M

e
a
n
 w

a
ll 

s
h
e
a
r-

s
tr

e
s
s
 [
%

]
Operating point A

Operating point B

Operating point C

Operating point D

Figure 5.73: Spectral analysis of the wall shear-stress corresponding to the 102◦ angular
position of the hot-film probe
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Figure 5.74: Spectral analysis of the wall shear-stress corresponding to the 192◦ angular
position of the hot-film probe
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Figure 5.75: Spectral analysis of the wall shear-stress corresponding to the 258◦ angular
position of the hot-film probe
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Figure 5.76: Spectral analysis of the wall shear-stress corresponding to the 282◦ angular
position of the hot-film probe
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Figure 5.77: Spectral analysis of the wall shear-stress corresponding to the 348◦ angular
position of the hot-film probe

5.5.2 Partial load operating points

Steady analysis

The same tendencies, regarding the steady wall shear-stress distribution, as for the
standard operating points, are observed for the off-design operating point, for the 2σ
values, at the cone outlet, see figures 5.78 and 5.79. The bend influence is evidenced.

Moreover, the vortex present in the center of the measurements section, defines a
"dead flow zone", inducing a decreased flow cross sectional area and, hence, leading to
high flow velocity near the wall. Thus, the absolute values of the wall shear-stress are
higher than for the standard operating points but, in mean values, the wall shear-stress
is independent on the σ value, similar to the cone inlet - see figure 5.80. The mean wall
shear-stress values at the cone outlet are smaller than at the inlet.

Unsteady analysis

The spectral analysis performed for the partial load operating points evidences the
same characteristic frequency as in the inlet section: vortex’s rotating frequency, for every
spatial position of the probe in the measurement section, see figures 5.81, 5.83, 5.85, 5.87,
5.89, 5.91 and 5.93.

For this characteristic frequency there was performed the phase average, see figures
5.82, 5.84, 5.86, 5.88, 5.90, 5.92 and 5.94, corresponding to every angular position of the
probe.
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Figure 5.78: Steady wall shear-stress distrib-
ution for the part load operating point with
vapor phase
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Figure 5.79: Steady wall shear-stress distrib-
ution for the part load operating point with-
out vapor phase
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Figure 5.80: Wall shear stress distribution with the operating point and the spatial posi-
tion, both at the cone inlet and outlet

The rope frequency is dominant and its amplitude is higher (50%) like in the cone
inlet, section 1.30. This higher amplitude is explained by the proximity of the rope to the
wall.
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Chapter 6

BOUNDARY LAYER
CHARACTERIZATION IN THE
CONE

The challenging problem in fluid mechanics, nowadays, is still the control of the behav-
ior of the turbulent boundary layers, with regard to their separation or detachment. All
existing results in turbulence theory depend on assumptions which should be reconsidered
as knowledge develops.

von Kármán [1930] and Prandtl [1932] are the first, since 1930, who proposed a model
for the turbulent boundary layer. Their model describes the wall region by means of a
universal logarithmic law, by assuming that outside the viscous sublayer, the contribution
of viscosity can be neglected. In 1950, Clauser [1954] and Coles [1956] proposed a model
for turbulent boundary layers at large Reynolds number, based on the assumption that
the transition from the wall region, described by Karman-Prandtl law, to the external
flow, called "wake region", is smooth. This model, called classical, is widely accepted and
used, especially for the zero-pressure gradient turbulent boundary layer.

Using analytic and experimental arguments, since 1991, Barenblatt et al. [2002] de-
veloped a new model for the turbulent boundary layer. This model shows that the in-
termediate region in turbulent boundary layers at large Reynolds number, between the
viscous sub-layer and the external flow consists on two self-similar structures, described
by different and substantially Reynolds-number-dependent scaling laws. However, the
boundary between them is sharp. Actually, according to this model, the mean velocity
profile in the transition region has a characteristic form of a "chevron". This model was
validated for both zero-pressure and non- zero-pressure gradient flows.

The recent progresses in the boundary layer investigation show that, for the flows with
adverse pressure gradient, the standard log-law velocity profile does not hold, near-wall
distributions of r.m.s. velocity fluctuations cannot by scaled with the wall parameters,
friction velocity and kinematic viscosity and that the response time of turbulence to the
imposed adverse-pressure-gradient, changes among streamwise wall-normal and spanwise
velocity components.

In Francis turbine, the evolution of the boundary layer in the cone is complex due to
the rotating flow at the runner outlet, the adverse pressure gradient, the interaction with
the leakage flow and the unsteady perturbations due to the runner blade-to-blade shared
flow or vortex rope.
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98 6. BOUNDARY LAYER CHARACTERIZATION IN THE CONE

This part of the thesis intents to characterize the boundary layer present in the cone of
the Francis turbine scale model, by wall shear-stress and near wall velocity measurements
and to provide the best-fitted model for the boundary layer model. Meanwhile, the
boundary layer thicknesses are determined for the cone inlet and outlet, for different
spatial positions and for 6 operating points of the turbine .

6.1 NEAR WALL 2D LDV MEASUREMENTS AND
RESULTS

To characterize the boundary layer analysis Berca et al. [2004b], a 2D velocity profile
survey is performed near the cone wall by LDV measurement method, in 2 locations in
the cone, situated at the same spatial position related to the hot-film probe, 0◦ for the 2
measurements sections, see figure 6.1.

24 (12°) 

20 (78°) 18 (102°) 

12 (192°) 

8 (258°) 

2 (348°) 

UPSTREAM
DRAFT
TUBE

6 (282°) 

SECTION 1.30 SECTION 1.75

a. Cone inlet b. Cone outlet

14 (12°) 

12 (45°) 
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6 (180°) 

5 (225°) 

4 (270°) 

3 (315°) 

2 (348°) 

UPSTREAM
DRAFT
TUBE

LDV probe LDV probe

Figure 6.1: LDV measurement location in the measurements sections related to the wall
shear-stress locations

The LDV system is a Dantec 2 components system, using back-scattered light and
transmission by optical fiber, with a laser of 5W Argon-ion source. The main character-
istics of the LDV probe are detailed in table 6.1.

Laser Probe Beam Focal Fringe Measuring Measuring
wave diameter spacing length spacing volume volume

lengths σx = σy σz

LDV 488 nm
probe 514.5 nm

60 mm 38 mm 159.4 mm 2.15 nm 0.1 mm 0.8 mm

Table 6.1: Main optical probe characteristics

An optical window with plane and parallel faces is used as interface. The geometrical
reference position of the measurements is obtained by positioning the laser beams on the
windows faces with an accuracy of better than 0.05mm.

Two components are measured: the tangential component of the velocity cx and the
axial one cz, see figure 6.2. An exploration of the complete diameter of the cone was
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already performed, see Ciocan et al. [2000] and the comparison of the near wall mea-
surements with the velocity profile showed a very good agreement, see figure 6.3. The
uncertainties of the laser measurements are estimated to 2%, according to the method of
Mofat [1985].

Cz

Cx

Figure 6.2: Near wall LDV measurements Figure 6.3: Velocity distribution in the cone
near wall region

6.2 BOUNDARY LAYER ANALYSIS
The velocity measurements in the vicinity of the cone wall between 0.2mm and 20mm,

corresponding to y+ values between 100 and 10′000, allow obtaining the boundary layer
law, for both the near BEP operating points, at the cone inlet and outlet, see figure 6.4,
and for the partial load operating points, in the 2 sections, see figures 6.5. It is considered
that y/R = 1 corresponds to the wall.

6.2.1 Boundary layer representation

Using inner variables, c+ and y+, defined by relationship 6.1, and the measured values
of the wall shear-stress and near wall velocity, the boundary layer can be represented for
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Figure 6.4: Near wall velocity measurements for near BEP operating points at the runner
and cone outlet
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Figure 6.5: Near wall velocity measurements for near BEP and 2 off-design operating
points at the runner and cone outlet

the inlet and outlet section of the cone, see figures 6.6 to 6.7.

c+ =
c

cτ
cτ =

√
τp
ρ

y+ =
ycτ
ν

(6.1)

In Section 1.30, at 0.25D1̄e from the runner outlet, the boundary layer thickness and
shape are very similar, for both the standard and the 2 off-design operating points.

In Section 1.75, at 0.7 from the runner outlet, due to the adverse pressure gradient
values, see Arpe [2003], the boundary layer thickness is proportional to the flow rate for
the near BEP operating points. At the cone outlet, the boundary layer developed at the
operating points with and without vapor phase is identical.
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Figure 6.6: Velocity profile distribution, in boundary layer inner variables, for the near
BEP operating points
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Figure 6.7: Velocity profile distribution, in boundary layer inner variables, for the near
BEP and 2 off-design operating points

6.2.2 Scaling laws for turbulent flows

Turbulence at very large Reynolds numbers is consider as one of the happier provinces
of the entire turbulence domain. Scaling laws are an important topic in turbulence re-
search, leading, mainly in a direct way to wall shear-stress laws.

The distribution of the mean velocity in intermediate region of a turbulent flow was
intensively studied over sixty years and, finally, two totally different laws were obtained
and coexist, actually, in the literature. Both of them are obtained by assuming that, in
the intermediate region of the boundary layer, see figure 6.8, the velocity gradient, ∂c

∂y
,

depends on several variables:

∂c

∂y
= f(y, τp, d, (ν, ρ)) (6.2)

where: y represents the coordinate, τp - wall shear-stress, d - diameter and (ν, ρ)- the fluid
properties, the kinematic viscosity and the density.

Mean
flow

Intermediate
region

y

Flow
direction

Sublayer

Figure 6.8: The intermediate region of wall-bounded shear flow
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By a dimensional analysis, see Barenblatt et al. [1997b], the relation 6.2 become:
∂c

∂y
=
cτ
y

Φ(η,Re) (6.3)

where Re is the Reynolds number, Φ is an unknown dimensionless function of 2 parame-
ters, and η is defined by relation 6.4.

η =
ycτ
ν

(6.4)

By assuming:

φ =
c

cτ
, (6.5)

the equation 6.3 can be rewritten in the form:
∂φ

∂η
=

1

η
Φ(η,Re) (6.6)

The first scaling law is obtained by assuming that at viscous sublayer’s outside, η is
very large, η → ∞, and that in turbulent flows, the Reynolds number is also considered
large, Re → ∞. In this way, the function Φ depends no longer on its parameters and it
can be replaced by a constant 1/κ. The equation 6.6 becomes:

∂φ

∂η
=

1

η

1

κ
(6.7)

In this way, the first scaling law obtained and considered as reference in the turbulent
boundary layer theory is a logarithmic law.

Meanwhile, as it is unknown if that, regarding the Reynolds number, such a limit
exists, it may be considered that at large η, Φ function can be represented as a power
law, see relation 6.8.

Φ(η,Re) = Aηα +M, (6.8)

where M represents smaller quantities, but as η is large, this term M can be neglected
and the relation 6.8 becomes:

Φ = Aηα, (6.9)

and, thus, the equation 6.7 can be rewritten, see relation 6.10.
∂φ

∂η
= Aηα−1 (6.10)

By integration, the equation 6.10 becomes:

φ =
A

α
ηα + constant (6.11)

Assuming A
α

as a constant and the constant term as zero, from experiments comparison,
it is obtained the second scaling law, a power law, illustrated by relation 6.12.

φ = A′ηα + constant (6.12)

Finally, it was shown that the 2 scaling laws, can be derived with equal rigor, but from
different assumptions. For the present case, the intermediate region of boundary layer
developed in the cone was evaluated with the 2 scaling laws and the results are presented
below.
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6.2.3 Comparison with the classical model of boundary layer

The first scaling law studied for the present case is the model of the turbulent bound-
ary layer at large Reynolds number, proposed by the Clauser [1954] and Coles [1956],
based on the assumption that the velocity distribution in the intermediate region follows
the Karman-Prandtl universal logarithmic law. The mean velocity distribution follows,
according to this classical model, the universal logarithmic law:

c+ =
1

κ
lny+ + C (6.13)

where following the derivation, κ and C are universal constants, independent of Reynolds
number and, generally, κ = 0.41 and C = 5, values illustrated in figure 6.9.

Figure 6.9: Velocity profiles using inner-variables, White [1991]

Generally, it is thought that this universal logarithmic law agrees, satisfactory, with
the experimental data in turbulent boundary layers.

For the case studied, the measurements results could be approximated with a logarith-
mic law but differences appear for the two constants values. The friction velocity based
on the wall shear-stress measurements is about 3 times larger than the one obtained with
the classical log-law. This means, transformed in wall shear-stress, that the ratio between
the measured values and the calculated one is about 10.

The results are coherent with the one obtained by Nagano et al. [1998], for the adverse
pressure gradient in turbulent boundary layers.

In this way, it is noticed that using the log-law, see figure 6.10, for all studied operating
points, the boundary layer shape is inadequately approximated and, in the same time, the
Karman-Prandtl universal logarithmic law is not valid for the turbine cone flow conditions.

The boundary layer in the Francis Turbine cone, for all studied operating points, is
strongly three-dimensional, fact illustrated by the flow angle distribution in the boundary
layer, see figures 6.12 and 6.14. The absolute flow angle representation, related to the
local system attached to the hot-film probe, x’ and z’, for the LDV velocity field, see
figure 6.11 shows a strong gradient in the boundary layer - see figure 6.13 .
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Figure 6.10: Velocity profile distribution, in boundary layer inner variables, for the near
BEP and 2 off-design operating points

Superposed with the three-dimensionality, an adverse pressure gradient, see Arpe
[2003], is governing the flow, and its influence is clearly visible for y+ > 103.

The comparisons of the measured boundary layer with the von Karman-Prandtl uni-
versal logarithmic law showed that the classical model is not valid. The logarithmic law
shape exists but the constants are different. Two raisons are invoked and quantified:
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Figure 6.11: Local system attached to the hot-film probe, x’ and z’
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Figure 6.12: Boundary layer flow angle distribution, for the near BEP operating points
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Figure 6.13: Boundary layer flow angle distribution, for the near BEP and 2 off-design
operating points

the strongly 3D character of the boundary layer and the adverse pressure gradient. Two
other possible raisons: the runner outlet leakage flow and the unsteady character of the
sheared flow must be investigated in the future.
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Figure 6.14: Comparison between the shear-stress angle and flow angle distribution in the
boundary layer, for all operating points studied

6.2.4 Comparison with the power model of the boundary layer

According to a model of the turbulent boundary layer proposed by Barenblatt et al.
[2002], and based on the second scaling law presented above, in the absence of the external
turbulence, the transition region between the viscous sublayer and the external flow is
composed by 2 sharply separated self-similar structures where the velocity distribution
follows 2 different scaling laws, see figure 6.15. Actually, the characteristic form of the
velocity distribution in this region is a broken line called "chevron".
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Figure 6.15: Velocity distribution by 2 different scaling laws
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In the adjacent part to the viscous sublayer, the scaling law describes the mean velocity
distribution:

Φ = Aηα, (6.14)

while in the other one, adjacent to the free stream, the scaling law becomes:

Φ = Bηβ, (6.15)

where:

Φ =
c

cτ
η =

ycτ
ν

(6.16)

In the first "layer", the influence of viscosity is transmitted to the main part of the flow
via "strips" separated from the viscous layer. In the second "layer", the upper boundary
of the boundary layer is covered by large-scale "humps". In the same time, it is known
that the upper layer is influenced by the external flow via the form drag of theses humps
and also, by the wall shear-stress.

The approximation with a power law shows a good agreement with the measured
velocity profiles, corresponding to the 3D fully turbulent flow in adverse pressure gradient
conditions taking place in a Francis turbine cone, see figure 6.16.

An interesting parameter of the flow, which influences the slopes of the mean velocity
distribution is the Reynolds number based on the momentum displacement thickness; it
has been calculated for each operating point:

Reθ =
θc

ν
(6.17)

The parameters A, α,B and β of the scaling laws are determined from the experimental
data, see table 6.2, based on wall shear-stress and near wall velocity measurements by
standard statistical processing of the data. The results are coherent with the Barenblatt
et al. [2002] analysis. The coefficients A and α are Reynolds-number-dependent. In the
second region, the parameter β of the scaling law has values significantly different from
0.2, the value obtained for the same parameter in zero-pressure-gradient boundary layer,
see Barenblatt et al. [1997a].
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for all operating points studied
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Section Operating point Re Reθ A α B β

A 2.73 · 106 11244 14.712 0.0394 14.727 0.0396
B 2.98 · 106 12255 15.714 0.0356 9.4243 0.0976

1.30 C 3.07 · 106 14444 15.923 0.0343 7.2035 0.1356
(inlet) D 3.31 · 106 15600 13.766 0.0455 5.7154 0.1666

With vapor phase 1.6 · 106 1878 12.573 0.0659 14.994 0.0363
Without vapor phase 1.6 · 106 1502 11.661 0.0775 14.377 0.0418

A 2.44 · 106 8983 13.041 0.0695 12.904 0.0715
B 2.66 · 106 13992 13.567 0.0776 11.876 0.097

1.75 C 2.74 · 106 17310 15.53 0.0764 10.013 0.1422
(outlet) D 2.96 · 106 21810 15.319 0.096 5.2872 0.2568

With vapor phase 1.43 · 106 1849 4.3496 0.1996 8.9878 0.095
Without vapor phase 1.43 · 106 1849 7.4902 0.1193 9.8156 0.0812

Table 6.2: The power scaling law constants

For the present case study, the composite power law of Barenblatt and Chorin gives
a better description of the boundary layer for fully turbulent flow in adverse pressure
gradient.
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Chapter 7

DESIGN AND DEVELOPMENT OF
THE NEW HOT-FILM PROBE

7.1 BACKGROUND
Flow sensors for fluid mechanics studies must satisfy a number of performance re-

quirements, such as fast response speed, directional, low detection limit, least intrusion
to the flow field of interests, and preferably low costs. For certain applications, it is also
desirable that two dimensional arrays of such sensors can be made for boundary layer flow
studies.

Many engineered flow sensors have been developed in the past, based on a number
of sensing principles, including thermal anemometry, hot-wire or hot-film anemometers,
and indirect inference from pressure differences. A hot-wire or hot-film anemometer uses
flow-induced, forced convection to indirectly infer the flow velocity. The availability and
performance of flow sensors have been seriously limited by traditional fabrication tech-
niques. The majority of existing hot-wire anemometers are made using conventional
manufacturing methods. The sizes of such sensor devices are generally large. It is dif-
ficult to miniaturize conventional sensors because their manufacturing typically requires
handicraft. In the same time, mass-production with good device repeatability was very
challenging.

During the past decade, micromachining technology had been developed to fabricate
miniaturized mechanical parts and to produce large quantities of sensors with uniform
geometry and performance. Generally, a typical MEMS device has a characteristic length
of more than 1μm but less than 1mm. It combines mechanical and electrical compo-
nents and can be either individual units or parts of a more complex mechanical system
with integrated electronics. Motors, turbines, valves, gears and transducers of less than
100μm size have been successfully fabricated. Integrated microelectronics and micro-
machines constitute the micro-electro-mechanical-system - MEMS - , which can execute
sense-decision-actuation on a monolithic level. During the last years there has been a
tremendous interest in developing MEMS, with major impacts in many disciplines: biol-
ogy, medicine, optics, aerospace, and mechanical and electrical engineering.

111
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MEMS devices are fabricated using manufacturing processes that have been devel-
oped specifically for MEMS applications. Some of these commonly used processes are:
anisotropic etching of silicon, fabrication of high-aspect ratio microstructures, anodic
bonding of silicon to glass, etc. The micromachining process uses the lithography to expose
the designed photoresist patterns on the chip; after, the unwanted portion is selectively
etched away. By repeating the deposition-removal processes, sensors and actuators with
intricate geometry can be produced, see Ho and Tai [1996, 1998]. These procedures are
similar to those used in integrated circuit (IC) fabrication but with a difference: 3-D and
freestanding structures are common features, because of the nature of mechanical parts.
Several manufacturing technologies such as bulk micromachining, surface micromachin-
ing, and LIGA - LIthographe, Galvanoformung, und Abformung - have been developed
to make various micromachines. A brief introduction of these technologies can be found
in a paper by Ho and Tai [1996].

Micromachines have several unique features. First of them concerns the typical micro-
machined transducer sizes, which are on the order of 100 microns and which can be one
or more orders of magnitude smaller than traditional sensors and actuators. The drastic
reduction in inertia resulting from these smaller sizes equalize with a substantial increase
in the frequency response. Second, batch processing, characteristic of IC fabrication, can
be used to make many transducers for distributed sensing and actuation over a wide area.
This capability enables to observe certain flow characteristics in a 2-D domain and to
perform control at the proper locations. Potential application areas include, among all,
the reduction of surface shear stress in a turbulent boundary layer. Third, micromachine
manufacturing technology is derived from IC fabrication so it is possible to integrate the
IC with microtransducers to provide logic capability.

7.1.1 MEMS wall shear-stress sensors - historical survey

In the last two decades, several research groups have developed micromachined flow
sensors based on a diversity of sensing principles. Microfabrication offers the advantages of
high-spatial resolution, fast time response due to low mass and thermal mass, integrated
signal processing, and potentially low costs. Microsensors based on various principles
including thermal transfer - de Bree et al. [1999]; Ebefors et al. [1998]; Jiang et al. [1994a];
Lofdahl et al. [1992]; van Baar et al. [2001]; van der Wiel et al. [1993]; van Honschoten
et al. [2001] -, pressure distribution - Boillat et al. [1995]; Kalvesten et al. [1996]; Lofdahl
et al. [1996] - and torque transfer - Enoksson et al. [1996]; van der Wiel et al. [1995];
Svedin et al. [1998]; Svedin et al. [2001] -, have been developed. There is an important
aspect of microsensors: being small, and, generally, producing small signals, they do not
necessary interface with the macro-world. Therefore, micromechanical sensors cannot
be considered as separate entities but they should actually be viewed as microsystems
involving, in the same time, the sensing microstructure and the interfacing together with
the packaging. Hence, the microsensors design and development-process should include,
simultaneously, the interfacing and packaging aspects, to assure a successfully working
micro-sensor-system. In addition to flow sensors, boundary-layer shear stress sensors
have been realized using floating element methods - Padmanabhan et al. [1996] - and
thermal transfer principles - Xu et al. [2002].

The wall-shear stress, as we have shown in chapter 5, is an essential quantity to
compute, to measure or to infer in wall-bounded turbulent flows. Knowledge of such wall
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Figure 7.1: Schematic presentation of the floating element balance, Padmanabhan et al.
[1996]

shear stress is essential, and its measurement holds great importance for investigating
and controlling wall-bound turbulence and flow separation both in aerodynamic and in
hydrodynamic fields. The time-averaged values of this quantity indicate the global state
of the flow along a surface and it can be used for control purposes, drag-reduction or
separation delay. The time resolved part of the wall shear stress is a measure of the
unsteady structures in the flow, responsible for the individual momentum transfer events
and is an indicator of the turbulence activities.

For a reliable measurement of turbulent wall shear-stress over a large range of Reynolds
numbers two main conditions need to be satisfied. The first requirement concerning
protruding sensors is that the result must be independent on the type of boundary layer;
the method cannot use non-universal models for specific boundary layer regions, such as
the log-law, shown in chapter 6, where the constants depend on the pressure gradient,
for example. The second requirement is that the sensor must be small enough to avoid
spatial resolution which leads to an underestimation of the fluctuating shear stress.

Measurement of shear stress, as well as temperature, in complex flows is of great
importance and interest for understanding the dynamics of fluid flow. Accurate, time-
resolved measurements of wall shear stress are essential for a physical understanding of
complex flow phenomena. At moderate Reynolds numbers, typical length scales of interest
are in the order of 100μm or less, and the typical timescales require an usable bandwidth
of 10kHz to capture the spectrum of turbulent fluctuations. Manufacturing techniques
and mechanical constrains limit the size of traditional hot-wire sensors. Many techniques
have been developed over the years and their potential and limitations have been explored.
Hence, the MEMS-sensors are well suited for wall-shear stress measurements, in particular
for tracing local coherent structures in turbulent boundary layers. Micromachined wall
shear stress sensors calculate the shear stress from measurements performed at the surface,
mechanically, by using a floating element, or thermally, by using heat dissipation, or infer
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the shear stress at the wall from velocity measurements performed within the viscous
sublayer of the boundary layer.

Miniaturized shear-stress sensors fabricated by using MEMS technology offer superior
spatial resolution, high performance, fast time response, minimized interference with fluid
flow and they are low cost sensors. In the same way, the micromachined shear-stress
sensors can be grouped into two distinct classes: direct techniques, such as floating-
element devices or indirect techniques, such as hot wires or hot films. The floating element
sensor, see Schmidt et al. [1988], Padmanabhan et al. [1996], Pan et al. [1995], offers many
advantages by the fact that the measurement is a direct one and not reliant on indirect
correlations between shear and some other phenomena. However, these techniques are also
complex and require a complex mechanical devices fabrication and accurate transductions
of small motions. In the second category, the most common approach is the use of the
thermal anemometry, where the shear is related to the convective cooling of a heated
element. This technique, while reliant on the convective properties of the flow, offers
the advantages of simplicity, lack of moving parts and relatively good sensitivity. MEMS-
based thermal sensors evidence some interesting properties, both for measuring fluctuating
flow quantities and for detecting coherent structures in reactive control purposes. The
MEMS technology makes it feasible to fabricate miniature sensors in such a small scale
that even high wave-number-range eddies in technically interesting turbulent flows can
be resolved. The significant advantages of MEMS are: the possibilities to operate sensors
at low overheat temperatures and improved methods for insulation of the heated sensing
parts, high accuracy in the manufacturing process, the possibilities to fabricate closely
spaced multi-sensor probes integrated on one chip, and once the design and fabrication
method has been developed, production of sensors in a large quantity at a low cost.

For almost 10 years, MEMS-based wall-shear stress sensors with low overheat tempera-
tures and improved thermal insulation, related to conventional sensors, to the surrounding
substrate have been fabricated. Most of MEMS devices fabricated along these years have
typically used polysilicon as the sensing element, see Lui et al. [1994], Kälvesten et al.
[1996].

Since their initial demonstration, much progress has been made in further develop-
ment of MEMS thermal sensors for shear-stress measurements. There were tested dif-
ferent sensing element configurations and materials, and there were investigated different
sensor characteristics such as thermal insulation, frequency response, pressure sensitivity
and noise floor spectra. Recently, there have also been numerical simulations on MEMS
thermal shear-stress sensors to study the effect of natural convection on the fluid veloc-
ity profile and, in the same time, the effect of heat conduction in the sensor substrate
on frequency response. The numerical simulations evidence, mainly, that even for a per-
fectly insulating solid, the surface temperature is affected a large distance downstream the
heated part, and they are showing that the heat conduction to the substrate is completely
dominant for almost all possible choices of surrounding material. A short summary of
micromachined sensors available for shear stress measurements, is presented in table 7.1,
offering a brief description of each device.
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Author Sensor type Description

Oudheusden and Huijsing [1988] Thermal The sensor surface was 4mm x 3mm and was fabricated
in silicon. The sensing element is a thermopile (with
directional sensitivity). The sensor was tested in a tur-
bulent boundary layer, for a range of 0-2Pa. Its fre-
quency response was poor due to the substrate conduc-
tion, (< 1Hz).

Schmidt et al. [1988] Floating element The floating element size was 500μm x 500μm and was
fabricated in polymide. Its working principle is based
on the differential capacitive sensing. It was tested in a
laminar channel flow, for shear-stress values up to 1Pa,
but it showed mainly drift problems during the tests.
The bandwidth was about 10kHz.

Ng [1990] Floating element The floating element size was 120μm x 140μm and was
fabricated in silicon. Its working principle is based on a
piezoresistive transduction scheme. It was conceived for
shear-stress applications in polymer extrusion for values
between 1kPa and 100kPa.

Goldberg et al. [1994] Floating element This floating element has the size of 500μm x 500μm
and was fabricated in silicon; it is working on the same
principle as the one developed by Ng. [] and was de-
signed for the same applications. Main difference were
the backside electrical connections for packaging facili-
tation.

Jiang et al. [1994b] Thermal The sensor has the size of 10 − 160μm x 1μm and was
fabricated in polysilicon. It is a hot wire anemometer; it
was tested in a wind tunnel and there are presented only
flow velocity data. Sensor’s bandwidth was 500 kHz in
constant current mode.

Liu et al. [1994] Thermal The sensor, a hot wire anemometer, has a surface of
200μm x 200μm, fabricated in polysilicon; it was tested
in a wind tunnel, for wall shear-stress values between
0-1.4Pa showing a sensitivity of 15V/kPa. Sensor’s
bandwidth was 500 Hz in CCT mode.

Kalvesten [1995] Thermal The sensor is a hot film anemometer with direction-
sensitivity; it has a size of 300μm x 60μm and was fabri-
cated in polysilicon. It was tested in a turbulent bound-
ary layer. Sensor’s bandwidth was noticed in constant
temperature mode, at about 40kHz.

Pan et al. [1995] Floating element The floating element size had 100μm x 100μm and was
fabricated in polysilicon; it is a capacitive sensor. It
was tested in laminar channel flows for wall shear-stress
values up to 10Pa. No bandwidth reported.

Jiang et al. [1996] Thermal This sensor is actually a hot wire sensor array made up
of 25 sensors with pitch of 300μm, the whole having
a size of 150μm x 3μm. It was fabricated in polysil-
icon. and was tested extensively turbulent boundary
layers detecting a "streak" structure and providing in-
stantaneous wall shear stress distributions . Sensor’s
bandwidth was 30 kHz.

Padmanabhan et al. [1996] Floating element The floating element size had 120μm x 120μm, it was
fabricated in silicon and it is based on an optical posi-
tion sensing scheme. It was tested in laminar boundary
layer for wall shear-stress values of 0.005Pa. Theoretical
bandwidth was 52 kHz.

Table 7.1: Progress in micromachined shear-stress sensor technology
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7.1.2 MEMS wall shear-stress sensors - examples

Two of the MEMS thermal wall-shear stress sensors used were, mainly, evidenced.
Kalvesten [1995] has developed a MEMS-based, flush-mounted wall shear stress sensor,
see figure 7.2. The heated portion is relatively small, 300 x 60 x 30 μm3, and is thermally
insulated by polyimide-filled, KOH-etched trenches. The sensitive part of the chip is
electrically heated by a polysilicon piezoresistor and its temperature is measured by an
integrated diode. For the ambient temperature, a reference diode is integrated on the
substrate chip, far away from the heated portion of the chip. The power consumed to
maintain the hot part of the sensor at a constant temperature was evaluated. For a step
wise increase of electrical power, the response time was about 6ms which is double the
calculated value. This response was considerably shortened to 25μs when the sensor was
operated in a constant-temperature mode using feedback electronics. The main advantage
of this sensor is that it can operate at relatively low temperature on the heated diode, of
the magnitude 100 degrees.

a. Schematic cross-section

b. SEM photo

Figure 7.2: MEMS flush-mounted wall shear-stress sensor, Kalvesten [1995]

Jiang et al. [1996] developed an array of wall shear stress sensors based on the thermal
principle. Each sensor was made smaller than a typical streak width. For a Reynolds
number of 104, the width of the streaks was estimated at around 1mm, so that each sensor
was designed to have a length less than 300μm. Figure 7.3 -a- shows a schematic diagram
of one of these sensors. The polysilicon resistor wire, is located on the diaphragm, having
3μm wide and 150μm long. Below the diaphragm there is a 2μm deep vacuum cavity for
heat conduction loss reduction to the substrate. When the wire is heated electrically, heat
is transferred by heat convection to the flow resulting in an electrically measurable power
change which is a function of the wall shear stress. Figure 7.3 -b- shows a photograph of
a portion of the 2.85 x 1.00 cm2 streakimaging chip, containing just one probe.



7. DESIGN AND DEVELOPMENT OF THE NEW HOT-FILM PROBE 117

a. Schematic cross-section

b. SEM photo

Figure 7.3: MEMS shear-stress sensor developed by Jiang et al. [1996]

7.1.3 Motivation

As the experiments show, the main frictional losses of a turbomachine take place in the
runner. Thus, it becomes very interesting to be able to explore the flow in this part of the
turbomachines and to validate the CFD codes. This analysis will offer informations on the
boundary layer separation tendency, on the losses prediction and thus will facilitate the
characterization and the understanding of the flow. Yet, the availability and performance
of the commercial hot film sensors, in this region of a turbomachine, have been seriously
limited by several specific constraints. First of all the complex character of the flow in the
runner must be taken into account: the strongly 3D flow, the turbulence and the Coriolis
forces influence.

On the other hand, there is the accessibility problem, which rises. It is due to the fact
that the dimensions of the actual hot film probes are not adequate for mounting it on the
runner blades surface. Direction founding of the hot-film probe in the flow, the aging of
the probe are another disadvantages in using it for exploring the flow in the runner.

Motivated by these issues, and taking into account the progress achieved in MEMS
technology, the aim of this PhD thesis is to design and to develop a new multidirectional
miniature hot film probe able to measure the wall shear-stress in the runner. The design,
fabrication stages, and testing of such sensors, which contains new thermal insulating
structures development, are presented below. Moreover, we also present three dimensional
simulations of the new MEMS thermal wall shear-stress sensor to gain a quantitative
understanding of these devices.
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7.2 CONCEPTION OF THE NEW HOT-FILM PROBE
FOR WALL SHEAR-STRESS MEASUREMENTS

The choice of development and fabrication of a new wall shear stress sensor for specific
water turbomachines applications was stimulated by personal exigencies and, in the same
time, by profound study of the actual wall shear stress sensors industrial market. There
were also taken into account considerations of cost, manufacturing time and technical
informations point of view.

As explained in chapter 3, the most adequate technique for wall shear-stress in a
turbomachine is the hot-film.

The design of the new probe is an important step for the development, unfortunately
restraint by several criteria. The first one deals with the size of the probe: the sensors
should be thin enough, so that they do not perturb the flow.

Meanwhile, a probe consists of the following:

• Sensor, forming the heating element;
• Sensor supports, prongs or substrate, carrying the sensor and leading current to it;
• Probe body, carrying the sensor supports;
• Connector, providing electrical connection to the probe support or probe cable.

Main limitations in support and heated element are essential and there will be studied
further.

Sensor substrate

A hot-film sensor is made up by a metallic film deposed on an insulating substrate
which serves to minimize the heat losses by conduction. If the substrate is not sufficiently
insulating it can lead to an extension of the heated surface. These 2 reasons determine
the choice of the substrate material, characterized by a reduced thermal conductivity.
The main materials available in the microtechnology, with a relative reduced thermal
conductivity are presented in table 7.2.

Material Density Specific heat Thermal conductivity
ρ[kg/m3] Cp[J/(m ·K)] k[W/(m ·K)]

Pyrex 2220 728 1.1297
Silicon 2330 702.9 125.52

Table 7.2: Main thermal properties for the available substrate materials

Moreover, regarding the substrate, its thickness becomes another interesting parameter
which must be quantify.

Sensitive element

The development of a new hot-film sensor should imply a compromise between the
length of the heated element and the thickness of the substrate, for obtaining a high
performance probe.
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Another limitation in the use of the commercial wall shear-stress probes is based on a
high frequency response. A relative extended heated zone in the substrate related to the
metallic film size leads to a relative high reduction of the sensor’s frequency response. This
means that the length of the main element of the probe should be as small as possible. In
the flow, near the heated film it is developed a thermal boundary layer; this is imposing
the film size. The boundary layer’s thickness is determined by the local parameters of the
flow. The thermal boundary layer developed over the hot film surface should be included
in the viscous sublayer, according to the Reynolds analogy. This limitation, imposed to
the thermal boundary layer’s thickness means a limitation for the longitudinal extend of
the heated zone on each hot film. In the literature there are presented many different
limitations concerning the maximum longitudinal extend of the heated zone, see Hanratty
and Campbell [1996], Haritonidis [1989], Löfdahl and Gad-el Hak [1999].

The geometry of the heated film is also an interesting parameter for the performance
of the sensor. Although, the heated film’s geometry, in itself, doesn’t have an influence
over the sensor’s sensitivity, there are some limitations regarding its thickness: it should
be less than 1μm, so that it doesn’t modify significantly the heat transfer at the wall. 3
designs were proposed, see figure 7.4.

Straight hot film

Serpentine hot film - 1

Serpentine hot film - 2

Figure 7.4: Different designs proposed for the hot film

Finally this new hot-film probe, to suit to all components measurement requirements
for a turbomachine, taking into account all the limitations presented above, needs to
satisfy more conditions:

1. The probe has to be small enough, so that, together with the entire encapsulation
system, the dimension should not exceed Φ = 4mm;

2. The sensor should not perturb the flow, which means that the electrical connections
should be realized on the backside, the surface of the probe should not have any
protuberances;

3. Hot-film impedance ∼ 100Ω;
4. It should have a good electrical isolation between the surface of the probe, which

comes in contact with the water, and the hot-film;
5. It should have isolation between the upside and the backside of the probe;
6. It should be water-tight;
7. The sensor should be conceived in a 3D configuration, for detecting flow direction;
8. The sensors should measure a wide velocity range;
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9. They should have high accuracy and resolution;
10. They should be low cost and easy to use.

It was chosen a 3 hot-films configuration in one shear-stress sensor, due to the fact
that in the turbine the flow is unsteady and the purpose is to be able to measure both
the value of the wall shear-stress, and in the same time to be able to determine the flow
sense and direction. Taking into account all the conditions above, there was developed
the new design for the hot-film probe, which has 3 hot-films positioned in triangle, in a
way that there isn’t any heat transfer between.

7.3 HOT-FILM DEPOSING TECHNOLOGY AND FAB-
RICATION STEPS

The new flow sensor was conceived and manufactured using the most adequate tech-
niques based on MEMS. The general description of the microtechnology techniques used,
is presented in annexe C. The development of this new multidirectional sensor implies
technological developments together with the Center of MicroNanoTechnology, in EPFL,
which allows microsystems design and manufacturing for both industrial and research
applications.

7.3.1 The center of MicroNanoTechnology - overview

The CMI, Center of MicroNano Technology, in Swiss Federal Institute of Technology
(EPFL), has a assembly of clean rooms and high technology processing equipments, used
for training and experimentation of the microtechnologies scientific users, guided by a
professional staff.

The availability of a clean room is mandatory for the microtechnology research and
product miniaturization. It’s exploitation is managed by a staff of specialists in mi-
crotechnology, ensuring the equipment accessibility and the help needed in performing
the experimental work, as well as they evaluate, install and operate the equipment, de-
velop new processing steps and improve the existing ones. Meanwhile, each new clean
room user gets a training on processing equipments operation.

Practical works, diploma works, PhD thesis works, microtechnolology experimental
researches are the main activities of CMI.

The user’s access in the clean room is regulated in the way that it is promoted in
the first place the educational activities, then the research ones, and afterwards, the
partnership research with the other academic institutions.

7.3.2 First new hot-film probes generation

One important step before the fabrication of the new sensors is the choice of the mate-
rial for the heated element. The main constraint which should be respected is that it must
have a linear resistance vs. temperature characteristic. Common heated element materi-
als used because of their properties as well as for their availability in small dimensions,
are platinum, nickel and combinations of platinum with different metals, like tantalum or
titanium. Table 7.3, presents their main thermal properties.
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Material Density Specific heat Thermal conductivity Temperature coefficient of resistivity
ρ[kg/m3] Cp[J/(m ·K)] k[W/(m ·K)] TCR[ppm/◦C]

Platinum 21400 133.9 69.036 3000
Nickel 8900 443.5 87.864 6800

Tantalum 16600 138.1 71.128 -
Titanium 4500 523 20.92 -

Table 7.3: Main thermal properties for the available heated element materials

Platinum is a precious metal possessing a very stable and, most interesting, a near
linear resistance versus temperature function.A heavy, malleable, ductile, precious, plat-
inum is resistant to corrosion and occurs in some nickel and copper minerals along with
some native deposits. Platinum possesses remarkable resistance to chemical attack, excel-
lent high-temperature characteristics, and stable electrical properties. All these properties
have been exploited for industrial applications. Platinum is used in jewelry, laboratory
equipment, electrical contacts, dentistry, and automobile emissions control devices. While
intrinsically less sensitive than thermistors or other metals, thin films in platinum provide
very high base resistance and high device sensitivity.

Nickel is a silvery white, hard, malleable, ductile metal, being a good conductor of
electricity and heat. Nickel metal is relatively resistant to corrosion. Water solubility
of nickel compounds vary. The nickel is used, mainly, in alloys, which are used in the
making of metal coins and jewelry and, in industry, for making metal items. It is used
to make stainless steel and other metal alloys. Nickel and nickel compounds are used,
generally, for nickel electroplating, to color ceramics, to make batteries, for permanent
magnet materials, and as catalysts. In the same time, on account of its permanence in
air and inertness to oxidation, it is used in the smaller coins, for plating iron, brass, for
chemical apparatus.

Tantalum is gray, dense, ductile, very hard, easily fabricated, and highly conductor
of heat and electricity. The metal is known and appreciated for its resistance to corrosion
by acids. Because it resists attack by body liquids and is non irritating, Ta is widely
used in making surgical appliances. Meanwhile, the major use for tantalum, as the metal
powder, is in the production of electronic components, mainly capacitors. Because of the
size and weight advantages, tantalum capacitors are attractive for portable telephones,
pagers, personal computers, and automotive electronics. Tantalum is also used to produce
a variety of alloys that have high melting points, are strong and have good ductility.
Alloyed with other metals, it is also used in the production of super-alloys for jet engine
components, chemical process equipment, nuclear reactors, and missile parts. Because of
its ductility, Ta can be drawn into fine wires or filaments, which are used for evaporating
metals such as aluminium.

Titanium is a light, strong, glossy, easy to work, corrosion-resistant transition metal;
it is used in strong light-weight alloys and its most common compound, titanium dioxide,
is used in white pigments.One of titanium’s most notable characteristics is that it is as
strong as steel, having only 60% its density. Titanium is well known for its excellent
corrosion resistance, almost as resistant as platinum, being able to withstand attack by
acids, moist chlorine gas, and by common salt solutions. It is a metallic element,also
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well-known for its high strength-to-weight ratio. Titanium is as strong as steel, but 43%
lighter; it is 60% heavier than aluminium, but twice as strong. These properties make
titanium very resistant to the usual kinds of metal fatigue. It is paramagnetic, weakly
attracted to magnets and has a very low electrical and thermal conductivity. Because
of its very high tensile strength, even at high temperatures, light weight, extraordinary
corrosion resistance, and ability to withstand extreme temperatures, titanium alloys are
principally used in aircraft, armor plating, naval ships, spacecraft and missiles. It is also
used in cement, and as a strengthening filler in paper. Recently, it has been put to use
in air purifiers or in window film on buildings which when exposed to UV light. Welded
titanium pipe is used in the chemical industry for its corrosion resistance.When alloyed
with vanadium, it is used to make the outer skin of aircraft, fire walls, landing gear, and
hydraulic tubing.

After a detailed analysis of all these metals and considering also the constraints im-
posed by the application of the new development it was chosen as initial configuration for
the heated element: Ti/Ni, Ti serving as adhesion layer between the heated element and
the substrate.

Manufacturing Steps

A first configuration for the new miniature hot-film sensor, after considering all the
restrictive criteria presented above is presented. It consists of 3 very thin films of alloy
titanium/platinum, about 100nm deposited by sputtering on a pyrex support, of 1mm
thickness. For the conducting tracks, there is deposited Au, 500nm, by evaporation, on
the front side of the wafer. The electrical access to the sensor’s films was thought as
backside wire bonds, in copper, to not disturb the flow. An additional SiO2 coating, at
about 1μm protects the film from against electrolysis effects. The main fabrication steps
are presented in figure 7.6. The wafer used are characterized by a thickness of 500 μm
and a diameter of 100 mm.

As explained in section 7.2, there were implemented on the same wafer, sensors corre-
sponding to the 3 different designs for the heated film, allowing to obtain an impedance
of about 100Ω, see figure 7.6.

Meanwhile another difficulty related to the pyrex electrodischarge needed in the elec-
trical connections realization appeared. It is used a electrochemical discharge machining
technology, which combines good surface quality, in the same way as obtained by HF etch-
ing, and the flexibility of laser machining. Otherwise, it is a manually procedure, needing
a precise tool handling for every hole, while the positioning relatively to the workpiece is
not precise. Moreover, another imprecisions appear related to the accuracy of machining
tool’s motion, machining tool wear, vibrations of machining tool and workpiece. Taking
into account the fact that, for each wafer there were developed 100 probes, meaning about
400 holes for each wafer, this process becomes an inconvenient. So, the substrate material
has to be changed.

Although the term MEMS is not restricted to silicon micromachining, most of today’s
MEMS technology is based on silicon. Silicon mono-crystalline wafers offer a good com-
bination of qualities, ranging from ideally elastic, no mechanical hysteresis, to a good
heat conductor, from low to intermediate electrical conductivity, depending on type, from
having a small thermal expansion coefficient to being stable up to high temperatures.
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Pyrex substrate

Ti / Ni

Au

Ni

SiO2

1. Hot film element deposition

2. Electrical track element deposition

3. Pyrex electroerosion

4. Electrical connections refilling

5. Protection layer deposition

Figure 7.5: Main fabrication steps for the initial configuration of the new hot-film sensor

More interesting, silicon wafers are produced and used on a large scale for integrated
microelectronics resulting in low prices and compatible equipment. Therefore, the major-
ity of MEMS devices are made on silicon wafers as the starting substrate.

Finally, the substrate material was replaced by silicon. Due to the fact that the thermal
conductivity of the silicon is about 100 times more than the one of the pyrex, risking to
obtain heated plates, there were added around the hot-films, holes serving as gates for
the heat transfer by conduction. Moreover, due to the fact that the silicon wafers used
are 3 times less thicker than the ones in pyrex, 380μm related to 1mm, the structure of
the new probe has to be reviewed, see figure 7.7.

Main change was produced for the conducting tracks, were the Au layer thickness
was reduced from the initial 500nm to about 300nm. Simultaneously, for the electrical
connections on the backside it will be used copper instead of nickel.

1. Masks design and fabrication

The first step, in the development of the new miniature ho-film probe is the masks
fabrication. Generally, as explained in annexe C.1, a mask is used to print the desired
pattern on the photoresist by photolithography. It acts as a screen between the light source
and the photosensitive surface, during the exposition to a light with parallel beams. The
mask is made up by a glass plate supporting a chromium layer, on which the desired
patterns are transferred. In the same time, using L-Edit software, the patterns to be
transferred on masks and, afterwards on the wafer, constituting the new components of
the new hot-film probe, are designed and transferred on the machine used to write these
masks, namely Direct Laser Writer, DWL200.

The DWL is a high precision machine using raster technology to impression on divers
substrates like silicon, glass, etc. The DWL 200 is a high resolution laser lithography
system, with active write area of 195 x 195 mm. It can be used for semiconductors
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I. Straight hot film design

II. Serpentine hot film - 1 - design

III. Serpentine hot film - 2 - design

Figure 7.6: Top view of the new sensor, corresponding to different designs for the hot-film
probe
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for the heat transfer

A - A

Electrical connections

Silicon substrate

Electrical tracks
SiO2 coating Heating film

Figure 7.7: Top schematic view and cross-section in the new sensor

mask and direct writing, integrated optics and any application where high precision, high
resolution images must be produced and obtained. The DWL can accommodate various
write heads. Masks with dimensions of 195 x 195mm, as well as, wafers with a diameter
of 195mm may be used and an alignment precision of less than ±250nm may be achieved.

Afterwards, the photoresist covering the chromium mask is developed in a tank of
Microposit CD 26, discovering the designed patterns. This process is followed up by
chromium etch using an acid bath and the remaining resist is eliminated by immersion in
a solvent tank.

New sensor fabrication process is a 3 masks process, illustrated by figure 7.8:

1. The first one is used to define the films and electrical track layers, all the subsequent
mask layers being aligned to this layer;

2. the second one is dedicated to the electrical track layers increasing,
3. the 3rd one is used to pattern the electrical connections holes and the gates provided

for reduce the thermal conduction.

Meanwhile, on a wafer there are placed about 100 sensors. For the wafers dicing it
is used a Nd-YAG zig-zag-slab laser, presented in annexe C, while the design used is
presented in figure 7.9. The wafers are diced in 4mm diameter sensors.
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Mask no.1

 First metalic layer for hot film and electrical 
tracks deposition

Mask no.2

Second metalic layer deposition for increasing 
the electrical tracks

Mask no.3

Dry etching for the electrical connections and 
the insulating trenches realization

Figure 7.8: The 3 masks used for first generation sensors fabrication

φ 4

Figure 7.9: Wafer design used for laser dicing

First generation of sensors was developed from wafers with substrates in silicon, 4”,
380μm thickness, DSP, 1μm wetox, with resistivity 1-10 Ωcm.

A preliminary stage in the fabrication process is the reducing of the wetox layer on a
face of the device from initial 1μm to 0.2μm, using a wet etching in a HF bath, see figure
7.10. The protection of the backside face is ensured by a relatively thick photoresist,
namely S1818.
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S1818

Si SiO2

Figure 7.10: Wetox reducing on the front side of the device

2. Heated elements and the fist electrical track layer deposition

The first process in the new wall shear-stress sensor generation fabrication is the heated
elements and a first metal layer corresponding to the electrical tracks performance.

Photolithography is a first step. A HMDS processing is planned. This technique
consists in an adherence promoter vaporization, HMDS, in a automatic vapor prime oven,
for improving photoresist adhesion to oxides. The HMDS - hexamethyldisilazane - reacts
with the oxide surface forming a strong bond to the surface. The HMDS coating process
is performed for all photolithography steps. Afterwards, the photoresist is deposed on the
wafers by centrifugation.

The photoresist used, MAN 1410, is a negative photoresist. The MAN 1400 series is
a photoresist especially designed to generate undercut patterns. The edge profile is easily
controlled by variation of the exposure and development parameters. Pattern sidewalls
can be produced from nearly vertical to extremely undercut ideally qualifying the resist
for metallization processes using lift-off. The chemical composition of MAN 1400 allows
easy and residue-free resist removal. For coating it on a wafer’s side, it is used a Ritetrack
coater & developer, where it is processed by spincoating. Afterwards, a thermal processing
which ensures photoresist’s hardening on the wafer is performed, on a heated plate at
98◦C, during 90s.

The second step is the pattern transfer from the mask to the wafer. The mask aligner,
MA150, allows the accomplishment of this procedure. Usually in a development, several
different layers must be superposed, requiring several alignment marks, both on the front
side and on the backside. Meanwhile, for the first photolithography, the alignment is no
needed.

In the end of the photolithography process, the photoresist containing the patterns is
developed automatically, using the developing line of the Ritetrack coater developer, the
results being shown in figure 7.11.

MAN 1410

Figure 7.11: First photolithography illustration

The second step is the heated elements and the fist electrical track layer physical
deposition. A fist test was to evaporate Ni, for the heated element. Yet, after processing
one wafer, one inconvenient was noticed during the evaporation: a partial detachment
of the metal. Mainly, for this reason, it was replaced Ti with Ta. Meanwhile, as the
resistance vs. temperature characteristic for nickel is less linear than the one corresponding
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to platinum, there was decided to replace Ni in the initial choice with Pt, this representing
the final configuration for the heated film.

As the platinum temperature evaporation is about 1772◦C, a vacuum evaporation is
not possible. For this reason the sputtering technique is used. There were deposited 10nm
of Ta and another 100 − 150nm of Pt, in the SPIDER 600 machine, see figure 7.12.

Ta/Pt

Figure 7.12: Heated elements deposition

Furthermore, a lift-off must be performed for obtaining the shape of the heated el-
ements, see figure 7.13. This lift-off, meaning the photoresist removal on the unwanted
structures, is performed by wafers immersion in an acetone bath. The sputtering is a non-
directional deposition technique which is complicating however the lift-off procedure. A
supplementary energy source is used, namely an ultrasonic agitation. During this process,
several microscopic observations were needed for detecting the lift-off advancement stage
and also, the eventual problems and to ensure a good quality of the process.

Figure 7.13: Heated elements pattern

3. The second electrical tracks layer deposition

The second process in the new wall shear-stress sensor fabrication, after the heated
element deposition, is the increasing of the metal layer corresponding to the electrical
tracks.

For transferring the patterns on the wafer, a second photolithography is performed.
For this second photolithography, it is used, identically, the same photoresist with the
same thickness. Furthermore the procedure is the same: the photoresist is coated on the
wafers, then the thermal processing is performed. Before the photoresist exposition step
through the second mask, the existing structures on the wafer are aligned with the mask,
thanks to alignment marks layout on the mask, so called a normal frontside alignment.
Once the alignment done, the wafer exposition is performed and afterwards developed.

The second metallic layer, about 300, used for the electrical tracks increasing, is gold,
which deposition is made by vacuum evaporation. The evaporation is performed in an
high vacuum enclosure, 10−4 − 10−5Pa, by Joule effect. The equipment used was the
E-gun evaporator, Alcatel EVA600. The planetary rotation is used to achieve a uniform
thickness of metal across all the wafers.

Finally, as in the previous step, a lift-off is performed, in acetone, for removing the
unwanted metal from the wafer’s surface, see figure 7.14.
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Au

Figure 7.14: Second metallically layer used for increasing electrical tracks

4. Protection layer deposition

Next step in the fabrication of the new wall shear-stress is the deposition of a SiO2

layer, on the side facing the flow, for protection against electrolysis effects. Meanwhile a
thick resin, SJR, 7.8μm, is applied, both to protect the face of the probe in the electro-
plating process and to ensure the integrity of the metal layers, once the Si dry etching is
carried out, see figure 7.15.

SJR

SiO2

Figure 7.15: Protection SiO2 layer and photoresist deposition

5. Electrical connections realization

The final major step in the fabrication of the new device is the electrical connections
realization, meaning the etching of the holes representing the electrical connections and,
in the mean time, of the holes serving for the conduction heating reduction, and the
refilling of this holes with a conductive metal.

The procedure for fulfilment of this step is briefly presented and it is detailed after-
wards. A substep for transferring the patterns corresponding to the electrical connections
and trenches, a third photolithography is performed. This photolithography comported
another photosensitive resin, S1818 2.4 μm, laid down on the wafer’s unprotected face.
The photoresist is coated on the wafers. For the photoresist exposition, using the third
mask, a new alignment is needed. The existing structures on the top surface of the wafer
are aligned with the mask, this time on the backside.

In the same way as previous, once the alignment done, the wafer is exposed and,
afterwards, it is developed.

The oxide layer, of 1μm is withdrawn by wet etching in HF bath. Afterwards, the
Si dry etching for engraving the whole 380 μm is performed and then, using the same
procedure, the 0.2 μm oxide found on the holes bottom are withdrawn, reaching, in this
way, the metal film, see figure 7.16.

A SiO2 layer is deposited by sputtering, before holes refilling, serving as electrical
insulation of the lateral walls. Another anisotropic etching by plasma is performed to
reach the metal film and to allow the electrical contact.

Finally, the holes metal refilling is performed, by electrodeposition Cu-HL, see figure
7.17.
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S1818

SJR

Figure 7.16: Protection SiO2 layer and photoresist deposition for holes refilling

Cu

Figure 7.17: Electrical connections refilling, schematic view

Nevertheless, the results observed on the SEM, showed a very unsatisfying and unsuc-
cessfully refilling. This is the main reason for undertaking a process having for goal to
study the feasibility of electrical contacts crossing a silicon substrate. It is searched the
optimum hole diameter for the refilling process, corresponding to the electrical connec-
tions.

Detailed description of the cross-section electrical connections realization and
validation in a silicon substrate

As explained previous, within the framework of the project aiming at the development
of a sensor for the measurement of wall shear-stress in hydraulic machines, it is essential
to have the electrical contacts on the backside, as the front face of the sensor is in contact
with the liquid medium. Moreover, any bump on the front face would disturb the fluid
flow along the wall and would largely deform the shear stress measurement, exerted by
the fluid on the wall.

Having encountered difficulties for the metal filling by electrodeposition of holes of low
diameter, initially planned at 200μm, on a first serie of sensors, it is decided to undertake
a process to validate the feasibility of this process. For this first serie of sensors, the filling
by electrodeposition was a failure, less than 2% of the holes being filled correctly. The
purpose of this process is illustrated by figure 7.18, see Béguin et al. [2002].

For acquiring the hot-film impedance of ∼ 100Ω, the diameter of holes plays an im-
portant function in the success of this process. It is decided to test different diameters for
holes, by forming a network of more than 400 holes, corresponding to the future contacts
electrical crossing, having a variable diameter between 250 and 700 μm. The mask used
for this validation is presented in figure 7.19.

For these tests, there were used silicon wafers of 4 inches, polished double face (DSP),
with a thickness of 380 μm and resistivity of 1− 10Ωcm. These wafers are covered on the
both sides of 1μm oxide coating - wetox.
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Ta-Pt, metalic film

SiO2 LTO SiO2 wetox

Si substrate, DSP

Cu

Figure 7.18: Schematic view of the holes refilling purpose

Figure 7.19: Schematic view of the mask used for metal filling validation by electrodepo-
sition

The oxide coating, on the side where will be deposited the metal film, is thinned to
200nm, by engraving HF. For performing this, the other face is protected with a S1818
resin layer, 1.75μm thickness. After the engraving operation this resin is withdrawn.

Afterwards, the metal layer is deposit by sputtering. For these tests, this layer is made
up of a Ta film, thickness 10nm, used as explained earlier, as an adhesion support, and a
Pt film, with thickness varying between 100 and 150 nm according to wafers.

A thick resin, SJR, 4μm, is then applied, to guarantee the integrity of the metal
membranes once that drilling by engraving with-through Si is carried out, on wafer’s face
supporting the metal film.

A mask for engraving oxide is realized and a photosensitive resin, S1818 2.4 μm is
laid down on the wafer’s unprotected face, on the side on which it remains 1 μm of SiO2

wetox. A process of photolithography by direct writing is then applied to structure this
resin.
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On the places were the silicon will be drilled, the oxide is withdrawn by wet etching in
HF bath. Afterwards, a dry etching by plasma, for engraving the 380 μm of anisotropic
silicon is performed. In the end of this process, the 200 nm of SiO2 wetox, established
between the metal film and the silicon substrate are reached. Another process of dry
etching by plasma allows the withdraw of the 200 nm oxide, reaching the metal film.
After this step, the metal film is discovered and the images from SEM, see figure 7.20,
prove that.

Si

Ta/Pt

SJR

Si

Ta/Pt

SJR

Figure 7.20: Views in a hole, after the silicon and wetox layers etching, showing a complete
removal of the SiO2 layer

Due to a relatively high electrical conductibility of silicon, it is deposited, by sputtering,
a SiO2 layer, before metal refilling of the holes, serving as electrical insulation of the lateral
walls. The layer’s thickness deposited on the surface is 1 μm, while on the hole’s bottom
and on the laterals walls, for a hole with a diameter of 250 μm, a thickness of 200 nm
was measured, see figure 7.21.

SiOSiO2

SiSi

HoleHole

SiOSiO2

Ta/PtTa/Pt

Figure 7.21: Cross-sections showing the SiO2 layer thickness deposited on the lateral walls
of a hole, on the left side, and general view of the SiO2 layer deposition in a hole, both
on the bottom and on the lateral walls
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To reach again the metal film and to allow the electrical contact, it is performed
another anisotropic etching by plasma to withdraw the oxide coating deposited on the
holes bottom, see figure 7.22.

SiOSiO2

Ta/PtTa/Pt

SJRSJR

Si residuesSi residues

Ta/PtTa/Pt

SJRSJR

Si residuesSi residues

Figure 7.22: Cross-section through a hole, before - left side - and after - right side -, SiO2

dry etching on the bottom

Thanks to the anisotropy of the process, it is withdrawn only the oxide covering the
metal film, without touching the oxide layer on the lateral walls, guaranteeing the electric
insulation of the hole walls. By electronic microscopy measurements it is observed that,
on the holes lateral walls, it remains a sufficient oxide layer thickness to ensure a good
electric insulation, see figure 7.23.

SiOSiO2

HoleHole

SiSi

Figure 7.23: Lateral walls observation, showing a sufficient oxide layer thickness

Finally, the holes metal refilling is performed, by electrodeposition. Supposing that the
nonpenetration of the electrolyte in the holes of low diameter is at the origin of the first
sensors failure, it is worked out a procedure supporting the penetration of the electrolyte in
the holes. A first step is the wetting of the wafers holes with Isopropanol. The electrolyte
is used for its excellent absorptivity. The wafer is then rinsed with deionized water, for not
contaminating the deposition bath with Isopropanol, by gradually replacing Isopropanol
which has penetrated in the holes, by water. Following this rinsing, the wafer is placed
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in the electrodeposition bath, Cu-HL. The results show a very good and compact refilling
with Cu, see figure 7.24 ; meanwhile the Si-SiO2-Cu interface geometry is very rough, see
figure 7.25. Otherwise, the SiO2 layer stands together with the copper, ensuring a very
good adhesion.

SiSi
CuCu

Figure 7.24: Cross-section through a hole refilled with Cu

SiSi

SiOSiO2

CuCu

Figure 7.25: Detailed view of the silicon-SiO2-copper interface, from the left to the right
side)

The results showed that a good refilling of the holes with the copper was obtained
starting from a hole diameter of 250μm. Yet, for the new sensor, it was chosen an
optimum hole diameter of 300μm and, in this way, there was fabricated a new mask
containing the holes for the electrical connections which is replacing the former one.
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Afterwards, having done the validation of all the manufacturing stages needed for the
hot-film probe development, the first generation of sensors was fabricated, see figure 7.26.

a. Front side b. Back side

Figure 7.26: First generation of the new hot-film sensors

Tests and conclusions on the first generation

The first generation of sensors has the films resistances values between 100 and 150 Ω.
As the previous CTA used together with the commercial hot-film probe could be used only
for maximum film resistance values of 99.99Ω, a preliminary electronically device has to
be realized, namely a constant temperature anemometer adapted to the new resistances
values, see figure 7.27.
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Figure 7.27: CTA development for preliminary tests

The sensor’s package, used for calibration of the new wall shear-stress sensors in the
hydrodynamic water tunnel is presented. The main requirements on the sensor package
are:
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• flush-mounting of the sensor device to the package and, in the same time, the package
to the wall of the test facility. The effect of protruded or recessed sensor implies a
perturbation of the flow around the element and, hence, a disturbed boundary layer
on the sensor. Sensor’s chip should not protrude or be recessed by more than 0.05%
of the channel height.

• minimization of any gap between the sensor device and the package, as well as
between the package and the wall of the test tunnel, as gaps around the wall shear-
stress sensor leads to flow field perturbation on the chip, causing errors in shear-
stress measurements. The gap between the sensor chip and package were filled with
express glue, while a copper ring is ensuring a good waterproofs between the sensor
package and the test facility wall.

The package of this probe has been designed, see figure 7.28, and realized, by using an
plastical material, based on a polyetherethercetone resin, a linear polymer, used for special
requirements applications in temperature, chemical and hydrolysis attacks, UV resistance,
high erosion, mechanical and fatigue resistance. It ensures a good thermal isolation from
the place where it will be implemented, namely the wall of the water tunnel.

All the dimensions are in mm
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Figure 7.28: Detailed view of the packaging system

Temperature coefficient of resistance, TCR, is the first testing stage. An oven is used to
heat up the sensor’s films and, then, it is measured the resistance at different temperatures.
An adequate time delay, about 20 minutes, is allowed between each temperature change
to reach thermal equilibrium. The TCR of the heated films, α is obtained by derivating
the slope of linear curves, illustrated in figure 7.29 and its value is, for all films, 0.24%/◦C.
The behavior of the new wall shear-stress probe used together with the new anemometer,
implemented identically with the Dantec probe used previous in the calibration tunnel,
is observed, see figure 7.30. Afterwards, for this first sensors generation, there were
performed only preliminary tests and not a proper calibration.

The results evidenced a very good sensitivity of the new wall shear-stress with the
new electronical device. Meanwhile a relatively high power is needed with the mean flow
velocity increasing which leads to a general heat up of the device. Actually, the hot-
film probe becomes a heated plate. In the same time, it becomes obvious that, in these
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Figure 7.29: Temperature coefficient of resistance determination
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Figure 7.30: Power variation, at the wall shear-stress sensor, with the mean flow velocity,
in the hydrodynamic tunnel

conditions, the technical tests of stability - the new probe is let in the water, without any
flow and then observed on a microscope -, sensitivity - meaning the angular sensitivity of
the films with the flow direction -, repetitivity in the calibration tunnel at the LMH were
unsuccessfully. The main results of these preliminary tests, of the first miniature hot-film
probe realized can be summarized:

• a high thermal conduction, even with the gates;

• the detachment of the protecting SiO2 layer on the electrical connections, see figure
7.31;

• a very short life time in the water, about 2-3 days, due to the high thermal conduc-
tion, which affected the entire structure of the probe.
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SiOSiO2
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Figure 7.31: Detailed view on a first generation sensor, after tests in the water tunnel

7.4 SECOND GENERATION

The aim of fabricating the second generation sensors was to eliminate the inconve-
niences observed on the first generation of sensors, namely to develop a solution for re-
ducing heat conduction in the substrate and to eliminate the holes used as gates against
the heat conduction. All the other aspects of the design of the second generation sensors
are kept similar to the first generation devices.

7.4.1 Improvements

After considering all the inconveniences remarked on the first generation of sensors,
new improvements were done to achieve and to succeed in this development:

• new design to reduce the heat transfer by conduction;
• the increasing of the SiO2 layer thickness covering the new sensor, from 1μm to

2.5μm.

The solution, found for reducing the heat transfer, was to create an insulating surface
on which it will be deposed the heated element, Berca et al. [2004a]. The main idea was
to obtain a configuration for the new probe, in the way illustrated by figure 7.32.

One of the commonly used MEMS materials, due to its good mechanical strength and,
mainly to its low thermal conductivity, is SiO2. For the new device, it may provide a very
good thermal insulation, but still ensuring a good mechanical support, taking into account
the turbulent flow were the probe will be implemented. There are some approaches for
fabricating the thick SiO2 insulating surfaces. One involves converting a portion of a
silicon substrate to porous silicon by anodization - Lehmann [1996], and then oxidizing
the porous silicon - Ou et al. [1999], Nam and Kwon [1996]; another approach uses a spin-
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Figure 7.32: Cross-section for the new generation of hot-film sensors

on glass method (sol-gel technique) - Kucherenko and Leaver [2000], Liu et al. [2003], but
the resulting films are not strong enough from mechanical point of view.

The initial idea, for fabricating an insulating surface was based on the results presented
by Zhang and Najafi [2002]. The major difference with their fabrication is the filling of
the trenches. Meanwhile, for developing this fabrication, there was necessary the study
of 2 parameters:

1. The optimum thickness of the insulating cavity, and of the silicon pillars in the same
time, to ensure a reduced substrate conduction for the particular configuration and
for the optimization of the LTO filling;

2. The optimum silicon pillars forms and dimensions, as well as trenches dimensions,
for realizing a compact and solid substrate, which can be used for the small devices
placed in the water and must support strong pressures.

Thermal modelling of the new hot-film sensor

To estimate the thermal insulation for the substrate conduction, there were carried
out numerical computations of the device. There were taken into account variations of
the film and fluid properties with the temperature, by the numerical simulation, handles
variable fluid properties, and the results are summarized in this section. There were
studied 2 cases, using 2 different CFD codes:

1. Steady case without flow velocity, using ANSYS v.6.1;
2. Steady case with mean flow velocity, using CFX 5.7.1;
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A great attention was payed to the near-wall modelling. Numerical treatment of
the equations in the near wall region is an important issue for turbulent flows accurate
predictions as wall shear-stress and heat transfer are influenced. Nevertheless, boundary
layers development, as well as the onset of separation are influenced. 2 methods may be
used for near-wall flow modelling: wall-function and low-Reynolds-number.

The method used for the calculation was the wall-function method with scalable wall-
functions, where the wall shear-stress is connected to the dependent variables in the near-
wall grid nodes, placed in the turbulent region of the boundary layer. As this method
allows valuable computer resources and no viscosity effects estimation in the turbulent
model are needed, it was preferred to the low-Reynolds-number method, which needs a
very fine mesh in near-wall region, as well as restrictions in the grid resolution.

The origin of the coordinate system for the sensor are considered from the center
of the heated film. The insulating cavity, which generally takes on an irregular shape, is
approximated to have the shape of a rectangular block defined by several thickness values.
Both the insulating cavity and substrate sections were discretized in the z direction, for
the 2 studied cases. The model considers heat conduction in the substrate induced by the
platinum hot film. For both calculations, the thermal conductivities of materials used in
the device are in accordance with the ones used in sensor manufacturing.

1. Steady case without flow velocity

The thermal transfer for 1 film is considered as representative for the 3 films. Thus,
the heat transfer was studied on only one part. The computational domain was split in
5 parts: fluid, the protection layer, film, SiO2 and substrate. The model meshing was
performed using ANSYS v8.1, the mesh comporting 149909 nodes. Due to the fact that
the new device is placed in the water, with no velocity, the environment was built as a
solid element. The silicon pillars thickness was varying for 10, 20 and 50 μm.

Initial conditions for the calculation are:

• zero flow velocity, C∞ = 0,
• film temperature constant, Tf = 65◦C,
• temperature at the bottom surface of the insulating surface, T = 20◦C.

Boundary conditions:

• temperature at the bottom surface of the substrate, T = 20◦C,

The computation is considered converged to the steady solution, for the maximal
normalized equation residual value less than 10−4.

The results, presented in figures 7.33 and 7.37, showed a very good thermal insolation
for the substrate conduction.

Figure 7.33 evidences the temperatures distribution in the streamwise vertical plane of
symmetry for the film sensor with nominal material properties and geometric dimensions,
when operating at a constant average hot-film temperature of 65◦C.

Thermal numerical analysis shows that such thick silicon dioxide layers allow a very
good thermal isolation between the heated structures and the surrounding neighbour-
ing structures starting with a minimum height of 10 μm, due to the reduced thermal
conductivity of the thick SiO2.

The conclusion is that the thermal isolation is ensured and the entire heat transfer
quantity by conduction is dissipated in the substrate.
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Figure 7.33: Numerical simulation of the heat transfer in the device, improved with an
insulating surface

Temperature distribution [K]

Figure 7.34: Cross-section in the device, illustrating the heat transfer
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2. Steady case with flow velocity

A schematic presentation of the computational domain including the boundary condi-
tions is shown in figure 7.35.

Wall shear-stress probe cross section

Wall

FLUID

z

xWall

T=T0

T=T0

T=T0 Th=T0

C  =5 m/s
p=ct

Tfilm = ct

∞

Figure 7.35: Computational domain presentation

Forced convection in the water flow above the protection layer and hot film is included
in the model, assuming a mean flow velocity far upstream from the device of about
5m/s. The water temperature was considered 20◦C, as well as the temperature at the
bottom of the substrate. The hot-film temperature is kept constant, at 65◦C, in the
present simulation. The coupled conduction-convection heat transfer problem is solved
numerically using CFX v.5.7.1.

The turbulence model used is SST integrated into the viscous sublayer y+ = 0.2,
due to its capacity of accurate separation and heat transfer predictions. The SST model
combines the best elements of the k − ε and k − ω models using a blending function, F1,
which is equal to 1, near the surface and 0 in the outer part. Moreover, an additional
feature is introduced in the SST model, namely an upper limit for the turbulent shear
stress in boundary layer, for avoiding excessive shear-stress values. Compared to the k− ε
model, its main advantage is represented by the adverse gradient pressure conditions.

The heat transfer model used in calculation was Thermal Energy. As boundary con-
ditions, symmetry on the lateral walls and zero velocity in the normal direction to the
flow interface were imposed. Meanwhile for the interface region, flow IN and flow OUT,
periodic translational conditions were chosen; the influence of the wall boundary on the
flow was considered as no slip.

Boundary conditions are summarized, as it follows:

• constant water temperature far from the probe surface - 20◦C;
• mean flow velocity, far upstream from the device - 5m/s;
• constant pressure gradient at the outlet surface of the computational domain;
• film temperature constant - 65◦C;
• turbulence intensity - 1%.

In the figure 7.36, the x-axis is perpendicular on the film and aligned with the flow,
while the z-axis is perpendicular to the insolating surface and points to the flow. In the
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same way, as for the first case, the system origin is considered at the center of the hot
film.

The total calculation domain was split in 4 main subdomains, detailed in table 7.4,
while the total mesh had 27799 elements.

Subdomain Nodes number Elements number Equations

Sensor 1998 880 Heat transfer
Fluid 46800 23067 Heat transfer + Navier-Stokes

LAYER 2040 845 Heat transfer
SUBSTRATE 6416 3007 Heat transfer

Table 7.4: Detailed calculation domain

For the convergence control, regarding the steady solution monitoring points for the
velocities were chosen. The residual target was set to 1e−4, while the physical timescales
were fixed at 0.1s for both heat transfer and Navier-Stokes equations. The total number
of iterations required to achieve an adequate convergence was 63.

The calculations results was qualitatively validated by comparison with previous re-
sults, obtained with DANTEC probe. As it is known, for an imposed mean flow velocity,
the wall shear-stress should be the same, for sensor placed in the same location and in
the same flow conditions in the test tunnel, no matter the device used for measuring its
value. The wall shea-stress value obtained within this case, is 30.76 Pa. By comparison
with the value obtained in the previous experimental work, using a commercial hot-film
probe, estimated at about 38Pa, the calculation results value obtained is underestimated
with about 25%, in the same way as for the wall shear stress measurements performed in
the cone. This confirms that model provides a valid quantitative description of the new
wall shear-stress sensor manufactured.

The main conclusions were that the silicon pillars surface ensure a very good heat
dissipation, providing a minimum thermal conduction and, in the same time, a maxi-
mum thermal convection and that it is noticed very well the development of the thermal
boundary layer.
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Figure 7.36: Heat transfer calculation results for the steady case, with flow velocity
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Figure 7.37: Detailed view over the heated element, illustrating the conduction heat
transfer
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7.4.2 Thick silicon dioxide fabrication

A method for fabricating silicon dioxide layers is presented, see Zhang and Najafi
[2002], thanks to the deep reactive ion etching (DRIE), used for creating high-aspect-
ratio silicon pillars. Then these pillars are oxidized and/or refilled with LPCVD oxide
or nitride. The silicon pillars are realized in an ALCATEL 601E, fluorine chemistry high
density plasma etcher with a Bosch process. The pillars thickness in a first configuration
varied between 10 and 20 μm. Meanwhile, another question rises: which are the optimum
dimensions and forms for the silicon pillars, for achieving a complete filling. In this
way, there were proposed, as illustrated figure 7.38, several pillars design having different
widths, as well as different trenches openings.

Figure 7.38: Pillars design and trenches dimensions studied

The process of trench filling is experimented by several different methods: by oxidation
only, by oxidation and LPCVD oxide, by polysilicon deposition and by oxidation and
LPCVD nitride. There will be shown that the complete filling of the trenches is very
difficult, depending on several parameters like the trenches profile, the silicon pillar width
and dimensions, etc.

1. Trench filling by oxidation only

The trench refilling in this case is performed by consuming the Si pillars through oxidation
and outgrowth of the oxide into the trench, see figure 7.39. Meanwhile, to obtain a
complete refill by oxidation only, the ratio of silicon pillar width to trench opening should
be ∼ 0.85, but in practice, the ratio should be larger than this for ensuring a good
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Si substrate

SiO2
Si pillars

Figure 7.39: Pillars design and trenches dimensions studied

mechanical resistance. In this way, after trenches realization, the wafers are wet oxidized
for 3h at 1050◦C in order to refill them, figure 7.40.

A. B. C.

Figure 7.40: SEM photos showing the trenches filling depending on the Si pillars design:
a) square design,b) circle design, c) cross design

It can be concluded, that for all silicon pillars designs, the behavior of the trenches
filling is almost the same: for the square and cross silicon pillars designs, the trenches
filling by oxide procedure was unsuccessfully, while for the round design of the pillars, the
top and the bottom of the thick oxide layer have the tendency to join together, but voids
are formed in the middle, and it can be noticed that the oxidation in not enough. This is
explained by sidewall profile formed during the DRIE. Yet, for the new application, where
a very good mechanical strength is required, it is necessary to obtain a solid insulating
surface. Thus, new investigations are carried out.

2. Trench refill by oxidation and LPCVD oxide

One of the solution proposed by Zhang and Najafi [2004], in order to avoid voids
formation, is the use of both oxidation and further filling of the trenches using LPCVD
oxide, method illustrates in figure 7.41.

After 3h of wet oxidation at 1050◦C, 1-2 μm of LPCVD oxide is deposited to fill the
openings, see figure 7.42.

The results obtained are similar for all the designs. Yet, as one can notice in the SEM
photos, the thick oxide layer produced does still have voids in the middle. That is the
reason, why it is proposed another different designs and tried different filling methods.
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SiO2
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Figure 7.41: Schematic view of the trench filling by oxidation and LTO deposition

A. B. C.

Figure 7.42: SEM photos showing the trenches filling by this method depending on the
Si pillars design: a) square design, b) and c) cross design

3. Trench refill by oxidation, polysilicon layer deposition and again oxidation

The main stages in the trenches refilling using these techniques are illustrated in figure
7.43.

Si pillars

Si substrate

SiO2

Poly Si SiO2

I. II.

III. IV.

Figure 7.43: Schematic view of the trench filling by oxidation, polysilicon deposition and
oxidation

As it has been noticed, the different designs used for silicon pillars before were unsuc-
cessfully, there were conceived another ones, see figure 7.44. In the same time, the pillars
thickness was varied from 10, 20, 40 and 60 μm.
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1. 2. 3. 4.

Si

Figure 7.44: New designs for the silicon pillars

For the new designs there was also performed a filling by oxidation only. The results,
see figure 7.45, showed that the trenches filling only by oxidation, for the new designs,
was partially realized, the most successfully design being the 3rd one.

1.

2.

3.

4.

Figure 7.45: SEM photos showing the trenches filling by oxidation only in the new designs
configuration



7. DESIGN AND DEVELOPMENT OF THE NEW HOT-FILM PROBE 149

Furthermore, the filling procedure chosen, afterwards was more complex: the silicon
pillars were oxide at 1250◦C for 9h, then for facilitating the trenches filling, as well as the
surface planarity, there was deposed a narrow layer of polysilicon, and then the procedure
was completed by a new oxidation, during about 6h. The results are presented in figure
7.46, for all the new designs.

1.

2.

3.

4.

Figure 7.46: SEM photos showing the trenches filling by the complex method correspond-
ing to the new designs
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It is noticed a good resolution for the silicon pillars going from 4 to 5 μm diameter and
very unsatisfactory results for the silicon pillars diameters of 2 and 3 μm. Thus, there
was developed a final configuration, having the silicon pillars diameter of 4 μm.

4. Trench refill by oxidation and LPCVD nitride

There was chosen a final design and the final trenches filling method tested was com-
posed by an oxidation, followed by a nitride deposition by LPCVD, for improving the
trenches filling, schematized in figure 7.48.

SiO2
Si pillars

Si substrate

LPCVD nitride

Figure 7.47: Schematic view of the trench filling by oxidation and nitride deposition

The results presented in figure 7.48 show that the level of trenches filling performed
by this method is higher than any other method presented before.

Figure 7.48: SEM photos showing the trenches filling by oxidation and nitride deposition

For the same design of the silicon pillars and trenches, there were compared the refilling
methods using the deposition of nitride in parallel with the one of oxide, illustrated by
figure 7.49. By comparison between the whole methods presented, it is remarked that
this is optimum method for filling the trenches.
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Figure 7.49: SEM photos showing the trenches filling by oxidation and LTO deposition

7.4.3 Sensors second generation fabrication

The refilling validation process leaves an corrugated surface. Nevertheless, due to the
fact that the sensor’s surface must be an uniform one, without no protuberance to disturb
the flow, a chemical-mechanical polishing is planned. The results, as the figure 7.50 show,
are very uniform and the process is a successful one.

Figure 7.50: Chemical mechanical polishing resuts on a wafer surface

Finally, after choosing the optimum design and thickness of the insulating cavity,
the first step was to fabricate a mask for the implementation of the new design in the
configuration of the new sensor. Finally, the manufacturing process is a 4 masks layers,
illustrated from figure 7.51 to 7.54.

The main fabrication steps for the second generation of new hot-film sensors are sum-
marized in figura 7.55, while the new probe is illustrated in figure 7.56. The whole wafer
after the laser dicing is shown in figure 7.57.
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Figure 7.51: Mask no.1 used for creating the
insulating surface in the substrate

Figure 7.52: Mask no.2 for the heated film
and a first layer corresponding to the electri-
cal track deposition

Figure 7.53: Mask no.3 corresponding to the
second layer of the electrical tracks

Figure 7.54: Mask no.4 for the holes realiza-
tion, corresponding to the electrical connec-
tions

7.5 EXPERIMENTAL SET-UP

7.5.1 Probe encapsulation

A preliminary step after the fabrication procedure is the wires welding, for the electrical
connections on the new miniature hot-film probe. The wires welding wa performed in the
Atelier de COnception, Réalisation et Test (ACORT), for about 10 probes on a wafer,
for each of the 3 wafers. Copper wires soldered to the leads constitute the electrical
connection between probe cable and probe, see figure 7.58.
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2. Hot film element deposition

3. Electrical track element deposition

5. Electrical connexions etching

6. Electrical connexions refilling

4. Protection quartz layer deposition
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Figure 7.55: Main fabrication steps for the second generation of the new hot-film sensor

Figure 7.56: New multidirectional hot-film sensor

For testing this new wall shear-stress sensor, after the wires welding, the encapsulation
is necessary. In the same way as for the first generation sensors, there were developed
and manufacture several different plastic and stainless steel components, for preliminary
testing and characterization of the probe in the hydrodynamic water tunnel in the LMH.
A probe encapsulated is presented in figure 7.59. Nevertheless, a special attention should
be paid to the flush mounting of the probe in its encapsulation system.
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Figure 7.57: A processed wafer

Figure 7.58: Wires welding on the sensor’s backside

Figure 7.59: New wall shear-stress sensor’s encapsulation

Another major parameter to be considered is the glue of the probe in its encapsulation
system. Actually, this is a special version of the flush-mounting probe, where the sensor is
deposited on an insulating plastic material, in the same way as for the first generation of
sensors, see figure 7.28. The sensor’s diameter is 4 mm. It is glued using a solidification
glue, directly on the plastic, by total backside refilling, in this way ensuring a good
property on the top surface of the probe, avoiding the glue to recover some part of the
probe’s face and to perturb the flow and the thermal boundary layer.
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7.5.2 Design and manufacturing of the rotating support

Meanwhile, for the calibration procedure there was developed a new rotating support
adapted to the new probe, which allows the rotating of the probe with 360◦, to see the
influence of the angle between the longitudinal direction of the films and the direction of
the flow, on the measurements, corresponding to each of the hot-films, see figure 7.60.

Figure 7.60: New rotating system design

A special care was provided for fitting of the probe encapsulation system in this new
support, for allowing the flush mounting once, the plastic encapsulation together with the
new probe glued, in the rotating system and, on the other side, the rotating system to
the wall, see figure see figure 7.61.

flush-mounted
wall shear-stress sensor

Figure 7.61: The whole encapsulating system used for the new wall shear-stress calibration
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Chapter 8

MEASURES AND EVALUATION OF
THE NEW PROBE

Several manufacturing procedures are not uniform, from one wafer to another, so that
new hot-film sensors on each wafer have to be tested. The results of the manufacturing
process are 3 wafers which can be investigated and tested.

The new wall shear-stress sensor testing can be divided in following categories: elec-
trical functionality and behavior, time response study and sensor calibration.

8.1 PROBE CHARACTERIZATION

In the same way, as for the first sensors generation, the temperature coefficient of resis-
tance evaluation constitutes the first testing step. Resistance with temperature behavior
of the thin-film platinum sensor is necessary for calculating the sensor overheat ratio for
a given resistance.

For the second wall shear-stress sensors this coefficient is evaluated for the 3 films of a
probe, both in the air and in the water. The temperature was measured using a classical
thermometer placed in the same environment with the new probe. For the air tests the
same oven as previous is used, to heat up the sensor’s films and, then, measured the
resistance at different temperatures, see figure 8.1.

For TCR evaluation of the heated films in water, a container with water at an initial
temperature, of 13 ◦C, is used. The water temperature is increased by adding hot water
and the temperature and the 3 films resistances are acquired simultaneously. The acqui-
sition is performed until the water temperature reaches 70◦C. The same measurements
were performed, in both directions, from hot to cold and from cold to hot, meaning that
the hot water is cooled, little by little, until it reaches again about 16◦C. The results are
presented in figure 8.2.

The measurements values deviation from the mean value of the TCR, ±0.5%, for all 3
heated films, as well as the differences in α value, 0.18%/◦C, for the film no.1, 0.15%/◦C
for the film no.2 and 0.14%/◦C for the film no.3, are explained by the non-uniformity
of different procedure used in sensor’s fabrication and also by the poor precision of the
thermometer used for temperature read. Meanwhile, the increasing of the films resistances
with the water temperature shows a good behavior and a good dynamic of the new probe,
in both environments, around 0.15Ω/◦C. The response of the probe was repetitive.

157
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Figure 8.1: Temperature coefficient of resistance evaluation for air
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Figure 8.2: Temperature coefficient of resistance evaluation for water

8.2 TESTS IN THE WATER TUNNEL

8.2.1 Instrumentation

Validation of the new probe implies an electronically system development, made up of
3 constant-temperature anemometers, corresponding to the 3 films. The principle used
for these anemometers involves automatic control of the current supplying the film so that
the temperature of the hot-film probes should be maintain at a constant level, no matter
the outer conditions for heat transfer, throughout the measurements. As said before,
due to the non-uniformity of certain processus in the fabrication of the new design, films
resistances change on all 3 wafers processed, from one wafer to another. Moreover, the
films resistances values changed from 130-140 Ω in the first generation of sensors, to 10-90
Ω, for the second generation - depending on the wafer used. Thus, it became necessary
the development of appropriate electronic device which integrates the 3 anemometers.
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A first attempt was carried out and it is presented in figure 8.3. As this new de-
velopment was carried out together with Wavemind, we will refer to the anemometer as
Wavemind anemometer.

Figure 8.3: First electronical device developed

For the calibration of the new miniature hot-film sensor, it is used the same instru-
mentation as for the calibration of the commercial one, used in chapter 5 for the analysis
of the wall shear stress in a Francis turbine. The same additional instruments are used,
namely a Pitot tube, for the mean flow velocity acquisition and a temperature sonde for
the temperature acquisition in the measurement section.

8.2.2 Calibration procedure

The calibration procedure for the new miniature hot-film sensor is the same as the
one used for the preliminary calibration and measurements performance in the cone of a
Francis turbine. The calibration procedure was detailed in chapter 4, section 4.3.

8.3 NEW PROBE CALIBRATION

There were, initially, tested 2 hot-film probes encapsulated with the initial version of
anemometer. The preliminary tests results showed a success in improving the life time of
the probe - the detachment of the protecting SiO2 layer on the electrical connections took
no more place, even if the films were heated at about 140◦C. Meanwhile, the Wavemind
anemometer needs some improvements, as during the measurements high oscillations oc-
cur, difficult to eliminate, the system becoming, in this way, instable.

For establishing the sensor’s dynamic, a new electronic device has to be developed,
while for characterization of the maximum frequency for the velocities variations that
the anemometer would be able to detect and measure, the sensor’s time constant value
must be evaluated. The time response of the sensor is limited by its thermal capacity, i.e.
the thermal time constant of the active sensor mass. This time constant was evaluated
theoretically and experimentally.
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8.3.1 Time response calculation

The basic one-dimensional model for a non-cylindrical hot film, shown in figure 8.4,
which includes also the heated losses across the substrate to surfaces adjacent to the film
has been introduced by Bellhouse and Schultz [1967].

y

y = 0

y = -h

Flow direction

l

η

L

ξ

Film

Substrate

Figure 8.4: Model of non-cylindrical hot film

This model replaces the film surface of a sensor by a planar film surface at a temper-
ature and it replaces the three-dimensional heat transfer across the substrate into areas
adjacent to the film by one-dimensional heat transfer across the substrate to another
planar surface below the substrate at temperature. In this model, and for the new wall
shear-stress sensor, due to the fact that the film’s thickness is 150nm, and the substrate
thickness is 380 μm, it can be neglected the film thickness related to the substrate thick-
ness h. The heat loss from the film through the substrate is in the opposite y direction.
For the hot-film probe, it is also neglected the protecting SiO2 layer placed on the film
surface, between the water and the film.

The energy balance at the upper surface, covered by the film characterized by a length,
l and width L is evidenced, in the same way as in section 4.3, by relation 8.1.

Q̇J = ΣQ̇+
dQfilm

dt
, (8.1)

where:

• Q̇J - heat power transferred by Joule effect;
• ΣQ̇ - heat transfer by convection from film to surrounding fluid;
• dQfilm - heat transfer by conduction to supports, which influences the dynamic

response of the sensor.
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Assuming that the film resistance Rf represents one arm of the Wheatstone bridge,
R1 another arm in series with Rf and U the voltage over the bridge of the constant-
temperature anemometer represented in figure 8.5, the heat transferred by Joule effect,
Q̇J can be written as relationship 8.2.

Amplifier 

R2

Rf

R1

R

Figure 8.5: Principle of the constant temperature anemometer

Q̇J =
RfU

2

(Rf +R1)2
, (8.2)

The heat transfer by convection depends on the flow velocity and on the temperature
difference between the film and the substrate. The heat transfer by conduction depends
on the temperature variation in substrate; in this way, the thermal balance evidenced by
relation 8.1 becomes, with the new parameters, relation 8.3.

RfU
2

(Rf +R1)2
= H(c) · (T |y=0 − T0) + lLksu

∂T

∂y
, (8.3)

where: T (y) is the temperature in the substrate, T |y=0 = Tf is the film temperature,
T0 is the water temperature along the upper surface of the film, y = 0, as well as the
temperature for the lower surface of the substrate, y = −h, c is the flow velocity, ksu is
the heat conductivity of the substrate and H(c) is the heat transfer function.

For the new wall shear-stress sensor, the substrate may be considered as being made
of 2 different materials:

• an insulating surface at the lower surface of the film, made up by silicon pillars
refilled with SiO2, characterized by a thickness h1 and a heat conductivity ksu1,

• initial silicon substrate characterized by heat conductivity ksu2.

The equivalent thermal conductivity of the substrate, ksu, is determined by assuming
a linear dependence of the temperature in the substrate, see figure 8.6, and described by
relation 8.4.

ksu =
ksu1h1 + ksu2(h− h1)

h
(8.4)
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Figure 8.6: Equivalent substrate assumption

The thermal conductivity of the insulating surface is considered ksu1 = 1.3807[W/(m ·
K)], while for the silicon substrate is ksu2 = 125.52[W/(m ·K)].

The heat transfer function, H(c), described by relationship 8.5, involves the local heat
transfer coefficient from the film to the flow, ĥ.

H(c) =

∫ l

ξ=0

∫ L

η=0

ĥ(c, ξ, η)dξdη (8.5)

For steady-state heat transfer, the relation 8.6 is available.

∂T

∂y
=
Tf − Th

h
(8.6)

where Th is the temperature of the lower substrate surface for static conditions and h is
the substrate thickness.

Moreover, at the lower surface of the substrate the boundary condition is described
by relation 8.7.

H(c) · (T |y=−h − T0) = lLksu
∂T

∂y
|y=−h (8.7)

It is introduced the dimensionless quantity, x called the Biot number of the non-
cylindrical sensor, see relation 8.8.

x =
h

lLksu

H(c) (8.8)

Taking into account the relationship 8.9, expressing the temperature difference, the
boundary conditions 8.3 and 8.7 are simplified to relation 8.11.

Tf − Th =
x

x+ 1
(Tf − T0) (8.9)

RfU
2

(Rf +R1)2
= H(c) · (Tf − T0) +

1

x
H(c) · (Tf − Th) (8.10)
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Furthermore, combining equations 8.9 and 8.11 yields:

RfU
2

(Rf +R1)2
=

2 + x

1 + x
H(c) · (Tf − T0) (8.11)

The heat transfer function, for the new wall shear-stress case, can be developed, in the
relationship 8.12, by considering the Nusselt number, Nu, and its simplest expression is
given by "King’s law", see relation 8.13.

H(c) = Nu · lL (8.12)

Nu = A+Bcn (8.13)

where A, B, n are constants. The heat transfer function becomes:

H(c) = lL(A+Bcn) = A′ +B′cn (8.14)

For a hot film, which is an electrical resistance, the temperature dependence may be
expressed as:

Rf = R0[1 + α · (Tf − T0)] (8.15)

where R0 is the resistance at the reference temperature T0, α being the temperature
coefficient of the electric resistivity of the film. The temperature coefficient’s value for the
new wall shear-stress, as the heated film is in platinum is considered about 0.0035◦C−1.
The temperature difference can be expressed by relationship 8.16.

Tf − T0 =
Rf −R0

αR0

(8.16)

Replacing the relations 8.16 and 8.14 in 8.11 it is obtained the relation 8.17,

U2

Rf (Rf −R0)
=

lL

αR0

2 + x

1 + x
(A+Bcn) (8.17)

and replacing 8.14 in 8.8, the relation 8.17 becomes:

U2

Rf (Rf −R0)
=

lL

αR0

(1 +
ksu

ksu + h(A+Bcn)
(A+Bcn) (8.18)

Meanwhile the derivation of the relation 8.18 allows the achievement of the relationship
8.19.

U2(2Rf −R0)

R2
f (Rf −R0)2

∂Rf

∂t
= nBcn−1 lL

αR0

[1 + ksu
h(ksu − 1)(A+Bcn) + ksu

[ksu + h(A+Bcn)]2
]
∂c

∂t
(8.19)

It is introduced the time constant, M , detailed for the new wall shear-stress sensor in
the expression 8.20.

M = nBcn−1 lL

αR0

R2
f (Rf −R0)

2

U2(2Rf −R0)
[1 + ksu

h(ksu − 1)(A+Bcn) + ksu

[ksu + h(A+Bcn)]2
] (8.20)
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The limit frequency of the hot-film response is defined by relationship 8.21, while the
time response is found as relation 8.22.

f =
1

2πM
[Hz] (8.21)

τ =
1

f
[s] (8.22)

For the same wall shear-stress probe containing 3 heated elements, there were calcu-
lated, for each of them, the time constant, the limit frequency and the time response, for
2 different cases: without considering the conduction losses, illustrated in table 8.1 and
for the case with conduction losses, illustrated in table 8.2. For this calculations there
were imposed a constant temperature for the hot-film, at about 65◦C and the temperature
value at the lower surface of the substrate, at 20◦C.

As the calculations showed the heat conduction in the substrate plays an important
role in the behavior of the new wall shear-stress probe. Meanwhile, even considering the
conduction losses, the new probe responds to the expectations in time response.

8.3.2 Time response measurement

Moreover, to confirm this behavior there was measured the time constant, for all the 3
heated films, corresponding to the same probe used for the characterization of the probe’s
behavior regarding the time response. For this, there will be measured the relaxation
time of a signal output as response to a controlled external perturbation.

For the measurements a preliminary CCA - constant current-anemometer - develop-
ment was carried out, schematized in figure 8.7.

68 Ω

1kΩ

68 Ω

+ 12V

1kΩ

R

Figure 8.7: Constant-current anemometer
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A preliminary test for this new development was its time response, meaning the time
needed to obtain a stabilizing output signal. It was tested a film on a probe for 3 different
mean flow velocity in the water tunnel, corresponding to the constant current value of 40
mA, see figure 8.8.

A second test is needed and performed for studying the system behavior. As the new
CCA can function at 2 different current intensities, i = 40mA and i = 80mA, its behavior
in time is relevant for the measurements. It is characterized the CCA time response with
the same new probe used in the first test, by switching between the 2 current values, for
a constant mean flow velocity, see figure 8.9.

The results show that, as expected, due to the thermal inertia, the time response of
the CCA is higher than for CTA, and in the same time, due to fact that by inputting a
current of 80mA, the film temperature is unknown, the CCA utilization leads to probe
deterioration. For different flow velocity, the same voltage values are obtained at the
anemometer’s output. By operating the sensor at constant temperature, the response
time of the sensor can be improved considerably.

Meanwhile, the Wavemind anemometer previous developed has been improved for
measuring the time response of a new wall shear-stress sensor. It is used the square wave
test, which consists in imposing a square wave at the anemometer’s input and noticing
the effects on the output voltage.

The square wave test has been and is still nowadays usually used, due to its easy
operation, in most applications involving hot-wire and hot-film anemometry for optimizing
and quantifying the frequency response of hot-element systems.

This method is based on the idea that the water velocity fluctuation leads to a tem-
perature fluctuation which is equilibrated or after a time linked to the thermal inertia,
by the use of a CCA, or by a feed-back compensation time, CTA case. In both cases,
the square wave test simulates a velocity fluctuation by setting a temperature variation
by Joule effect. The output voltage consists in a drop, which releases in an exponential
form ∼ e−t/t0 , allowing the time response evaluation, t0. This time response integrates all
the response times of the system: thermal inertia, capacitive effects of the cables, time
response of the electronical device.

There were measured 2 different wall shear-stress probes, taken from 2 different wafers
at 2 different mean flow velocity in the calibration tunnel.

The measurement results are presented in 2 different tables: 8.3 and 8.4.
The frequency response of the optimized hot film system, defined as the frequency at

which the bridge voltage signal is attenuated by 3 dB, is given by relation 8.23.

fs =
1

3τs
(8.23)

The results showed a good frequency response for the new wall shear-stress sensor, for
the 2 mean flow velocity. By comparisons with the time response calculated, it can be
noticed an important difference, the time response calculated is about 2 times smaller than
the one measured. This difference is explained by the simplifying assumptions imposed
in the calculations, related to the size of the film, of the equivalent substrate, and also,
as explained above, the time response measured is made up of all the response times of
the system, which there were not taken into account in the calculation.
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Sensor no.1 Square wave signal frequency t0,c=2m/s [s] f0,c=2m/s [Hz] t0,c=5m/s [s] f0,c=5m/s [Hz]

1 Hz 0.000355 448.36 0.000265 599.45
10 Hz 0.000282 563.98 0.000255 625.36194
100 Hz 0.000225 707.53 0.000304 522.89
300 Hz 0.000312 510.93 0.000301 528.73
500Hz 0.000285 559.34 0.000333 477.71
1 kHz 0.000217 734.75 0.000203 785.7
5 kHz 1.41726 · 10−5 11229.78 2.64646 · 10−5 6013.87

Film no.1, R = 38.5 Ω

10 kHz 1.88974 · 10−5 8422.05 1.51241 · 10−5 10523.25

1 Hz 0.000225 706.6 0.000287 554.15
10 Hz 0.000398 400.33 0.000359 443.48
100 Hz 0.000234 680.47 0.000284 560.83
300 Hz 0.000419 379.95 0.000237 671.16
500Hz 0.000295 539.06 0.000228 714.45
1 kHz 0.000191 835.19 0.000188 847.54
5 kHz 2.51996 · 10−5 6315.78 0.000021 7578.81

Film no.2, R = 26.2 Ω

10 kHz 1.68014 · 10−5 9472.7 1.68003 · 10−5 9473.35

1 Hz 0.000298 534.74 0.000272 584.82
10 Hz 0.000176 906.45 0.00029 549.31
100 Hz 0.000338 470.35 0.000305 521.96
300 Hz 0.000311 511.98 0.000338 470.46
500Hz 0.000314 507.17 0.000294 541.59
1 kHz 0.000181 878.28 0.000181 880.59
5 kHz 1.76359 · 10−5 9024.5 1.76431 · 10−5 9020.81

Film no.3, R = 40.6 Ω

10 kHz 1.13385 · 10−5 14036.74 1.10239 · 10−5 14437.23

Table 8.3: Time responses measurements for 1 new wall shear-stress sensors with medium
resistance values

Sensor no.2 Square wave signal frequency t0,c=2m/s [s] f0,c=2m/s [Hz] t0,c=5m/s [s] f0,c=5m/s [Hz]

1 Hz 0.000286 555.75 0.000335 475.61
10 Hz 0.000288 552.38 0.00027 590.44
100 Hz 0.00028 567.77 0.000283 561.61
300 Hz 0.000253 627.53 0.000262 606.64
500Hz 0.0003 530.6 0.000295 539.31
1 kHz 0.000223 714.11 0.0002 797.63
5 kHz 1.35141 · 10−5 11776.97 1.7653 · 10−5 9015.73

Film no.1, R = 71.7 Ω

10 kHz 1.49816 · 10−5 10623.34 1.37448 · 10−5 11579.27

1 Hz 0.000257 620.17 0.000235 675.92
10 Hz 0.000261 609.02 0.000241 660.19
100 Hz 0.000308 516.85 0.000346 460.45
300 Hz 0.000273 582.57 0.000224 710.02
500Hz 0.00027 588.66 0.000301 527.88
1 kHz 0.000201 791.81 0.000201 791.53
5 kHz 2.11238 · 10−5 7534.41 2.84172 · 10−5 5600.65

Film no.2, R = 75.7 Ω

10 kHz 1.4892 · 10−5 10687.296 1.71808 · 10−5 9263.56

1 Hz 0.000259 613.55 0.000336 472.93
10 Hz 0.000293 543.02 0.00025 636.4
100 Hz 0.000302 527.19 0.000227 702.16
300 Hz 0.000234 680.86 0.000288 552.12
500Hz 0.000295 539.38 0.00025 635.9
1 kHz 0.0002 793.79 0.000231 687.79
5 kHz 1.79986 · 10−5 8842.65 2.17779 · 10−5 7308.11

Film no.3, R = 67.6 Ω

10 kHz 1.15486 · 10−5 13781.36 1.03944 · 10−5 15311.57

Table 8.4: Time responses measurements for another new wall shear-stress sensors with
high resistance values
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8.3.3 New wall shear-stress sensor calibration and sensitivity pa-
rameters study using miniCTA

Furthermore, after the probe characterization, the calibration procedure has to be
carried out. As the CTA used was not totally adequate for all the probes fabricated,
another option, for the calibration, was the use of a miniCTA, developed by DANTEC
Measurement Technology. The inconvenient in using this instrumentation is that it can
be used only with one film at once.

The MiniCTA, illustrated in figure 8.10, is designed in the same way as a classical
constant temperature anemometer, having specifications and performance carried out for
the ordinary low speed flows. It is intended for the measurement of velocity and turbulence
in flows with moderate frequency content.

It is equipped with BNC connectors and operated via a 12-volt DC power adapter or
by a battery. The bandwidth, maximum 10kHz is optimized for use with wire probes.
The anemometer can be used with probes having the cold resistances up to 10 Ω. The
overheat setting is defined via dip switches and jumpers inside the box.

Figure 8.10: MiniCTA

A miniature Constant Temperature Anemometer, 54T30 type, was specially adapted
for some probes resistances, 18 − 50Ω, bridge ratio 1 : 10.

The calibration and the sensitivity parameters were studied, using this new instrumen-
tation; all the measurements were performed in the water tunnel in the Laboratory for
Hydraulic Machines, with respect to the same relations obtained in chapter 4 due to the
same relative position of the new probe in the measurement section of the hydrodynamic
tunnel. Calibration results and sensitivity parameters study are following up.

8.3.4 Sensitivity parameters

1. Temperature gradient influence

In the same way, as for the commercial hot-film probe used for performing wall shear-
stress measurements in a Francis turbine, the new sensor is made up by 3 hot-film probes,
which are electrical resistances maintained at a constant temperature, about 65◦C, and,
which by their property, depend linear on the temperature difference between film and
medium where it is placed.

For each of the 3 films on the same probe there are presented the results of the
quantification of this parameter together with the measurements accuracy, see figure 8.11,
8.12 and 8.13.
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Figure 8.11: Film no.1, R = 37.2 Ω, output voltage evolution with the water temperature
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Figure 8.12: Film no.2, R = 29.5 Ω, output voltage evolution with the water temperature
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Figure 8.13: Film no.3, R = 33.1 Ω, output voltage evolution with the water temperature

The influence of the water temperature on the output voltage of the wall shear-stress
probe is expressed further, corresponding to each of the 3 films.

Film no.1, R = 37.2 Ω V = −0.1803 · (21 − θ) + 9.0267;
Film no.2, R = 29.5 Ω V = −0.3937 · (19 − θ) + 10.714;
Film no.3, R = 33.1 Ω V = −0.094 · (18 − θ) + 6.4218.

2. Orientation of the hot-film probe in the flow

The second parameter to study is the angular influence of the film direction with the
flow direction. In the same way, as a ordinary hot-film, the maximal heat dissipation is
obtained when the longitudinal direction of the film is perpendicular to the flow direction.

The influence of this parameter is presented in figures 8.14, 8.15 and 8.16, correspond-
ing to each of the 3 films. Taking into account that a special configuration is presented
for the new wall shear-stress sensor, film in triangle, the angle made by each film’s sensor
with the direction of the flow is modified over 360◦ with a step of 5◦, starting from the
same initial angle, for all 3 films, 0◦.

It is observed that the maximum output voltage is obtained for the film no.1 at the
relative angle -15◦, for the film no.2 at −120◦, while for the film no.3 an inconvenient was
noticed, even if in this condition maximum is obtained at +120◦, in a good correlation
with the other values. All the relative angular positions were reported to a same initial
angular value for all the 3 films.

Due to the fact that the miniCTA’s settings are changing for this wall shear-stress
from one day to another, it is decided to not perform the contamination influence.

The voltage given by the heated films is acquired simultaneously with the water tem-
perature and the flow velocity, see figure 8.17, 8.18 and 8.19, allowing to get the calibration
curves, see figure 8.20, 8.21 and 8.22.
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Figure 8.14: Angular variation of the output voltage given by the film no.1, R = 37.2 Ω
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Figure 8.15: Angular variation of the output voltage given by the film no.2, R = 29.5 Ω
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Figure 8.16: Angular variation of the output voltage given by the film no.3, R = 33.1 Ω
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Figure 8.17: Output voltage variation with mean flow velocity, film no.1, R = 37.2 Ω
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Figure 8.18: Output voltage variation with mean flow velocity, film no.2, R = 29.5 Ω
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Figure 8.19: Output voltage variation with mean flow velocity, film no.3, R = 33.1 Ω

The calibration results showed that, as for all the 3 films was noticed the same behavior,
the anemometer is not adequate for the present application, showing that as the flow
velocity increases, the output voltage of the anemometer decreases. This means that the
anemometer could no more introduce the power needed for keeping the film temperature
constant, allowing, in the way, the cooling of the film.

As the new generation of wall shear-stress sensors comported 3 different wafers, one
containing films with 50-100 Ω, the second one 30-70 Ω and the third one 2-20 Ω resistances
values, the final calibration was performed using sensors on the last wafer which were used
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Figure 8.20: Calibration curve corresponding to film no.1, R = 37.2 Ω
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Figure 8.21: Calibration curve corresponding to film no.2, R = 29.5 Ω
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Figure 8.22: Calibration curve corresponding to film no.3, R = 33.1 Ω

with the DISA 55M System, previously used in the calibration of the commercial hot-film
probe. The results with the sensitivity parameters influence study are presented.

For all the 3 films of a new wall-shear stress the results obtained were encouraging, and
a good calibration was obtained for each one of them. The calibration global accuracy
was ±1%.
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A comparison between the commercial hot-film probe with the new shear-stress sensor,
used together with the miniCTA and DISA system is performed, see figure 8.27.

The comparisons showed a very good behavior of the new shear-stress sensor when
using the DISA system, while using the miniCTA an inconvenient was noticed, namely the
new anemometer, at high flow velocity, is no more capable to keep the film temperature
constant.
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Chapter 9

CONCLUSIONS

A first goal of the thesis was the wall shear-stress measurements in the cone of a
Francis turbine, both at the inlet and at the outlet sections, for a better understanding
of the complex phenomena in this part of a Francis turbine, by means of a complex
acquisition system based on a classical flush-mounted hot-film probe which is calibrated in
a hydrodynamic water tunnel, together with a constant temperature thermal anemometer.

The hot-film probes calibration is a very complex operation. The calibration curve
is obtained starting from the theoretical relation between the wall shear-stress and the
velocity distribution in the boundary layer and taking into account the influence of several
parameters over the measurements: water temperature, orientation of the hot-film probe
in the flow, contamination of the probe. The resulting calibration is a nonlinear relation-
ship between voltage and shear stress. The relative calibration accuracy was found to be
within 2% of the measured shear stress for a flush-mounted hot-film sensor and constant
temperature anemometer.

Following the hot-film probe calibration, wall shear-stress measurements are performed
in a Francis turbine’s cone, for 4 near BEP operating points and 1 operating point at part
load for 2 different σ values, corresponding to 9 positions at the inlet and 7 positions at
the outlet of the hot-film probe. In this part of the project to eliminate the contamination
parameter’s influence, a drift correction procedure was developed.

The main purpose of the wall shear-stress measurements was the study of the boundary
layer separation in the cone from 2 different points of view, steady and unsteady. The
steady analysis was carried out, by studying the mean values of the wall shear-stress.
Moreover, as the steady analysis results evidenced high fluctuations, the wall shear-stress
unsteady aspect should be also studied. The unsteady analysis was performed, by studying
the fluctuating parts of the wall shear-stress for each angular position of the hot-film probe
in the cone and for each operating point.

The steady analysis offered informations about the boundary layer separation tenden-
cies, while the unsteady analysis allowed the detection of the runner wake and the blade
passage. For the near BEP operating points, the wall shear-stress decreases with the
increasing of the flow rate, but no boundary layer separation took place. Meanwhile, at
the cone outlet the bend influence is evidenced and the magnitude of the wall shear stress
fluctuations decreases to 0. The wall shear stress values, corresponding to the partial load,
are higher than for the standard operating points and the mean value is independent on
the σ value. Moreover, 2 remarks can be made regarding the wall shear-stress synchronous
with the rope passage: its magnitude is high related to the one obtained for the standard
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operating points and it depends on the rope proximity to the wall. The global accuracy
of the measurements was within 5% of the measured value.

A comparison with the CFD calculations results is performed and it doesn’t show
any difference, for the same probe angular position in the cone, in the studied operating
points, evidencing that the wall law model used in this code should be reconsidered.

The boundary layer development was presented and it was also studied the validity of
the universal logarithmic for the turbine flow conditions. Main investigations showed a
strong 3D character of the boundary layer in the presence of an adverse pressure gradient
in an unsteady sheared flow. There were also presented an adjustment using the composite
power law, which offered a good description of the boundary layer.

As in turbulent flows, an increase in Reynolds number generates shorter timescales and,
thus, smaller length scales, small and fast sensors are required for a acceptable resolution
of the flow field. Nowadays, the wall shear-stress study, for water applications, is limited
due to the availability of existing sensors to be implemented in a complex system and to
study a 3D flow. From this point of view, MEMS offers opportunities for developing and
manufacturing sensors with regard to these requirements: high accuracy and low cost.

The main goal of this thesis was the design, fabrication and testing of a new wall shear-
stress sensor for 3D complex flows applications. The innovative aspect comes from the
capability of this new device to detect the flow direction and to be implemented all over
a turbomachine. It represents a bridge between 2 different discipline, micro-mechanical
technology and fluid mechanics.

During this research, different developments, validations and accomplishments resulted
and were highlighted. The main topics, achievements and contributions can be categorized
into: design of a new wall shear-stress sensor, fabrication steps development, validation
and improvements, numerical simulations of the thermal behavior of the heated-films,
manufacturing of the new device, time response study, tests in hydrodynamic water tunnel
and calibration sensitivity parameters study and calibration performance. Furthermore,
there are summarized the results and contributions in each area.

For accomplishing the new device manufacturing, the flow and thermal microsensors
state-of-the art was presented, by a general background and some examples. Another
study deals with the wall shear-stress technics used nowadays and after considering all
the advantages and disadvantages of the presented technics, for water applications, the
most adapted for the present application was the hot film.

Moreover, to succeed in manufacturing a device adapted to our special requirements,
a first study of the materials used for the substrate in microtechnology and available
in CMI is presented. The initial choice was pyrex, as its thermal conductivity is low.
Furthermore, as for this material the electrodischarge procedure needed in the electrical
connections realization is a manually one, needing a precise tool handling for every hole,
while the positioning relatively to the workpiece is not precise, the second choice was
silicon.

Another important study was related to the heated elements. A first aspect was
considered regarding to the metallic film size, and, more precisely, to its longitudinal
length, for a high frequency response. The geometry of the heated film is another essential
parameter in this development. 3 different designs are presented and tested. For flow
direction detection, a 3 hot-films configuration in one shear-stress sensor is proposed
positioned in triangle.
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For a good understanding, all the microtechnology technics used for fabricating a new
device were detailed. Meanwhile, another important step before the fabrication of the
new sensor was the choice of the material for the heated element. A detailed study of
the 4 materials usually used for heated elements because of their properties as well as for
their availability in small dimensions was performed and presented.

The new multidirectional wall shear stress sensor is based on the heat transfer gener-
ated by a hot film with a general top-area of 1.12 x 0.1 mm and a thickness of 110 nm.
The film, in platinum, is maintain at a constant temperature, of 65◦C, by a feed-back
electronic.

The outcome of the new wall shear-stress sensor required 2 generation processing.
Several optimizations and development procedures were needed to obtain a robust device.
During the first generation fabrication, an optimization required for the holes diameter,
corresponding to the future electrical connections, needed in the refilling process was
performed. There were tested different diameters for holes, by forming a network of more
than 400 holes, with a variable diameter between 250 and 700 μm.

Moreover, the materials used in the fabrication process are optimized related to the
suited application, constituting an determinant element for the measurement quality.

A first testing stage of the sensor was undertaken, using a new constant-temperature
anemometer adapted to the films resistances values, for the first generation. The package
of probes corresponding to this generation has been designed and realized. The results
were poor due to a high thermal conduction in substrate, the detachment of the protecting
SiO2 layer on the electrical connections and a very short life time in the water. By
improving the design, a second generation of sensors was thought. Nevertheless, for
eliminating the inconveniences observed on the first generation of sensors, new design was
presented.

For optimum performances, 3 heated elements in platinum were deposited on an iso-
lated cavity performed in a silicon substrate. For creating the insulating cavity, another
important development was achieved, by silicon pillars performance and refilling, for ther-
mal isolation applications. For this study 2 parameters were optimized: the thickness of
the insulating cavity and the silicon pillars forms and dimensions.

To estimate the thickness of the thermal isolation needed for the substrate conduction
reduction, there were carried out numerical computations of the device. There were
investigated 2 cases: steady case without and with mean flow velocity. The working
principle of the sensor is explained in detail, and simulations are carried out using finite
element analysis software ANSYS. For the calculations, silicon pillars height was varied
for 10, 20 and 50 μm. For both cases, thermal numerical analysis shows that such thick
silicon dioxide layers allow a very good thermal isolation between the heated structures
and the surrounding neighbouring structures starting with a minimum distance of 10 μm,
due to the very reduced thermal conductivity of the thick SiO2.

Another parameter, the designs of the silicon pillars used for fabricating very thick sil-
icon dioxide layers for thermal isolation was studied. For finding the optimum dimensions
and forms of the Si pillars, there are explored and presented more than 22 designs having
different widths and the trench openings, between 1.8 - 2.2 μm, as well as different forms.

It is used DRIE technique, for creating high-aspect-ratio silicon pillars, which are then
oxidized and/or refilled with LPCVD oxide or nitride, to create oxide layers. For the
same design of the silicon pillars and trenches, there were compared the method using the
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deposition of nitride in parallel with the one of oxide. A major criteria for the trenches
filling was the surface planarity at the end of the refill. Filling by oxidation and nitride
deposition was the most adequate for the application.

Furthermore, tests on chemical-mechanical polishing were performed until a planar
and uniform surface on the top of the sensor is obtained. The process flow included 5
masks fabrication and the sensor manufacturing was validated.

Wires welding were performed, while for the packaging there were developed and man-
ufactured several different plastic and stainless steel components for testing and charac-
terization of the probe in the hydrodynamic water tunnel in the LMH. Moreover, for the
calibration procedure there was developed a rotating support adapted to the new probe,
for observing the influence of the angle between the longitudinal direction of the films and
the direction of the flow, on the measurements, corresponding to each of the hot-films.

Sensors were packaged and calibrated in the same conditions as the commercial one
used previously for the wall shear-stress measurements in the Francis turbine’s cone.

Although a relative limited tests number were performed due to the limitations in
electronic devices, the high potential of the new wall shear-stress has been foreseen. The
tests and calibrations performed evidenced that:

• the new wall shear-stress sensor behavior is coherent with the existing theory,
• the time response is satisfactory for the water applications,
• using the adequate electronic device, the sensor allows reproducible wall-shear stress

measurements,
• a very good angular sensitivity to the flow direction of the new sensor.

For the thermal response, the wall shear stress sensor shows a maximum time constant
response of 0.42 ms when the sensor is operated at constant temperature using a constant
temperature anemometer, which by comparison with the theory is about 2 times bigger,
due to the simplifying assumptions made for the calculation. Otherwise, a good frequency
response for the new wall shear-stress sensor is obtained.

The parameters studied and the results obtained are satisfactory. It was demonstrated
the design, fabrication and testing of new directional wall shear stress sensor. The sensor is
robust, with a good sensitivity for water measurements. Main improvements which make
the current device distinct are its design for an directional response and the insulating
cavity for substantially heat losses reducing to the surrounding substrate. Moreover, the
use of platinum as the sensor element contributes to a sensor with improved sensitivity
and lower noise characteristics.
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PERSPECTIVES

As a great effort was devoted to the new device’s fabrication, a lack of time was
registered for the electronic device improvement or development.

For the turbomachines applications, an improvement constant-temperature anemome-
ter must be conceived, as some requirements are needed:

• an adapted miniature anemometer for the water applications should be developed,
by integrating the 3 CTA corresponding to the 3 films on one device;

• a compromise between the components and the size should be made, by simplifying
the design, while remaining practicality.

Another perspective and continuation of this thesis can be the integration in the
fabrication process and on the same substrate as the heated element, a part or the whole
electronic device used together with the sensor. Actually, nowadays microfabrication
procedures allow the integration on a large scale of electronically components.

From hydrodynamic point of view, a new support for the new miniature hot-film probe
has to be developed to adapt the system to 2D foils and to all parts of a turbine. Moreover,
the new probe should be implemented in all interesting parts, from flow point of view and
unsteady phenomena, of a turbine, as well as for the boundary layer detection on a foil.
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Appendix A

Measurement systems for wall hot-film
probe calibration

A.1 Measurement system for the velocity acquisition

A detailed description of the whole acquisition system used for the velocity measures,
element by element is described. This arrangement is used to measure the mean flow
velocity and the friction velocity in the region where it can be applied the wall log-law.

A.1.1 The Pitot tube

The Pitot tube, see figure A.1, is a device for measuring the mean flow velocity in
the water tunnel. The total pressure is measured on the open end of the inner tube, see
figure A.2. The end of the outer concentric tube is sealed and a series of orifices arranged
perpendicular to the main flow, on the curved surface, give an accurate indication of the
static pressure.

The choice of using it to measure flow velocity, by placing it in the calibration tunnel,
was determined by its simplicity, by its low-cost and also by the fact that it is a long-lasting
instrument.

Figure A.1: Pitot tube
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Total pressure

Static pressure

Pitot tube

100 mm

Flow

Figure A.2: Pitot tube - scheme

Therefore, there will be measured the pressure difference and, knowing the local value
of the water density, which depends on the temperature, from Bernoulli’s equation it is
found the flow velocity value:

c =

√
2 · Δp
ρ

, (A.1)

where Δp is the difference between the total pressure and the static pressure of the fluid,
meaning the dynamic pressure.

Observation The water density ρ [kg/m3] is relied by the temperature, θ [◦C] using an
empirical relation, according to CEI code:

ρ = 1000.1800014 + 0.0084284 · θ − 0.0052857 · θ2 (A.2)

The Pitot tube, see figure A.3, is installed at a distance equal with the half of the
height of the test section (i.e. at 137.5 mm from the interior side of the steel plate) and
at an enough distance from the plexiglass wall of the tunnel, i.e. 50.5 mm. Before any
measurements performance, the calibration circuitry has to be drained and the voltage
offset evaluated.

A.1.2 The Preston tube

For the wall shear stress evaluation, corresponding to an operating point in the calibra-
tion tunnel, one must evaluate the velocity distribution in the boundary layer developed
on the test section upper wall of the tunnel. For measuring the friction velocity, meaning
the flow velocity in the boundary layer, it is used a Preston tube, see figure A.4. This
tube uses the evolution of the pressure in the boundary layer, base on which one is able
to find the friction velocity in the boundary layer.

The Preston tube, presented in the figure A.5, is able to measure pressure until 0.05
mm from the wall and due to its end which is flattened it allows a spatial resolution of
0.7% from the measured value.

Taking into account the boundary layer measurements performed earlier, see Ritter
and Schmidt [1981], on the test section upper wall, it was chosen as measurement section,
the section M, see figure 4.3, for the hot-film probe calibration.
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Flow
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a.

b.

Figure A.3: Preston and Pitot tubes localization in the calibration tunnel
a. schematic view; b. photo

In the turbulent boundary layer theory, the field of interest for the wall shear-stress
estimation is placed at a distance from the wall at about 0.05 to 0.15 from the boundary
layer thickness, δ∞. For the present case, see Ritter and Schmidt [1981], this region has
2 mm height, at about 5 cm behind the measurement section M.

The Preston tube is placed at 136 mm from the plexiglas wall of the tunnel and the
minimum distance from the its extremity to the upper wall is 0.05 mm, see figure A.6.
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Figure A.4: Preston tube

Figure A.5: Preston tube - scheme

0.05 mm

Steel plate

Preston tube

Figure A.6: Preston tube place related to the upper wall
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A.1.3 Instrumentation for flow pressure probe sensors

A specific instrumentation for flow pressure probe sensors together with an amplifier
is used for the measurements with different probes and tubes.

The instrumentation for flow pressure probe sensors is made of 8 Keller sensors, which
allow both the connection of a 5 holes stationary probe and of a Pitot tube. To acquire
the flow velocity there will be used this specific configuration, Pitot and Preston tubes
and an amplifier.

The main role of the instrumentation for flow pressure probe sensors, illustrated in
figure A.7 is to ensure the drain of both the calibration circuit and the measure circuit
used for the pressure sensors to ensure a good accuracy of the measurements.

Figure A.7: Differential pressure instrumentation system and amplifier for pressure probes

Flow in the hydrodynamic water tunnel is stationary with turbulent fluctuations. Pres-
sure sensors can measure unsteady values, but the presence of the long tubes with different
rigidities which link the measurement point to the sensor, leads to a deformation of the
unsteady information making it irrelevant for the studied phenomenon. In the measure-
ments, for the sensors survey, it is used only the stationary part of the amplifier.

A.1.4 Oscilloscope

The oscilloscope is used only to monitor the hot film probe signal, as well as to verify
the voltage value acquired. It is also used for the calibration of the anemometer.

A.1.5 SC-2040

An acquisition module CA-1000 from the National Instruments is used for the data
acquisition. Actually, the SC-2040, figure A.8 is an instrument which allows the acqui-
sition, simultaneously, of 8 signals. There will be used the channels for acquiring the
signals as it follows: 1st channel for the signal coming from hot-film probe, 2nd for the
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signal coming from Pitot tube, 3rd for the signal coming from Preston tube and the 4th

for the signal coming from the temperature sonde. The input range of tension goes from
−10V to +10V . The maximum sampling frequency is 100kHz divided by the number of
acquired channels.
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Figure A.8: SC-2040

This eight-channel simultaneously sampling differential amplifier is only for the use of
the National Instruments MIO-16E Series DAQ boards. It consists of 8 channels, each
one having an amplifier with DIP switch-programmable gains of 1, 10, 100, 200, 300, 500,
600, 700 or 800, and a track-and-hold amplifier (the DAQ board will switch the SC-2040
between hold and track mode).

The first part of this amplifier is the analog circuitry that is made up by 8 channels with
DIP-switch-programmable instrumentation amplifiers followed by buffered track-and-hold
amplifiers.

For protecting each input against voltages is used the input protection, which is the
second block of the SC-2040, a 1 kΩ resistor in series with each input line and followed
by low-leakage diodes). It is used for protection against voltages up to ± 15V powered
off and ± 30V powered on.

The third part contains the instrumentation amplifiers, which allow the conversion of
the differential input signals into single-ended signals and, then, the amplification of these
signals.

Then the signals coming out of the instrumentation amplifiers enter the track-and-
hold amplifiers that work as buffers in track mode while they freeze the outputs into hold
mode.

After that, the signal is passed to the DAQ board through the output connection. In
this part, the output of every channel is connected to the 68-pin rear signal connector
(which brings and carries out the signal to the DAQ board and provides +5 V power)
and the 50-pin supplemental I/O connector.
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A.1.6 Workstation

The signals coming from the Pitot and Preston tubes and taken by the SC-2040 are
recorded through an AT-MIO-16E Series Data Acquisition Card and they are digitalized
and then visualized on the screen of a computer. The software used for the data acquisition
is written using LabVIEW 6 under the Windows NT environment.

In the calibration procedure, the flow is steady and only the mean value of the signal is
considered. It is taken the average of the signal for the calibration of the sensors. To obtain
this average, it is used a sampling frequency of 10kHz and acquired samples of 1’000’000
data and this will lead to an acquisition time of 10 seconds for every measurement.

A.2 Measurement system for the hot-film probe
The acquisition system and the measurement procedure for the hot-film probes are

detailed in this part of the thesis.
Hot-film sensors flush mounted in the water tunnel are used to measure steady wall

shear-stress magnitudes in experiments.
The signal coming from the hot-film probe, see figure 4.4, right arm, is transformed

into a voltage using a constant temperature anemometer, after what it can be visualized
on an oscilloscope; then, using the same system SC-2040 as for the velocity acquisition
the signal is acquired and observed on the screen of the PC.

A.2.1 The hot-film probes

The hot film is a device for providing velocity data. Its microscopic size offers it both
high spatial resolution and high frequency response, as well as a high sensitivity.

The use of this type of probe is explained by its facility of mounting in a interface on
the wall, confining the flow to be investigated and measured with a sensor flush with wall
surface. The small dimensions of the probe permit measurements in locations that are
not readily accessible, without any modifications concerning the hydraulic geometry, and
without any flow perturbation.

A.2.2 The Constant-Temperature Anemometer (CTA)

An anemometer is an instrument for measuring fluid velocity using a probe made of
thin tungsten/platinum wire or a thin metallic film.

One of the most often used anemometry is the hot-wire anemometry, a thermal
anemometer, which is an indirect technique allowing to measure the flow velocity through
measurements of heat losses from the hot probe located inside the studied flow.

The heat losses of hot film depend on many factors, like:
• The temperature difference between sensor and fluid;
• The flow velocity by direction, magnitude;
• The geometry of the sensor;
• The properties of sensor material and fluid.
The heat transfer from the hot-film probe, essentially, consists of 2 main components:

the heat flux that is convected directly from the heated sensor into the surrounding fluid
and the heat flux that is, first, conducted to the film supports and then to the fluid.
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A typical set-up for operation of a hot-wire anemometer sensor is the constant-temperature
system. This type of system is widely used, because it allows measurement of the very
fast velocity fluctuations without the use of complex compensation circuitry. It involves
automatic control of the current supplying the sensor so that the temperature of the hot-
film probes should be maintain at a constant level, no matter the outer conditions for
heat transfer, throughout the measurements. The sensor current is, mainly, a function of
the flow velocity, but not only. Its continuous voltage output is suited to digital sampling,
and this provides time series that can form the basis for statistical evaluation of the flow
structure. The major advantage of the constant-temperature anemometer is the temporal
resolution.

For calibration and measurements, it is used a DISA 55M System, produced by DAN-
TEC Measurement Technology. It consists of a Wheatstone bridge and a servo amplifier,
systematized in figure A.9. The active bridge arm of the Wheatstone bridge consists of
the probe, Rvar, and one of the 2 top resistances, R1, while the passive arm consists of the
other top resistance, Rint, and the comparison resistor, R, as well as, a few compensating
networks for eliminating the influences of the cable parameters, Rc.

Figure A.9: Constant temperature anemometer

Operating mode When the bridge is in balance, there is no voltage difference between
the ends of the horizontal bridge diagonal. As said before, the velocity of the flow is
measured by its cooling effect on a heated sensor. A feedback loop keeps the sensor
temperature constant under all flow conditions.

Any change in the flow will have an impact over the probe, located in the flow, and
this will determine the change of its temperature. The resultant resistance change of the
bridge leads to a voltage difference at the horizontal diagonal, which is feed to the inputs
of the servo amplifier.

The output voltage of the servo amplifier is applied to the bridge unit in such a way
that by increasing or decreasing the bridge operating voltage there will be restored the
original temperature. The voltage drop across the sensor thus becomes a direct measure
of the power dissipated by the sensor.

To use this constant-temperature anemometer, its calibration is needed, for every
specified hot-film probe.
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Constant Temperature Anemometer
calibration

Total resistance measured at the anemometer’s output, for the water temperature
value T = 23.8◦C is:

Rmeasured = 13.47Ω (B.1)

Meanwhile, the specific resistance for a temperature value, T, is evaluated by relation-
ship B.2, where α represents the temperature coefficient of the hot-film’s resistance.

R = R20◦C [1 + α20◦C(T − 20)] (B.2)

For T = 23.8◦C, and taking into account the hot-film probe’s properties, the resistance
is obtained.

R23.8◦C = 11.9[1 + 0.0047 · (23.8 − 20)] = 12.113Ω (B.3)

It is known that the total resistance measured with the anemometer contains the spe-
cific resistance at the temperature of 23.8◦C and the resistance of the additional elements,
support, cable, see relationship B.4.

Rtotal = RT +Radd (B.4)

Thus, for this specific case, the resistance of the additional elements can be evaluated,
see relation B.5.

Radd = Rmeasured −RT = 1.357Ω (B.5)

To avoid the risk of damaging the hot-film probe it is chosen an overheating rate value
of H = 1.1, usually used for water. The anemometer is adjusted for a water temperature
of 23.8◦C, for which the difference of the temperature between the water and the film is
define by relationship B.6:

ΔT =
H − 1

α23.8◦C

, (B.6)
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where α, at a temperature T, is defined corresponding to B.7.

α =
α20

1 + α20(T − 20)
(B.7)

In this way, the α23.8◦C is obtained, see relation B.8.

α23.8 =
0.0047

1 + 0.0047(23.8 − 20)
= 0.462% (B.8)

Moreover, the overheating rate can be written as the ratio between the resistance that
has to be adjusted at the anemometer and the specific resistance at temperature T, see
relationship B.9.

H =
R

1 +R23.8

(B.9)

Thus, the resistance value to add to the total resistance measured at the anemometer
is obtained.

R−R23.8 = HR23.8 −R23.8 = 0.1R23.8 = 1.21Ω (B.10)

The final adjustments for the anemometer are:

• Resistance: R = 14.38Ω;

• HF Filter: 2;

• Gain: 5.



Appendix C

Fabrication technologies

In this section, rather than going into any detail of technological matters of the MEMS,
it is given some background of the technology that has enabled the development of new
microsensor, which is the main subject of this thesis and which has served for the manu-
facturing the new device.

MEMS have its roots in silicon-based devices from semiconductor fabrication. Silicon
planar technology is the principal method used for most silicon integrated circuits and de-
vices manufacturing. Silicon is mainly used due to its well-known electrical and mechanical
properties. In addition to silicon, alternative substrates such as metal, glass/quartz, plas-
tic, ceramics are gaining in popularity. The MEMS toolbox consists of a set of processes
based on silicon micro-fabrication techniques. The key process steps are lithography,
bulk micromachining, thin film deposition, surface micromachining, lift-off and chemical
mechanical polishing. The new device is fabricated using combination of these techniques.

C.1 Photolithography

Many steps in the semiconductor fabrication process should only affect specific areas
of the wafer. To define the desired areas on the wafer and to block the remaining areas,
masking layers are used. Lithography is a method by which geometrical pattern transfer
can be achieved from a master pattern to the substrate. Lithography, in some form, is
typically the first step in most processes and, as a result, is probably the most important,
influencing the accuracy of the final product. Photolithography is the most common form
of lithography technology used; moreover for keeping up with the demanding resolution
needs of the semiconductor industry, technologies such as X-ray lithography, electron
beam lithography, and ion beam lithography have been developed.

The basic steps for photolithography using positive and negative resists are shown in
figure C.1.

Photolithography is typically the transfer of a specific pattern to a photosensitive
material, on a surface of the wafer, by selective exposure to light. Photolithography has
become the dominant technique in microelectronic industry where very precise definition
of fine line patterns is a major requirement. This technology is useful because it can
transfer the pattern to the wafer surface very quickly.

The first step of the photolithography is the coating of the wafer’s surface with a
photoresist layer. The mask is placed over the wafer’s surface and exposed to the UV light.
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1. Exposure

2. Development

3. Etching

Light source

Mask

Photoresist: positive/negative

Silicon oxide

Silicon substrate

Figure C.1: Photolithography process

Afterwards, the photoresist is developed. Finally, etching techniques will uncover the
pattern desired to be transferred. Successive process steps will affect only the uncovered
areas where there is no photoresist.

Photoresist is a light-sensitive material which can be processed into a specific pattern
after being exposed to light energy in the shape of the desired pattern. There are 3 major
exposure methods related to the way the photoresist is illuminated, see figure C.2. One
way is to have a mask which is more or less pressed against the photoresist-layer, so called
contact ; another set-up supposes the mask close to the substrate, so called proximity,
while in the third method the mask is placed in a projection system to have a projection
of the mask on the photoresist-layer, so called projection.

Mask

Ultraviolet light source

Lens

Photoresist

SiO2
Wafer substrate

Lens 1

Lens 2

MaskSpace

a. CONTACT c. PROJECTIONb. PROXIMITY

Figure C.2: Writing techniques in photolithography

The photolithography technique allows the transfer of different shapes created using
CAD software onto the surface of the wafer with sub-micron resolution.

For the new development, this technique was used several times, for films, electrical
tracks and backside connections design on wafers.
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C.2 Film deposition technique

The addition of material on the top of the wafer requires a process step, generally,
referred to as deposition. Several different techniques are employed for deposition, the
process being, generally, defined as a uniform sprinkling of material on the surface of
the wafer, either over the entire surface or throughout a masking layer for deposition, on
selective areas.

Different materials can be deposited, mainly, insulators, conductors and semiconductor
materials. Main deposition materials are explored and presented further. Native oxides
are only available when native material is still on the surface. Thus, once a wafer has been
covered with other materials, like metal, a native oxide can no longer be grown. Besides,
after some materials deposition on the wafer, the wafer can no longer be subjected to
high temperatures, which are required to grow native oxides but can melt other mate-
rials used in semiconductor fabrication. Thermal oxides are also limited to thin layers,
δ < 1μm. For these 3 reasons, it has to be used deposited dielectrics, to cover the wafer
and form insulation layers. Deposited dielectrics offer a wide variety of insulating ma-
terials including SiO2 and SiN; they can be deposited on top of any material including
metal, and they can be deposited in thick layers δ ∼ 1 − 2μm, to reduce the capacitance
between interconnect layers.

Polysilicon is a granular silicon material and is not single-crystal like the substrate
wafer. It is generally doped to act as a conductor and is used as an interconnect layer or as
a high-resistance layer to from integrated resistors. Although metal is a better conductor,
lower resistance, the main advantages of polysilicon over the others conductors are: it can
withstand subsequent high temperature steps, a native thermal oxide can be grown on
top of polysilicon, and it has similar material properties to Si and SiO2.

Many types of basic metal, like aluminum, gold, copper, nickel, titanium, metal alloys,
and other metal compounds, are used to from interconnection layers in semiconductor
fabrication. Metals are generally deposited by evaporation or sputtering to cover the entire
wafer before being patterned, to from all interconnects in one process step. Although
most metals have a low melting temperature and must therefore be deposited after all
high temperature steps, like diffusion, oxidation, they are very conductive and provide
low resistance interconnections even in very thin layers, δ < 1μm. Depositing metal
interconnect layers are typically the last steps performed in the semiconductor fabrication
process. The individual layers are insulated from each other by deposited dielectric layers
with vertical openings that connect layers at the required points.

Deposition technologies can be divided into two common groups: Chemical Vapor
Deposition, CVD, which vaporizes chemically the material to be deposed, illustrated
in figure C.3, and Physical Vapor Deposition, PVD, processes, often called thin film
processes, which constitutes atomistic deposition processes where the material is vaporized
from a solid or liquid source, under the form of atoms or molecules. The vaporized
material then floats down, transported in a low pressure or plasma environment, to the
wafer surface where it solidifies, forming thin layers of films.

CVD systems are characterized by good uniformity and high throughput, requiring,
meanwhile, a frequent cleaning.
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SiO2, δ < 2 μm

Polysilicon, δ < 2 μm
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Most Si related materials
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Figure C.3: Chemical Vapor Deposition technology

PVD can be used to deposit films of elements, alloys as well as compounds, using reac-
tive deposition processes. Its most eloquent advantage is the low deposition temperature.
The main categories of PVD processing are arc vacuum evaporation, sputter deposition
and ion plating. Each process has its own advantages, disadvantages and applications.

In the evaporation deposition technique, vapors are produced from a source by
increasing its temperature by different methods; the material vapors condense on the
desired substrate. It has the advantage, related to the sputtering deposition, that it is a
limited contamination due to the vacuum level obtained, about 5 · 10−7mbar. The alloy
deposition by evaporation is a complex processus and the deposed layer composition is
difficult to control.

There are 2 different techniques for the evaporation deposition, see figure C.4:

• resistance heated evaporation, Joule effect;
• e-beam evaporation.

Metals (Cu, Pt, Cr, Au, Ni, Fe, Ti)

Alloys (TiNi, FeNi, SiW)

Oxides (MgO)

Nitride (AlN, SiN, ...)

a. JOULE EFFECT b. ELECTRON BEAM

δ∼ 0.1 - 5 μm

Figure C.4: Deposition by evaporation technology

The deposition by Joule effect evaporation is the most simple. This technique consists
in deposing initially grains, shots or small ends of wire of the material to be evaporated



C. Fabrication technologies 203

in a nacelle from tungsten, tantalum, molybdenum or carbon. The nacelle is then heated
by Joule effect. The grains melt and the metal evaporates.

The disadvantages related to this technique are:

• the impossibility of evaporating metals at high melting point,
• the limited thickness of the layer deposited, due to the small quantity of metal which

can be deposited in the nacelle;
• the potential contamination of the nacelle in itself.

The deposit technique by evaporation using electron beam consists in initially deposit-
ing a pastille, grains, shots or small ends of wire in a crucible. An electron beam with
high energy is directed on the material. The electrons’ kinetic energy is converted into
heat at the impact point. The electron beam can melt and evaporate any type of mate-
rial when the calorific contribution is higher than the losses. The beam is concentrated
on the material surface, so that material in fusion can be placed in a cooled container.
Actually, only the material surface is in fusion. The material in contact with the walls of
the crucible is solid. This eliminates the problems of contamination by the crucible and
makes it possible to deposit layers of high purity, constituting the main advantage of this
technique.

The main disadvantages related to this technique are:

• the emission of x-rays, which can damage the substrates surfaces,
• the ejection of droplets out of the crucible which can depose on the substrates when

using too high power.

Sputter deposition technique means the deposition of particles vaporized from a
surface, called "target", following a collision with particles with high energy, see figure
C.5. It is a non thermal vaporization process, where surface atoms are physically ejected
from a target, from an atomic sized energetic bombarding particle which is usually a
gaseous ion accelerated from plasma. The sputtering target has a long lived vaporization
source that can be mounted to vaporize in any direction. This process is a line of such
processes, the film thickness drops down when surfaces do not face targets directly. The
material deposed can be pure metals - Al, Ti, Pt -, an alloy or a dielectric material - SiO2,
Si. The deposit of nitride or oxide coatings can be carried out with a metal target in the
presence of oxygen. These deposits are known as reactive sputtering.

Sputter deposition is widely used to deposit thin films on semiconductor materials,
coatings on architectural glass, reflective/antireflective optical coatings, magnetic films,
dry film lubricants and decorative coatings.

The advantages of the sputtering deposition related to the evaporation are:

• good uniformity in thickness of the material deposited on the wafers,
• better control of alloys composition, than by the evaporation,
• substrates surface can be cleaned by vacuum before deposition.

The main disadvantages related to this type of deposition are:

• some materials, organic materials, do not support the ionic bombardment;
• low deposition rate for certain materials like SiO2, Si;
• the vacuum level is lower in the equipment for sputtering deposition, which increases

the risk of impurities insertion in the layers deposited.
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δ~ 0.1 - 5 mm

Figure C.5: Sputter deposition technique

For the new sensor development and manufacturing, by evaporation there were de-
posited the electrical tracks on the structure, while by sputtering there were deposited
the heated elements structures and the protecting SiO2 layer on the sensor surface.

C.3 Etching

Silicon etching is an essential process step for the fabrication of micro-electro-mechanical
systems. To form functional structures on a substrate, the etching process is needed for
thin films previously deposited on/in substrate itself. Bulk micromachining is the tech-
nology by which structures are made in the silicon substrate and no on top of it, by
selectively removing material. The purpose of this technology is to make structures that
are released or undercut. Etching processes are needed to pattern deposited layers and
form contact opening in dielectric layers. Etch rate is defined as the vertical etch depth
divided by the etching time.

Generally, the substrate is silicon, which can be machined using a diversity of physical
and chemical etching techniques. Chemical etching processes will attack some materials
more quickly than others, while mechanical etching will etch all material equally. Both
processes require a masking layer, generally either photoresist or oxide, to block regions
where etching is not desired. Some of these techniques allow etching through the substrate,
to use the entire substrate thickness. In addition, the crystalline nature of silicon can be
particularly advantageous when using certain wet etches. Etching methods can also be
distinguished on the etch-profiles they produce:

• isotropic: etch-speed equal in all directions leading to rounded structures, see figure
C.6,

• anisotropic: etching speed highly dependent on the crystallographic directions lead-
ing to sharp edges and corners, see figure C.7,

• directional, mostly due to geometrical effects of dry etching.

Supplementary chemical species may be added to assist in etching or passivation.
Etching mechanisms can vary from physical removal due to bombardment to chemical
reactions followed by removal of volatile reaction products. By combination of both
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a. With agitation b. Without agitation

Figure C.6: Cross-section showing isotropic etching

a. {100} oriented silicon b. {110} oriented silicon

Figure C.7: Cross-section showing anisotropic etching for 2 wafer orientations

effects, tailoring their mutual influence, it is possible to obtain etching processes that
vary between isotropic and almost perfectly directional.

Chemical Etching. Most materials can be selectively removed by chemical processes.
This allows the etching process to stop once the desired material has been removed rather
than continuing all the way through the wafer. The primary disadvantage of chemical
etching is that it is isotropic, it etches in all directions -not just vertically, and will undercut
the masking layer which is undesirable in many cases.

Chemical-Mechanical Etching. Reactive ion etching (RIE) is the main technique of
chemical-mechanical etching, in which ions in plasma bombard the surface and etch away
material. The plasma can be chosen to selectively etch one material more than another.
RIE is a very common process in modern semiconductor fabrication and is typically used
for contact openings through dielectrics.

Mechanical Etching. Purely mechanical etching processes such as Ion Milling, are not
material selective; they bombard the wafer surface and remove any material they strike.
However, a thick high-strength mask material can be used to block the etching process
from the surface, so that only specific areas on the wafer are etched. Because there is no
chemical undercutting, mechanical etching creates a straight vertical etching profile.

Generally, another classification of etching processes divides them in wet and dry etch-
ing. Wet etching, see figure C.8, involves the exposure of the wafer to chemical solvents,
to lead to the conversion of the unprotected material into soluble compounds, which can
be dissolved by chemical etchants. Traditional wet etch recipes include a hydrofluoric,
nitric, and acetic acid mix, KOH, EDP, ethylenediamine-pyrocatechol-water, and TMAH,
tetramethylammoniumhydroxide; they are mostly used for carrying out channels or cre-
ating membranes in silicon. Isotropic wet-chemical etching is obtained using solutions
containing, for example, fluoride and can be customized using doping or voltage or light
assisted etching.
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Chemical solution

Vessel

Set of wafers 

with photoresist

Support system

Figure C.8: Wet etching process

In dry etching, see figure C.9, the material is sputtered or dissolved using reactive
ions or a vapor phase etchant. Dry etching has a great diversity of implementations which
share some similarities:

• they take place in a vessel which can be brought at a certain vacuum, about 10−5−0.5
Torr,

• they use accelerated, so called reactive particles, meaning ions, atoms for etching.

Reactive Gas

Vacuum

Substrate

10 - 100 mTorr
Photoresist

Figure C.9: Dry etching technique

Dry etching techniques such as plasma and gas phase etching are extensively used,
while newer techniques, such as deep reactive ion etching (DRIE), allows the fabrication
of complex in-plane geometry and high aspect ratios structures. Dry etching allows etching
almost straight down without undercutting, providing much higher resolution.
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Even so, bulk micromachining is not suitable to create all desired geometries. Devices
requiring complex, multi-layer or multi-depth structures are frequently difficult or not
possible by bulk micromachining alone. The etching methods mentioned above share the
fact that they generally result in moderate etching speeds.

In the new sensor the etching technique was used for creating the backside electrical
connections, as well as for the creation of the insulating methods used for heat transfer
reduction.

C.4 Surface micromachining

Surface micromachining is the technique used to create complex planar structures. Sur-
face micromachining is the process of creating movable structures by placing the structures
on initially rigid platforms, then removing the platforms, usually by etching the material
away.

The fabrication process, illustrated in figure C.10, starts with a silicon wafer or other
substrate and grows layers on top. These layers are selectively etched by photolithography
and a wet or a dry etch. There can be involved as many layers as needed with different
mask on each layer.

1. Sacrificial layer deposition & 

    etching

2. Structural layer deposition & 

    etching

3. Sacrificial layer removal

Figure C.10: Surface micromachining process

Unlike bulk micromachining, the substrate may or may not be structurally significant
in the final device and is often used only as a mechanical support for building structural
layers. As the structures are built on top of the substrate and not inside it, the substrate’s
properties are not important, and the expensive silicon wafers can be replaced by cheaper
substrates, such as glass or plastic.

Any material, which can be deposited, can be used as a structural layer. A variety of
sacrificial layers is available, like phosphosilicate glass, polysilicon, photoresist, polyimide,
and metals.

Using surface micromachining, it is possible to build freestanding, released, and inter-
locking structures with any geometry; some examples include electrostatic micromotors,
out-of-plane hinged structures, and springs. However, from stress and other mechanical
considerations, only thin layers, δ ≤ 1μm, of materials can be deposited. Thus, the overall
thickness of devices created by surface micromachining is relatively thin.
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Summarizing, the surface micromachining properties are:

1. Single-sided wafer processing;
2. Small device size;
3. Compatibility with CMOS processing.

C.5 Chemical Mechanical Polishing

Chemical-mechanical polishing, commonly abbreviated CMP, is the technique used in
semiconductor fabrication for planarizing the top surface of an in-process semiconductor
wafer or other substrate, see figure C.11.

1. Before CMP

2. After CMP

Substrate

Metal layer deposed

Layer deposed and

polished

Figure C.11: Chemical mechanical polishing process

The CMP uses an abrasive and corrosive chemical slurry together with a polishing
pad and retaining ring, typically with a greater diameter than the wafer, see figure C.12.
The pad and wafer are pressed together by a dynamic polishing head and held in place
by a plastic retaining ring. The dynamic polishing head is rotated at different rates. A
slightly slurry containing nanometer-sized silica particles is added. The combined action
of wear and etching yields the smooth surfaces. The planarization, for example, may be
needed to bring the entire surface within the depth of field of a photolithography system,
or to selectively remove material based on its position.

Chemical slurry

Polishing head

Wafer to polish

Polishing pad

Polishing plate

Figure C.12: Chemical mechanical polishing machine
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The process of material removal is an iterative and manual. The chemicals in the slurry
also react with and/or weaken the material to be removed. The abrasive accelerates this
weakening process and the polishing pad helps to wipe the reacted materials from the
surface.

Chemical-mechanical polishing can also be applied to materials like silicon nitride,
silicon oxide and polysilicon.

C.6 Lift-off
Some materials, like gold, platinum cannot be etched by acids, but using a technique

called "lift off".
Lift off is a simple, easy technique used to pattern noble metal films. Actually, it is

a combination of photolithography and vacuum deposition. A film, usually metallic, is
blanket-deposited all over the substrate, covering the photoresist and areas, where the
photoresist has been cleared.

The main steps of a lift-off process are presented in figure C.13. During the lift-off,
the photoresist under the film is removed with solvent, usually acetone, taking the film
with it, and leaving only the film which was deposited directly on the substrate.

1. First layer of metal

2. Photolitography

3. Photoresist etching

4. Second metal deposition

5. Photoresist removal

Figure C.13: Lift-off technique

There are three basic ways in which lift-off can be performed:
1. Standard photoresist processing;
2. LOL 2000 processing;
3. Surface-modified photoresist processing.
The method chosen depends on the process requirements. Patterns can be defined

with high fidelity and for very fine geometries, depending on the type of lift-off process
used.

When using noble metals, it is advantageous to deposit, in the first place, a thin layer
of a more active metal, to ensure good adhesion of the noble metal.
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C.7 Electroplating
Electroplating is an electrochemical process by which metal is deposited on a substrate

by passing an electric current through an electrolytic bath.
Usually there are: an anode, positively charged electrode, the source of the material

to be deposited; electrochemistry representing the medium through which metal ions are
exchanged and transferred to the substrate to be coated; and a cathode which is the
substrate, the negatively charged electrode, to be coated. Plating is done in a bath which
is usually a non-metallic tank. The tank is filled with electrolyte which has the metal, to
be plated, in ionic form, see figure C.14.

Electrolytic

     bath Anode
(source of material 

 to be plated)

Power supply

Cathode
(substrate

to be plated)

Figure C.14: Schematic view of the electroplating process

Actually, it means the deposition of a metallic coating on an object by putting a
negative charge onto the object and immersing it into a solution containing a salt of the
metal to be deposited. The metallic ions of the salt are charged with positive charge
and attracted to the part. When they reach it, the negatively charged part provides the
electrons to reduce the positively charged ions to metallic form.

The anode is connected to the positive terminal of the power supply. The anode is
usually the metal to be plated, supposing that the metal will corrode in the electrolyte.
The cathode is the substrate to be plated. This is connected to the negative terminal of
the power supply. The power supply is regulated to minimize ripples as well to deliver a
steady predictable current. For materials such as gold, the anode is not sacrificial, but it
is made out of material that does not dissolve in the electrolyte, such as titanium.

Metal layers with thickness greater than 1μm can be achieved. The apparatus required
is relatively simple, but control is difficult and imprecise. The quality of the surface is
usually poor. Electroplating can be combined with the photolithography process. If a
thick layer or deep feature is required, the resist layer must be equally thick.

The electroplating technique served for copper deposition used in electrical connec-
tions.

C.8 Wafer dicing
In the manufacturing of micro devices, die cutting or dicing is the process of reducing

a wafer containing multiple identical integrated circuits to dice each containing one of
those circuits.
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During this process, a wafer with up to thousands of circuits is cut into individual
pieces, called a die. In between the functional parts of the circuits, a thin non-functional
spacing is foreseen where a saw can safely cut the wafer without damaging the circuit.
This spacing is called the scribe. A very thin and accurate saw is therefore needed to
cut the wafer into pieces. The most common dicing method - abrasive sawing - has
limitations when confronted with the new requirements of the semiconductor industry.
The increasing use of brittle materials and the reduction of wafer thickness are difficult
trends for diamond saws, generating chipping and cracking in thin compound wafers.

Material processing with lasers takes advantage of all the characteristics of laser light.
The high energy density and directionality achieved with lasers allows strong localized
heat- or photo-treatment of materials with spatial resolution below one micrometer. The
pulsed and monochromatic light allows the control of depth of heat treatment or selective
excitation. The laser beam can be moved to process large areas, being a sterile tool and
no subject to wear and tear.

Laser processing is applied to manufacture laterally structured electrodes for solar
cells which improve the built-in electric field of thin film solar cells and give rise to light
trapping. An other application is the photo chemical processing of DFB gratings for InP
and GaN laser. Laser beam induced lift-off of GaN from sapphire substrates is applied to
generate free standing thin film GaN substrates, LEDs or other electronic devices .

In conventional laser cutting, the laser is focused on the work piece that has to be cut.
The beam has a conical shape before and after the focal point. Therefore, the working
distance is short.

For drilling, cutting and welding micromechanical components for modern sensors
applications, in industrial field, pulsed Nd-YAG lasers with moderate power are used, see
figure C.15.

Figure C.15: Schematic view of laser induced fluorescence with molecular beams

With an advanced Nd-YAG zig-zag-slab laser, pulse energy up to 300mJ within time
duration of 200μs can be obtained. The laser beam intensity profile is Gaussian, for
achieving a best focusing and the least critical focus depth. The resulting laser beam has
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a very high brightness. The mean output power of this laser allows cutting at speeds as
high as 1mm/s. In material processing with longer pulses, the laser-material interaction
is different and, in particular, higher material ablation rates are performed. Moreover,
the green light material processing allows a better focus and a higher absorption for most
materials.

Meanwhile, laser micro-cutting applications performed with a high power zig-zag slab
laser have a wide potential, mainly for research and prototyping applications. Most
materials, like metallic, ceramic, glass with thickness up to 1mm can be processed with a
minimum kerf width, depending on sheet thickness and material properties.

The zigzag slab lasers are mainly used for non-linear processes, because of its high beam
quality and inherently linear polarization of the beam. The maximum optical power and
therefore the productivity of the green laser material processing is basically limited by
the damage threshold in the non-linear materials.



Bibliography

**** (1993). Model acceptance tests to determinate the hydraulic performance of hy-
draulic turbines, storage pumps and pump-turbines. International Standard I.C.E.

Alfredsson, P., Johansson, A., Haritonidis, J., and Eckelmann, H. (1987). The fluctuation
wall-shear stress and the velocity field in the viscous sublayer. Phys. Fluids, 31:1026–
1033.

Arpe, J. (2003). Experimental Investigation of Unsteady Pressure and Velocity Field in a
draft tube of Francis Turbine. PhD thesis, Ecole Polytechnique Federale de Lausanne,
Lausanne, Switzerland.

Barenblatt, G., Chorin, A., Hald, O., and Prostokishin, V. (1997a). Structure of the zero-
pressure-gradient turbulent boundary layer. In Proc. Natl. Acad. Sci.USA, Applied
Mathematics, volume 94, pages 7817–7819.

Barenblatt, G., Chorin, A., and Prostokishin, V. (1997b). Scaling laws for fully developed
turbulent flow in pipes. In Appl. Mech. Rev., pages 413–429.

Barenblatt, G., Chorin, A., and Prostokishin, V. (2002). A model of a turbulent boundary
layer with a nonzero pressure gradient. In Proc. Natl. Acad. Sci.USA Applied Mathe-
matics, volume 99, pages 5772–5776.

Bechert, D. (1995). On the calibration of preston tubes. AIAA J., 34:205–206.

Bechert, D., Hoppe, G., and Reif, W.-E. (1985). On the drag reduction of the shark skin.
AIAA Paper 85-0546.

Bechert, D., Hoppe, G., van der Hoeven, J., and Makris, R. (1992). The berlin oil channel
for drag reduction research. Exp. Fluids, 12:251–260.

Béguin, C., Hibert, C., Baer, W., and Berca, E. (2002). Réalisation de contacts électriques
traversant un substrat silicium. Technical report, LMH-EPFL, Lausanne, Switzerland.

Bellhouse, B. and Schultz, D. (1967). The determination of fluctuating velocity in air
with heated thin-film gauges. J. Fluid Mech., 29:289–295.

Berca, E., Avellan, F., Cannehan, F., and Langlet, P. (2004a). Silicon pillars development
for thermal isolation applications. In The 4th International Workshop on Microfactories,
IWMF’04, Shanghai, China.

Berca, E. and Ciocan, G. (2002). Delivery 2-3.5. Technical report, Laboratory for Hy-
draulic Machines, Lausanne, Switzerland.

213



214 BIBLIOGRAPHY

Berca, E., Ciocan, G., and Avellan, F. (2004b). Wall friction and boundary layer devel-
opment in the cone of a francis turbine scale model. In 22nd IAHR Symposium on
Hydraulic Machinery and Systems.

Boillat, M., van der Wiel, A., Hoogerwerf, A., and de Rooij, N. (1995). A differential
pressure liquid flow sensor for flow regulation and dosing systems. In Proc., IEEE
Micro Electro Mechanical Systems, pages 350–352.

Bradbury, L. and Castro, I. (1971). A pulsed-wire technique for velocity measurements
in highly turbulent flow. J. Fluid Mech., 22:679–687.

Bradshaw, P. and Gregory, N. (1959). The determination of local turbulent skin friction
from observations in the viscous sub-layer,. Technical report, Reports and Memoranda
3202, ARC, London.

Chow, J., Zilliac, G., and Bradshaw, P. (1997). Mean and turbulence measurements in
the near field of a wingtip vortex. AIAA J.

Ciocan, G. (1998). Contribution à l’analyse des écoulements 3D complexes en turboma-
chines. PhD thesis, l’Institut National Polytechnique de Grenoble, France, Grenoble,
France.

Ciocan, G., Avellan, F., and Berca, E. (2002). Wall friction measurements: application in
a Francis turbine cone. In ASME - European Fluids Engineering Summer Conference,
number FEDSM2002-31333.

Ciocan, G., Avellan, F., and Kueny, J. (2000). Optical measurement techniques for ex-
perimental analysis of hydraulic turbines rotor-stator interaction. In ASME Fluids
Engineering Conference, number FEDSM2000-11056.

Ciocan, G., Mauri, S., Arpe, J., and Kueny, J. (2001). The experimental and numerical
study of the non stationary velocity field at the exit of a turbine runner. In La Houille
Blanche, volume 56, pages 46–59.

Clauser, F. (1954). Turbulent boundary layers in adverse pressure gradients. In Aero.
Sci., volume 21, pages 91–108.

Coles, D. (1956). The law of the wake in the turbulent boundary layer. In Journal of
Fluid Mechanics, volume 1, pages 91–108.

Cousteix, J. (1989). Aérodynamique :turbulence et couche limite. Cepadues Editions,
Toulouse, France.

de Bree, H., Jansen, H., Lammerink, T., Krijnen, G., and Elwenspoek, M. (1999). Bi
directional fast flow sensor with a large dynamic range. J. Micromech. Microeng.,
9(2):186–189.

Dengel, P. and Fernholz, H. (1989). Generation of and measurements in a turbulent
boundary layer with zero skin friction. In ed H. H. Fernholz and Fiedler, H. E., editors,
Advances in Turbulence, volume 2, pages 432–437. Berlin: Springer.



BIBLIOGRAPHY 215

Dengel, P. and Fernholz, H. (1990). An experimental investigation of an incompressible
turbulent boundary layer in the vicinity of separation. J. Fluid Mech, 212:615–636.

Dengel, P., Fernholz, H., and Hess, M. (1987). Skin-friction measurements in two- and
three-dimensional highly turbulent flows with separation. In ed G Compte-Bellot
and Mathieu, J., editors, Advances in Turbulence, volume 40, pages 470–479. Berlin:
Springer.

Dickinson, J. (1965). The determination of turbulent skin friction. PhD thesis, Laval
University Québec.

Ebefors, T., Kalvesten, E., and Stemme, G. (1998). Three dimensional silicon triple-hot-
wire anemometer based on polyimide joints. In Proc. Eleventh Annual Int. Workshop
on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors,
Actuators, Machines and Systems, pages 93–98.

Enoksson, P., Stemme, G., and Stemme, E. (1996). A coriolis mass flow sensor structure
in silicon. In Proc., 9th Annual Int. Workshop on Micro Electro Mechanical Systems.
An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems, pages
156–161.

Fernholz, H. and Finley, P. (1977). An initial compilation of compressible turbulent bound-
ary layer data. Advisory Group Aerospace Research and Development, AGARDograph
223.

Fernholz, H. and Finley, P. (1981). A further compilation of compressible turbulent
boundary layer data with a survey of turbulence data. Advisory Group Aerospace
Research and Development, AGARDograph 263.

Fernholz, H., Janke, G., Schober, M., Wagner, P., and Warnack, D. (1996). New devel-
opments and applications of skin-friction measuring techniques. Meas. Sci. Technol.,
7:1396–1409.

Finley, P. and Gaudet, L. (1995). The preston tube in adiabatic compressible flow. Exp.
Fluids, 19:133–141.

Gasser, D. (1992). Experimentelle untersuchung stark verzogerter turbulenter gren-
zschichten. Master’s thesis, ETH Zurich.

Gasser, D., Thomann, H., and Dengel, P. (1993). Comparison of four methods to measure
the wall shear stress in a turbulent boundary layer with separation. Exp. Fluids, 15:27–
32.

Ginder, R. and Bradbury, L. (1973). Preliminary investigation for skin friction measure-
ments in highly turbulent flows,. Technical report, ARC Report.

Goldberg, H., Breuer, K., and Schmidt, M. (1994). A silicon wafer-bonding technology
for microfabricated shear-stress sensors with backside contacts. In Solid-state Sensor
and Actuator Workshop, Technical Digest, pages 111–115.



216 BIBLIOGRAPHY

Goldstein, R. et al. (1983). Fluid Mechanics Measurements. Hemisphere Publishing
Corporation, Berlin, 2nd edition.

Hakkinen, R. (1991). Survey of skin friction measurements techniques. AIAA Minisym-
posium.

Hanratty, T. and Campbell, J. (1996). Measurement of wall shear stress. In Goldstein,
R. J., editor, Fluid Mechanics Measurements, volume Second edn, pages 575–648.

Haritonidis, J. (1989). The measurements of wall-shear stress. Advances in Fluid Me-
chanics Measurements, pages 229–261.

Head, M. and Rechenberg, I. (1962). The preston tube as a means of measuring skin
friction. J. Fluid Mech., 14:1–17.

Head, M. and Vasanta Ram, V. (1971). Simplified presentation of the preston tube
calibration. Aeronautical Quarterly, XXII:295–300.

Hirt, F. and Thomann, H. (1986). Measurements of wall shear stress in turbulent boundary
layers subject to strong pressure gradients. J. Fluid Mech., 171:547–562.

Ho, C. and Tai, Y. (1996). Mems and its applications for flow control. J. Fluids Eng.,
118:437–447.

Ho, C. and Tai, Y. (1998). Micro-electro-mechanical systems (mems) and fluid flows.
Annu. Rev. Fluid Mech., 30:579–612.

Huang, A., Ho, C., Jiang, F., and Tai, Y. (2000). Mems transducers for aerodynamics -
a paradigm shift. AIAA.

Iliescu, M., Ciocan, G., and Avellan, F. (2002). 3D PIV and LDV Measurements at the
runner outlet of a Francis Turbine. In ASME - European Fluids Engineering Conference,
number FEDSM2002-31332.

Jandard, A. (2000). Study and development of an experimental method for measuring the
wall friction in a turbine. Technical Report IMHEFDI/2000J, LMH/EPFL, Lausanne,
Switzerland.

Janke, G. (1987). Hot wire in wall proximity. In ed G Compte-Bellot and Mathieu, J.,
editors, Advances in Turbulence, pages 488–498. Berlin: Springer.

Janke, G. (1993). Uber die grundlagen und einige anwendungen der olfilm-interferometrie
zur messung von wandreibungsfeldern in luftstromungen. Master’s thesis, Technische
Universitat Berlin.

Jiang, F., Tai, T., Ho, C., Rainer, K., and Garstenauer, M. (1994a). Theoretical and
experimental studies of micromachined hot-wire anemometer. In Digest IEEE Int.
Electron Devices Meetings (IEDM), pages 139–142.

Jiang, F., Tai, Y., Gupta, B., Goodman, R., Tung, S., Huang, J., and Ho, C. (1996).
A surface micromachined shear stress imager. In Proc. IEEE Microelectromechanical
Systems (MEMS’96), number 110–115, New York.



BIBLIOGRAPHY 217

Jiang, F., Tai, Y., Ho, C., and Li, W. (1994b). A micromachined polysilicon hot-wire
anemometer. In Solid-state Sensor and Actuator Workshop, Technical Digest, pages
264–267, Hilton Head Island.

Kalvesten, E. (1995). Pressure and wall shear stress sensors for turbulence measurements.
PhD thesis, Royal Institute of Technology, Stockholm, Sweden.

Kalvesten, E., Vieider, C., Lofdahl, L., and Stemme, G. (1996). An integrated pressure-
flow sensor for correlation measurements in turbulent gas flows. Sens. Actuators A,
A52(1-3):51–58.

Kempf, G. (1929). Neue ergebnisse der widerstandsforschung. Werft, Reederei, Hafen,
II:234–239.

Kälvesten, E., Lofdahl, L., and Stemme, G. (1996). An integrated silicon based wall
pressure-shear stress sensor for measurement in turbulent flows. Sensors and Actuators.

Konstantinov, N. and Dragnysh, G. (1960). The measurement of friction stress on a
surface. English translation, DSIR RTS 1499.

Kucherenko, S. and Leaver, K. (2000). Modelling effects of surface tension on surface
topology in spin coatings for integrated optics and micromechanics. J. Micromech.
Microeng., 10:299–308.

Lehmann, V. (1996). Porous silicon-a new material for mems. In MEMS 96, pages 1–6.

Löfdahl, L. and Gad-el Hak, M. (1999). Mems-based pressure and shear stress sensors for
turbulent flows. Meas. Sci. Technol, 10:665–685.

Liu, C., Tai, Y., Huang, J., and Ho, C. (1994). Surface micromachined thermal shear
stress sensor. In The ASME Symposium on Application of microfabrication to Fluid
Mechanics, volume Winter Annual Meeting, Chicago.

Liu, Y., Cui, T., Sunkam, R., Coane, P., Vasile, M., and Geoettert, J. (2003). Novel
approach to form and pattern sol-gel polymethylsilsesquioxane-based spin-on glass thin
and thick films. Sensors and Actuators, 88:75–79.

Lofdahl, L., Kalvesten, E., Hadzianagnostakis, T., and Stemme, G. (1996). An integrated
silicon based wall pressure-shear stress sensor for measurements in turbulent flows. In
Proc., 1996 Int. Mechanical Engineering Congress and Exposition, pages 245–251.

Lofdahl, L., Stemme, G., and Johansson, B. (1992). Silicon based flow sensors used for
mean velocity and turbulence measurements. Exp. Fluids, 12:270–276.

Lui, C., Tai, Y.-C., Huang, J.-B., and Ho, C.-M. (1994). Surface micromachined thermal
shear stress sensor. In et al., E. B., editor, Application of Microfabrication to Fluid
Mechanics, volume ASME FED 197.

Mauri, S. (2002). Numerical simulation and flow analysis of the elbow diffuser. PhD
thesis, Ecole Polytechnique Federale de Lausanne, Switzerland, Lausanne, Switzerland.



218 BIBLIOGRAPHY

Mofat, R. (1985). Using uncertainty analysis in planning of an experiment. In Journal of
Fluid Engineering, volume 107, pages 173–178.

Nagano, Y., Tsuji, T., and Houra, T. (1998). Structure of turbulent boundary layer
subjected to adverse pressure gradient. In International Journal of Heat and Fluid
Flow, volume 19, pages 563–572.

Nam, C. and Kwon, Y. (1996). Selective oxidized porous silicon (sops) substrate for
microwave power chip-packaging. In IEEE EP, pages 202–204.

Ng, K.-Y. (1990). A liquid shear-stress sensor using wafer-bonding technology. Master’s
thesis, Massachusetts Institute of Technology.

Ou, H., Yang, Q., Lei, H., Wang, H., Wang, Q., and Hu, X. (1999). Thick sio2 layer
produced by anodisation. Electronics Lett., 35:1950–1951.

Oudheusden, B. and Huijsing, J. (1988). Integrated flow friction sensor. Sensors and
Actuators, 15:135–144.

Padmanabhan, Goldberg, H., Breuer, K., and Schmidt, M. (1996). A wafer-bonded
floating-element shear stress microsensor with optical position sensing by photodiodes.
Journal of Microelectromechanical Systems, 5(4):307–315.

Pan, T., Hyman, D., Mehregany, M., Reshotko, E., and Williams, B. (1995). Charac-
terization of microfabricated shear stress sensors. In Proceedings of 16th International
Congress on Instrumentation in Aerospace Simulation Facilities, WPAFB, OH.

Patel, V. (1965). Calibration of the preston tube and limitations on its use in pressure
gradients. J. Fluid Mech., 23:185–208.

Prandtl, L. (1932). Zur turbulenten stroemung in rohren und laengs platten. In Ergeb.
Aerodyn. Versuch., 4, pages 18–29, Goettingen.

Ritter, B. and Schmidt, M. (1981). Qualification du tunnel a eau du laboratoire de
mecanique des fluides. Technical Report IMHEFDI/81R, LMH/EPFL, Lausanne,
Switzerland.

Ruderich, R. and Fernholz, H. (1986). An experimental investigation of the structure of a
turbulent shear flow with separation, reverse flow, and re-attachment. J. Fluid Mech.,
163:283–322.

Ryhming, I. L. (1985). Dynamique des fluides. Presses Polytechniques Romandes, Lau-
sanne, Switzerland, 1st edition.

Schlichting, H. (1979). Boundary-Layer Theory. McGraw-Hill Series in Mechanical Engi-
neering. McGraw-Hill, New-York, United States of America, 7th edition.

Schmidt, M., Howe, R., Senturia, S., and Haritonidis, J. (1988). Design and calibration
of a microfabricated floating-element shear-stress sensor. In IEEE Transactions on
Electron Devices, volume Vol. ED-35, pages 750–757.



BIBLIOGRAPHY 219

Susan-Resiga, R., Ciocan, G., Anton, I., and Avellan, F. (2006). Analysis of the swirling
flow downstream a francis turbine runner. Journal of Fluids Engineering, 128(1):177–
189.

Svedin, N., Kalvesten, E., Stemme, E., and Stemme, G. (1998). A new silicon gas-flow
sensor based on lift force. J. Microelectromech. Syst., 7(3):303–308.

Svedin, N., Stemme, E., and Stemme, G. (2001). A static turbine flow meter with a
micromachined silicon torque sensor. In Technical Digest, MEMS 2001, 14th IEEE Int.
Conf. on Micro Electro Mechanical Systems, pages 208–211, Interlaken, Switzerland.

Tanner, L. and Blows, L. (1986). A study on the motion of oil films on surfaces in air
flow, with application to the measurement of skin friction. J. Phys. E. Sci. Instrum.,
9:194–202.

Tardu, S., Pham, C., and Binder, G. (1991). Effects of longitudinal diffusion in the fluid
and of heat conduction to the substrate on the response of wall hot-film gauges. In
ed A V Johansson and Alfredsson, P. H., editors, Advances in Turbulence, volume 3,
pages 506–513. Berlin: Springer.

Vagt, J. and Fernholz, H. (1973). Use of surface fences to measure wall shear stress in
three-dimensional boundary layers. Aeronautical Quarterly, XXIV:87–91.

van Baar, J., Wiegerink, R., Lammerink, T., Krijnen, G., and Elwenspoek, M. (2001).
Micromachined structures for thermal measurements of fluid and flow parameters. J.
Micromech. Microeng., 11(4):311–318.

van der Wiel, A., Boillat, M., and de Rooij, N. (1995). A bi-directional silicon orifice flow
sensor characterized for fluid temperature and pressure. In Proc., 8th Int. Conf. on
Solid-State Sensors and Actuators and Eurosensors IX, volume 2, pages 420–423.

van der Wiel, A., Linder, C., de Rooij, N., and Bezinge, A. (1993). A liquid velocity
sensor based on the hot-wire principle. Sens. Actuators A, 693:37–38.

van Honschoten, J., Krijnen, G., Svetovoy, V., de Bree, H., and Elwenspoek, M. (2001).
Optimization of a two wire thermal sensor for flow and sound measurements. In Proc.,
14th Int. Conf. Micro Electro Mechanical Systems (MEMS 2001), pages 523–526.

von Kármán, T. (1930). Mechanische ahnlichkeit und turbulenz. In eds. C.W.Oseen and
W.Weibull, editors, Proc. 3rd International Congress for Applied Mechanics, volume 1,
pages 85–93, Stockholm. AB Sveriges Litografiska Tryckenier.

Wagner, P. (1991). The use of near-wall hot-wire probes for time-resolved skin-friction
measurements. In ed A V Johansson and Alfredsson, P. H., editors, Advances in Tur-
bulence, volume 3, pages 524–529. Berlin: Springer.

Warnack, D. (1996). Eine experimentelle untersuchung beschleunigter turbulenter wand-
grenzschichten. Master’s thesis, Technische Universitat Berlin.

White, F. (1991). Viscous Fluid Flow. McGraw-Hill Series in Mechanical Engineering.
McGraw-Hill, New-York, United States of America, 2nd edition.



220 BIBLIOGRAPHY

Winter, K. (1977). An outline of the techniques available for the measurement of skin
friction in turbulent boundary layers. Progr. Aerosp. Sci., 18:1–55.

Xu, Y., Jiang, F., Lin, Q., Clendenen, J., Tung, S., and Tai, Y.-C. (2002). Under water
shear stress sensor. In Proc., 15th IEEE Int. Conf. on Micro Electro Mechanical Systems
(MEMS 02).

Zhang, C. and Najafi, K. (2002). Fabrication of thick silicon dioxide layers using drie,
oxidation and trench refill. In MEMS 02, pages 160–163.

Zhang, C. and Najafi, K. (2004). Fabrication of thick silicon dioxide layers for thermal
isolation. In J.Micromech.Microeng, volume 14, pages 769–774.

Zurfluh, U. (1984). Experimentelle bestimmung der wandschubspannung in turbulenten
grenzschichten. Master’s thesis, ETH Zurich.



List of Figures

1.1 Comparison of computed (left) and measured (right) wall shear stress on
a wingtip, Chow et al. [1997] . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Wall shear stress distribution on a typical propeller driven fighter . . . 3

3.1 Boundary layer illustration . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Boundary layer on a flat plate . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 The three zones of the boundary layer on a flat plate . . . . . . . . . . 11
3.4 Shear stress distribution in turbulent boundary layer, with the wall dis-

tance: near the wall and total . . . . . . . . . . . . . . . . . . . . . . . 13
3.5 Comparison between a laminar and a turbulent velocity profile . . . . . 13
3.6 The distribution c+(y+) in the turbulent boundary layer . . . . . . . . . 15
3.7 Temperature distribution in the boundary layer, on a heated flat plate . 16
3.8 Floating element technique . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.9 Oil-film interferometry technique . . . . . . . . . . . . . . . . . . . . . . 21
3.10 Preston tube technique . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.11 Surface fence technique . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.12 Wall pulsed wire technique . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.13 Wall hot-wire technique . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.14 Wall hot-film technique . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 Test section area in the calibration tunnel . . . . . . . . . . . . . . . . 28
4.2 L.M.H. calibration tunnel . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Tunnel upper wall design and the measurement instruments places . . . 30
4.4 Measurement flow chart . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.5 Flow velocity variation with the rotating speed of the tunnel’s pump . . 31
4.6 Main heat transfer components on a heated element . . . . . . . . . . . 32
4.7 Wall shear stress evolution with the anemometer’s output voltage . . . 36
4.8 The adjustment of a logarithmic tendency in the turbulent boundary layer

zone with flow of constant momentum . . . . . . . . . . . . . . . . . . . 38
4.9 Velocity distribution in the boundary layer . . . . . . . . . . . . . . . . 38
4.10 Flow velocity distribution with the velocity in the boundary layer and the

measurements accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.11 Calibration procedure systematized . . . . . . . . . . . . . . . . . . . . 41
4.12 Uni-directional hot-film probe mounting in the calibration tunnel . . . . 41

5.1 Area evolution in FLINDT draft tube . . . . . . . . . . . . . . . . . . . 44
5.2 Operating points characterization for wall shear-stress measurements . . 44
5.3 Flush mounted hot-film probe - detailed view . . . . . . . . . . . . . . . 45

221



222 LIST OF FIGURES

5.4 Flush mounted hot-film probe - front view . . . . . . . . . . . . . . . . 45
5.5 Rotating support and hot-film probe . . . . . . . . . . . . . . . . . . . 46
5.6 Rotating support for hot-film probe, mechanical design . . . . . . . . . 46
5.7 Hot-film probe orientation . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.8 Output voltage variation with the mean flow velocity . . . . . . . . . . 47
5.9 Calibration coefficients, A and B, determination . . . . . . . . . . . . . 49
5.10 Hot-film probe calibration curve . . . . . . . . . . . . . . . . . . . . . . 50
5.11 Method used to adjust the voltage drift due to the water temperature

changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.12 Hot-film probe output voltage evolution with the water temperature . . 52
5.13 Angular variation of the voltage given by the sensor . . . . . . . . . . . 53
5.14 Angular variation of the wall shear-stress . . . . . . . . . . . . . . . . . 54
5.15 Coefficients calculation of the 2 calibration curves . . . . . . . . . . . . 54
5.16 Probe contamination influence on the calibration curves . . . . . . . . . 55
5.17 FLINDT Francis turbine scale model . . . . . . . . . . . . . . . . . . . 56
5.18 Draft tube pressure recovery . . . . . . . . . . . . . . . . . . . . . . . . 56
5.19 Wall shear stress measurement sections . . . . . . . . . . . . . . . . . . 57
5.20 Wall shear stress sensors locations . . . . . . . . . . . . . . . . . . . . . 57
5.21 Variation of the output voltage of the hot-film probe with the water tem-

perature in the cone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.22 Temperature curves comparison obtained in the cone and in the calibra-

tion curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.23 Angle made by the longitudinal direction of the hot film with the flow

direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.24 Influence of the hot-film probe orientation on the wall shear-stress . . . 60
5.25 Drift correction scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.26 Method for correction the measurements . . . . . . . . . . . . . . . . . 61
5.27 Measurements correction procedure . . . . . . . . . . . . . . . . . . . . 61
5.28 The spatial positions of the wall shear-stress probe in the measurement

section at the runner outlet . . . . . . . . . . . . . . . . . . . . . . . . 62
5.29 Steady wall shear-stress distributions at a distance of 0.25φrunner from the

runner outlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.30 Mean pressure distribution with the operating point and the pressure

sensor spatial position . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.31 Wall shear stress distribution with the operating point and the hot-film

probe spatial position . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.32 Tangential velocity components at the runner outlet . . . . . . . . . . . 64
5.33 Comparison with the numerical approaches . . . . . . . . . . . . . . . . 64
5.34 Phase average scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.35 Spectral analysis of the wall shear-stress for operating point A . . . . . 66
5.36 Spectral analysis of the wall shear-stress for operating point B . . . . . 66
5.37 Spectral analysis of the wall shear-stress for operating point C . . . . . 67
5.38 Spectral analysis of the wall shear-stress for operating point D . . . . . 67
5.39 Wall shear stress phase average with runner rotation, operating point A 68
5.40 Wall shear stress phase average with runner rotation, operating point B 68
5.41 Wall shear stress phase average with runner rotation, operating point C 68



LIST OF FIGURES 223

5.42 Wall shear stress phase average with runner rotation, operating point D 69
5.43 The signals in phase corresponding to all standard operating points . . 69
5.44 The signal shifted evidenced for all standard operating points . . . . . . 70
5.45 Wall shear stress phase average with the blade passage . . . . . . . . . 71
5.46 Steady wall shear-stress distributions at the cone’s inlet, for both the near

BEP and partial load operating points . . . . . . . . . . . . . . . . . . 71
5.47 Spectral analysis for partial load operating points, corresponding to an-

gular position 12◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.48 Wall shear stress phase average with the vortex frequency for angular

position 12◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.49 Spectral analysis for partial load operating points, corresponding to an-

gular position 45◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.50 Wall shear stress phase average with the vortex frequency for angular

position 45◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.51 Spectral analysis for partial load operating points, corresponding to an-

gular position 78◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.52 Wall shear stress phase average with the vortex frequency for angular

position 78◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.53 Spectral analysis for partial load operating points, corresponding to an-

gular position 102◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.54 Wall shear stress phase average with the vortex frequency for angular

position 102◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.55 Spectral analysis for partial load operating points, corresponding to an-

gular position 180◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.56 Wall shear stress phase average with the vortex frequency for angular

position 180◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.57 Spectral analysis for partial load operating points, corresponding to an-

gular position 225◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.58 Wall shear stress phase average with the vortex frequency for angular

position 225◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.59 Spectral analysis for partial load operating points, corresponding to an-

gular position 270◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.60 Wall shear stress phase average with the vortex frequency for angular

position 270◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.61 Spectral analysis for partial load operating points, corresponding to an-

gular position 315◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.62 Wall shear stress phase average with the vortex frequency for angular

position 315◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.63 Spectral analysis for partial load operating points, corresponding to an-

gular position 348◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.64 Wall shear stress phase average with the vortex frequency for angular

position 348◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.65 The spatial positions of the wall shear-stress probe in the measurement

section at the cone outlet . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.66 Steady wall shear-stress distributions at the Francis cone outlet . . . . 82
5.67 Mean pressure distribution at the cone outlet with the operating point . 83



224 LIST OF FIGURES

5.68 Steady wall shear-stress distributions at the cone inlet and outlet . . . . 83
5.69 Wall shear stress distribution with the operating point and the spatial

position, at the cone outlet . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.70 Wall shear stress distribution with the operating point for the same spatial

positions, at the cone inlet and outlet . . . . . . . . . . . . . . . . . . . 84
5.71 Spectral analysis of the wall shear-stress corresponding to the 12◦ angular

position of the hot-film probe . . . . . . . . . . . . . . . . . . . . . . . 85
5.72 Spectral analysis of the wall shear-stress corresponding to the 78◦ angular

position of the hot-film probe . . . . . . . . . . . . . . . . . . . . . . . 85
5.73 Spectral analysis of the wall shear-stress corresponding to the 102◦ angu-

lar position of the hot-film probe . . . . . . . . . . . . . . . . . . . . . . 86
5.74 Spectral analysis of the wall shear-stress corresponding to the 192◦ angu-

lar position of the hot-film probe . . . . . . . . . . . . . . . . . . . . . . 86
5.75 Spectral analysis of the wall shear-stress corresponding to the 258◦ angu-

lar position of the hot-film probe . . . . . . . . . . . . . . . . . . . . . . 87
5.76 Spectral analysis of the wall shear-stress corresponding to the 282◦ angu-

lar position of the hot-film probe . . . . . . . . . . . . . . . . . . . . . . 87
5.77 Spectral analysis of the wall shear-stress corresponding to the 348◦ angu-

lar position of the hot-film probe . . . . . . . . . . . . . . . . . . . . . . 88
5.78 Steady wall shear-stress distribution for the part load operating point

with vapor phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.79 Steady wall shear-stress distribution for the part load operating point

without vapor phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.80 Wall shear stress distribution with the operating point and the spatial

position, both at the cone inlet and outlet . . . . . . . . . . . . . . . . 89
5.81 Spectral analysis, at the cone outlet, for partial load operating points,

corresponding to angular position 12◦ . . . . . . . . . . . . . . . . . . . 90
5.82 Wall shear stress phase average with the rope frequency for angular po-

sition 12◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.83 Spectral analysis, at the cone outlet, for partial load operating points,

corresponding to angular position 78◦ . . . . . . . . . . . . . . . . . . . 91
5.84 Wall shear stress phase average with the rope frequency for angular po-

sition 78◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.85 Spectral analysis, at the cone outlet, for partial load operating points,

corresponding to angular position 102◦ . . . . . . . . . . . . . . . . . . 92
5.86 Wall shear stress phase average with the rope frequency for angular po-

sition 102◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.87 Spectral analysis, at the cone outlet, for partial load operating points,

corresponding to angular position 192◦ . . . . . . . . . . . . . . . . . . 93
5.88 Wall shear stress phase average with the rope frequency for angular po-

sition 192◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.89 Spectral analysis, at the cone outlet, for partial load operating points,

corresponding to angular position 258◦ . . . . . . . . . . . . . . . . . . 94
5.90 Wall shear stress phase average with the rope frequency for angular po-

sition 258◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94



LIST OF FIGURES 225

5.91 Spectral analysis, at the cone outlet, for partial load operating points,
corresponding to angular position 292◦ . . . . . . . . . . . . . . . . . . 95

5.92 Wall shear stress phase average with the rope frequency for angular po-
sition 292◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.93 Spectral analysis, at the cone outlet, for partial load operating points,
corresponding to angular position 348◦ . . . . . . . . . . . . . . . . . . 96

5.94 Wall shear stress phase average with the rope frequency for angular po-
sition 348◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.1 LDV measurement location in the measurements sections related to the
wall shear-stress locations . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2 Near wall LDV measurements . . . . . . . . . . . . . . . . . . . . . . . 99
6.3 Velocity distribution in the cone near wall region . . . . . . . . . . . . . 99
6.4 Near wall velocity measurements for near BEP operating points at the

runner and cone outlet . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.5 Near wall velocity measurements for near BEP and 2 off-design operating

points at the runner and cone outlet . . . . . . . . . . . . . . . . . . . . 100
6.6 Velocity profile distribution, in boundary layer inner variables, for the

near BEP operating points . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.7 Velocity profile distribution, in boundary layer inner variables, for the

near BEP and 2 off-design operating points . . . . . . . . . . . . . . . . 101
6.8 The intermediate region of wall-bounded shear flow . . . . . . . . . . . 101
6.9 Velocity profiles using inner-variables, White [1991] . . . . . . . . . . . 103
6.10 Velocity profile distribution, in boundary layer inner variables, for the

near BEP and 2 off-design operating points . . . . . . . . . . . . . . . . 104
6.11 Local system attached to the hot-film probe, x’ and z’ . . . . . . . . . . 105
6.12 Boundary layer flow angle distribution, for the near BEP operating points 105
6.13 Boundary layer flow angle distribution, for the near BEP and 2 off-design

operating points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.14 Comparison between the shear-stress angle and flow angle distribution in

the boundary layer, for all operating points studied . . . . . . . . . . . 106
6.15 Velocity distribution by 2 different scaling laws . . . . . . . . . . . . . . 106
6.16 Boundary layer’s "chevron" in the cone, both at the outlet and at the

inlet, for all operating points studied . . . . . . . . . . . . . . . . . . . 108

7.1 Schematic presentation of the floating element balance, Padmanabhan
et al. [1996] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.2 MEMS flush-mounted wall shear-stress sensor, Kalvesten [1995] . . . . 116
7.3 MEMS shear-stress sensor developed by Jiang et al. [1996] . . . . . . . 117
7.4 Different designs proposed for the hot film . . . . . . . . . . . . . . . . 119
7.5 Main fabrication steps for the initial configuration of the new hot-film

sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.6 Top view of the new sensor, corresponding to different designs for the

hot-film probe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.7 Top schematic view and cross-section in the new sensor . . . . . . . . . 125
7.8 The 3 masks used for first generation sensors fabrication . . . . . . . . 126
7.9 Wafer design used for laser dicing . . . . . . . . . . . . . . . . . . . . . 126



226 LIST OF FIGURES

7.10 Wetox reducing on the front side of the device . . . . . . . . . . . . . . 127
7.11 First photolithography illustration . . . . . . . . . . . . . . . . . . . . . 127
7.12 Heated elements deposition . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.13 Heated elements pattern . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.14 Second metallically layer used for increasing electrical tracks . . . . . . 129
7.15 Protection SiO2 layer and photoresist deposition . . . . . . . . . . . . . 129
7.16 Protection SiO2 layer and photoresist deposition for holes refilling . . . 130
7.17 Electrical connections refilling, schematic view . . . . . . . . . . . . . . 130
7.18 Schematic view of the holes refilling purpose . . . . . . . . . . . . . . . 131
7.19 Schematic view of the mask used for metal filling validation by electrode-

position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.20 Views in a hole, after the silicon and wetox layers etching, showing a

complete removal of the SiO2 layer . . . . . . . . . . . . . . . . . . . . 132
7.21 Cross-sections showing the SiO2 layer thickness deposited on the lateral

walls of a hole, on the left side, and general view of the SiO2 layer depo-
sition in a hole, both on the bottom and on the lateral walls . . . . . . 132

7.22 Cross-section through a hole, before - left side - and after - right side -,
SiO2 dry etching on the bottom . . . . . . . . . . . . . . . . . . . . . . 133

7.23 Lateral walls observation, showing a sufficient oxide layer thickness . . . 133
7.24 Cross-section through a hole refilled with Cu . . . . . . . . . . . . . . . 134
7.25 Detailed view of the silicon-SiO2-copper interface, from the left to the

right side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.26 First generation of the new hot-film sensors . . . . . . . . . . . . . . . . 135
7.27 CTA development for preliminary tests . . . . . . . . . . . . . . . . . . 135
7.28 Detailed view of the packaging system . . . . . . . . . . . . . . . . . . . 136
7.29 Temperature coefficient of resistance determination . . . . . . . . . . . 137
7.30 Power variation, at the wall shear-stress sensor, with the mean flow ve-

locity, in the hydrodynamic tunnel . . . . . . . . . . . . . . . . . . . . . 137
7.31 Detailed view on a first generation sensor, after tests in the water tunnel 138
7.32 Cross-section for the new generation of hot-film sensors . . . . . . . . . 139
7.33 Numerical simulation of the heat transfer in the device, improved with

an insulating surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.34 Cross-section in the device, illustrating the heat transfer . . . . . . . . 141
7.35 Computational domain presentation . . . . . . . . . . . . . . . . . . . . 142
7.36 Heat transfer calculation results for the steady case, with flow velocity . 144
7.37 Detailed view over the heated element, illustrating the conduction heat

transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.38 Pillars design and trenches dimensions studied . . . . . . . . . . . . . . 145
7.39 Pillars design and trenches dimensions studied . . . . . . . . . . . . . . 146
7.40 SEM photos showing the trenches filling depending on the Si pillars de-

sign: a) square design,b) circle design, c) cross design . . . . . . . . . . 146
7.41 Schematic view of the trench filling by oxidation and LTO deposition . 147
7.42 SEM photos showing the trenches filling by this method depending on

the Si pillars design: a) square design, b) and c) cross design . . . . . . 147
7.43 Schematic view of the trench filling by oxidation, polysilicon deposition

and oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147



LIST OF FIGURES 227

7.44 New designs for the silicon pillars . . . . . . . . . . . . . . . . . . . . . 148
7.45 SEM photos showing the trenches filling by oxidation only in the new

designs configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
7.46 SEM photos showing the trenches filling by the complex method corre-

sponding to the new designs . . . . . . . . . . . . . . . . . . . . . . . . 149
7.47 Schematic view of the trench filling by oxidation and nitride deposition 150
7.48 SEM photos showing the trenches filling by oxidation and nitride deposi-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
7.49 SEM photos showing the trenches filling by oxidation and LTO deposition 151
7.50 Chemical mechanical polishing resuts on a wafer surface . . . . . . . . . 151
7.51 Mask no.1 used for creating the insulating surface in the substrate . . . 152
7.52 Mask no.2 for the heated film and a first layer corresponding to the elec-

trical track deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
7.53 Mask no.3 corresponding to the second layer of the electrical tracks . . 152
7.54 Mask no.4 for the holes realization, corresponding to the electrical con-

nections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
7.55 Main fabrication steps for the second generation of the new hot-film sensor 153
7.56 New multidirectional hot-film sensor . . . . . . . . . . . . . . . . . . . . 153
7.57 A processed wafer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
7.58 Wires welding on the sensor’s backside . . . . . . . . . . . . . . . . . . 154
7.59 New wall shear-stress sensor’s encapsulation . . . . . . . . . . . . . . . 154
7.60 New rotating system design . . . . . . . . . . . . . . . . . . . . . . . . 155
7.61 The whole encapsulating system used for the new wall shear-stress cali-

bration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

8.1 Temperature coefficient of resistance evaluation for air . . . . . . . . . . 158
8.2 Temperature coefficient of resistance evaluation for water . . . . . . . . 158
8.3 First electronical device developed . . . . . . . . . . . . . . . . . . . . . 159
8.4 Model of non-cylindrical hot film . . . . . . . . . . . . . . . . . . . . . 160
8.5 Principle of the constant temperature anemometer . . . . . . . . . . . . 161
8.6 Equivalent substrate assumption . . . . . . . . . . . . . . . . . . . . . . 162
8.7 Constant-current anemometer . . . . . . . . . . . . . . . . . . . . . . . 164
8.8 Constant-current anemometer preliminary test for a film resistance of

R = 71.5Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
8.9 Constant-current anemometer’s output from step input current . . . . . 168
8.10 MiniCTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
8.11 Film no.1, R = 37.2 Ω, output voltage evolution with the water temper-

ature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
8.12 Film no.2, R = 29.5 Ω, output voltage evolution with the water temper-

ature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
8.13 Film no.3, R = 33.1 Ω, output voltage evolution with the water temper-

ature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
8.14 Angular variation of the output voltage given by the film no.1, R = 37.2

Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
8.15 Angular variation of the output voltage given by the film no.2, R = 29.5

Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173



228 LIST OF FIGURES

8.16 Angular variation of the output voltage given by the film no.3, R = 33.1
Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

8.17 Output voltage variation with mean flow velocity, film no.1, R = 37.2 Ω 174
8.18 Output voltage variation with mean flow velocity, film no.2, R = 29.5 Ω 174
8.19 Output voltage variation with mean flow velocity, film no.3, R = 33.1 Ω 174
8.20 Calibration curve corresponding to film no.1, R = 37.2 Ω . . . . . . . . 175
8.21 Calibration curve corresponding to film no.2, R = 29.5 Ω . . . . . . . . 175
8.22 Calibration curve corresponding to film no.3, R = 33.1 Ω . . . . . . . . 175
8.23 New wall shear-stress sensor’s output voltage evolution with the water

temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
8.24 Angular variation of the voltage given by the new wall shear-stress sensor 176
8.25 New wall shear-stress sensor’s Output voltage variation with the mean

flow velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
8.26 Hot-films calibrations curves for a new wall shear-stress sensor . . . . . 177
8.27 Calibration curve and sensitivity parameters comparisons for the DAN-

TEC probe and new wall shear-stress sensor . . . . . . . . . . . . . . . 179

A.1 Pitot tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
A.2 Pitot tube - scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
A.3 Preston and Pitot tubes localization in the calibration tunnel . . . . . . 191
A.4 Preston tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
A.5 Preston tube - scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
A.6 Preston tube place related to the upper wall . . . . . . . . . . . . . . . 192
A.7 Differential pressure instrumentation system and amplifier for pressure

probes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
A.8 SC-2040 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
A.9 Constant temperature anemometer . . . . . . . . . . . . . . . . . . . . 196

C.1 Photolithography process . . . . . . . . . . . . . . . . . . . . . . . . . . 200
C.2 Writing techniques in photolithography . . . . . . . . . . . . . . . . . . 200
C.3 Chemical Vapor Deposition technology . . . . . . . . . . . . . . . . . . 202
C.4 Deposition by evaporation technology . . . . . . . . . . . . . . . . . . . 202
C.5 Sputter deposition technique . . . . . . . . . . . . . . . . . . . . . . . . 204
C.6 Cross-section showing isotropic etching . . . . . . . . . . . . . . . . . . 205
C.7 Cross-section showing anisotropic etching for 2 wafer orientations . . . 205
C.8 Wet etching process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
C.9 Dry etching technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
C.10 Surface micromachining process . . . . . . . . . . . . . . . . . . . . . . 207
C.11 Chemical mechanical polishing process . . . . . . . . . . . . . . . . . . 208
C.12 Chemical mechanical polishing machine . . . . . . . . . . . . . . . . . . 208
C.13 Lift-off technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
C.14 Schematic view of the electroplating process . . . . . . . . . . . . . . . 210
C.15 Schematic view of laser induced fluorescence with molecular beams . . . 211



List of Tables

3.1 Wall shear-stress technologies and their applications . . . . . . . . . . . 19

5.1 Technical data for the 55R46 flush mounted hot-film probe . . . . . . . 45
5.2 Calibration curves coefficients . . . . . . . . . . . . . . . . . . . . . . . 54
5.3 Studied operating points characterization . . . . . . . . . . . . . . . . . 56

6.1 Main optical probe characteristics . . . . . . . . . . . . . . . . . . . . . 98
6.2 The power scaling law constants . . . . . . . . . . . . . . . . . . . . . . 109

7.1 Progress in micromachined shear-stress sensor technology . . . . . . . . 115
7.2 Main thermal properties for the available substrate materials . . . . . . 118
7.3 Main thermal properties for the available heated element materials . . . 121
7.4 Detailed calculation domain . . . . . . . . . . . . . . . . . . . . . . . . 143

8.1 Wall shear-stress sensor’s thermal time constant calculation without con-
sidering conduction losses . . . . . . . . . . . . . . . . . . . . . . . . . . 165

8.2 Wall shear-stress sensor’s thermal time constant calculation with consid-
ering conduction losses . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

8.3 Time responses measurements for 1 new wall shear-stress sensors with
medium resistance values . . . . . . . . . . . . . . . . . . . . . . . . . . 169

8.4 Time responses measurements for another new wall shear-stress sensors
with high resistance values . . . . . . . . . . . . . . . . . . . . . . . . . 169

229





 
 
Elena-Lavinia BERCA 22 May 1978 
Rue Jean-Prouvé 45  Single 
1762 Givisiez (FR) Romanian  
 
Tel. private :  026/4651990 
Mobile  : 078 /7204475 
Prof.        : 021/6932577 

 
 
laviberca@yahoo.com 

 
 

 

EDUCATION 

Studies - from 2001 to 2007, PhD thesis in Laboratory for Hydraulic Machines, École Polytechnique 
Fédéral de Lausanne, Switzerland 

- from 1st of April  to 31 of July 2001, Diploma project in Laboratory for Hydraulic Machines, 
École Polytechnique Fédéral de Lausanne, Switzerland 

- from 1996 to 2001, The Power Engineering Faculty, Hydraulic Machinery Department, 
“Politehnica” University of Bucharest, Romania 

- from 1992 to 1996, The Economical High School Ploiesti, Romania, computer specialization 
with intense program of learning English  

Certificates - 2007, PhD Degree in Hydraulic Machines, Laboratory for Hydraulic Machines, EPFL, 
Switzerland 

- 2001, Engineer Degree in Hydraulic Machines, Hydraulic Machinery Department, “Politehnica” 
University of Bucharest, Romania 

- 1996, High school diploma, The Economical High School Ploiesti, Romania 
- 1996, Certificate as assistant-operator in computers, The Economical High School Ploiesti, 

Romania 

 

PROFESSIONAL EXPERIENCE 

2003-2006 EPFL, Lausanne 
 Mechanical Engineer Assistant in Laboratory for Hydraulic Machines – participation in 

International Project Hydrodyna (Harnessing: The Dynamic Behaviour of Hydro Turbines, Storage 
Pumps and Pump-Turbines) – Eureka no. 3246 

 My main responsibilities have been: 

- The design, using AUTOCAD and L-Edit, of a new miniature hot-film probe capable to measure 
wall friction inside a turbomachine; 

- Numerical simulations of the probe’s behaviour using ANSYS and CFX software; 
- The new  hot-film probe manufacturing in the clean room, using microtechnology techniques: 

- Development of a new technique for creating silicon pillars for thermal isolation applications 
- Masks design and fabrication using Direct Laser Writer system; 
- Positive resist coating and developing, alignment by proximity/contact double side mask; 
- Deposition by sputtering and evaporation  
- Lift-off, dry etching using a fluorine chemistry high density plasma etcher, electroplating 

- The qualification of this new probe both in steady and dynamic conditions: 

- Development of the calibration instrumentation and procedure for the new hot-film probe; 
- Calibration performance for several miniature probes. 



2001-2003  EPFL, Lausanne 
 Mechanical Engineer Assistant in Laboratory for Hydraulic Machines – participation in 

International Project FLINDT (FLow Investigation in Draft Tube) – Eureka no. 1625 

 My main responsibilities have been: 
- Development of the calibration procedure for a commercial hot-film probe; 
- Calibration performance for 3 hot-film probes; 
- Wall friction measurements for 4 “standard” and 2 off-design operating points, using the 

commercial hot-film probe for 2 sections: at the runner outlet and at the cone outlet, of a Francis 
turbine; 

- The steady and unsteady analysis performance for the 2 sections and each operating point of the 
turbine; 

- Boundary layer development analysis in the cone of a Francis turbine. 

2000-2001 Collaboration with the department of Hydraulics and Hydraulic Machinery from “Politehnica” 
University of Bucharest concerning several different national projects, studies of hydropower 
plant implementation, dams calculations, etc.  

2000 Industrial stage at the “Portile de Fier I” hydropower plant, Romania, during the refurbishment of the 
six turbines 

 

SCIENTIFIC ACTIVITIES 

2002-2004  2 international refereed conference paper in hydraulic and 1 in microtechnology  field: 

 Berca E.L., Avellan F., Cannehan F. and Langlet Ph.: “Silicon Pillars Development for Thermal 
Isolation Applications”, the 4th International Workshop on Microfactories, IWMF’04, Shanghai, 
China, Oct. 15-17, 2004 

 Berca E.L., Ciocan G.D. and Avellan F.: “Wall Friction and Boundary Layer Development in the 
Cone of a Francis Turbine Scale Model”, Proceedings of the 22nd IAHR Symposium on Hydraulic 
Machinery and Systems, Stockholm, Sweden, June 29- July 2, 2004 

Ciocan G.D., Avellan F., Berca E.L. “Wall Friction Measurements: Application in A Francis Turbine 
Cone”, FEDSM2002-31333, Joint US ASME – European Fluids Engineering Conference, 
Montreal, Canada, 14-18 July 2002 

 

1998-2001 Participation in Scientific Sessions for Students. In the Hydropower and Hydraulic Machines section 
I obtained 1st and the 3rd prices.  

1990-1995 Many participations in scientific contests at province level: 2nd price in English (1995), special 
mention in Geography (1992), 3rd price in Physics (1991), special mention in Mathematics (1990) 

 

LANGUAGES 

French : Advanced level 
English : Advanced level 
German : Beginner level 
Romanian : Mother tongue 

 

COMPUTER ABILITIES 

- AutoCAD, Labview, L-edit, Ansys, CFX, Matlab, , Microsoft Office (Word, Excel, PowerPoint), Adobe 
Photoshop, Adobe Illustrator 

 

LEISURE ACTIVITIES, OTHERS 

- Sports: Gymnastics, Fitness, Swimming (intensively practiced during 8 years) 
- Hobby: Travel, Literature, Music 
 
 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




