
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

Chimiste diplômé, M. V. Lomonosov Moscow State University, Moscou, Russie
et de nationalité ukrainienne

acceptée sur proposition du jury:

Prof. U. Röthlisberger, présidente du jury
Prof. L. Helm, directeur de thèse

Prof. L. Forro, rapporteur 
Prof. H. Huber, rapporteur 
Dr V. Malkin, rapporteur 

Theoretical Investigations of Magnetic 
Properties of MRI Contrast Agents and 

Carbon Nanostructures

Oleg Yazyev

THÈSE NO 3771 (2007)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE le 30 mars 2007

à la faculté DES SCIENCES DE BASE

laboratoire de chimie inorganique et bioinorganique

PROGRAMME DOCTORAL EN CHIMIE ET GÉNIE CHIMIQUE 

Suisse
2007





To Yuliya





Table of Contents

Acknowledgements 4

Abstract 6

Version abrégée 8

1 Introduction 11

1.1 MRI contrast agents for biomedical diagnostics . . . . . . . . . . . . . . . 11

1.2 Carbon based materials for future technologies . . . . . . . . . . . . . . . 18

1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Hyperfine interactions in gadolinium aqua complexes 25

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Hyperfine interactions and nuclear spin relaxation . . . . . . . . . . . . . 27

2.3 Computational approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.1 Hyperfine couplings in gadolinium aqua complex . . . . . . . . . . 35

2.4.2 Hyperfine couplings in GdDOTA . . . . . . . . . . . . . . . . . . 41

2.5 Practical conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 17O quadrupole couplings in gadolinium aqua complexes 45

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Calculation of 17O quadrupole couplings . . . . . . . . . . . . . . . . . . 46

3.2.1 Theoretical foundations . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.2 Computational methodology . . . . . . . . . . . . . . . . . . . . . 47

3.2.3 Calibration of 17O quadrupole moment . . . . . . . . . . . . . . . 48

3.3 Quadrupole couplings in model aqua complexes . . . . . . . . . . . . . . 50



2 TABLE OF CONTENTS

3.4 Quadrupole couplings of gadolinium aqua ions in solution . . . . . . . . . 54

3.4.1 Liquid water and gadolinium aqua complex . . . . . . . . . . . . . 54

3.4.2 GdDOTA aqua complex . . . . . . . . . . . . . . . . . . . . . . . 56

3.5 Implications for 17O NMR relaxation studies . . . . . . . . . . . . . . . . 57

4 Pseudopotential calculations of hyperfine interactions 59

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Valence contribution to hyperfine coupling constants . . . . . . . . . . . 60

4.2.1 Isotropic hyperfine coupling constants . . . . . . . . . . . . . . . . 60

4.2.2 Dipolar hyperfine coupling constants . . . . . . . . . . . . . . . . 62

4.3 Core spin-polarization correction . . . . . . . . . . . . . . . . . . . . . . 64

4.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.2 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.3 Trends across the periodic table . . . . . . . . . . . . . . . . . . . 70

5 Paramagnetic ions in water: ab initio molecular dynamics 75

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 Discussion and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3.1 Aqueous solution of Cr3+: a test case . . . . . . . . . . . . . . . . 78

5.3.2 Hyperfine interactions in aqueous solution of Gd3 + . . . . . . . 82

6 Hyperfine interactions in carbon nanostrucures 87

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2 Isotropic Knight shift of metallic carbon nanotubes . . . . . . . . . . . . 89

6.2.1 Computational methods . . . . . . . . . . . . . . . . . . . . . . . 91

6.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.3 Hyperfine interactions in graphenic nanostructures . . . . . . . . . . . . . 96

7 Point defects in carbon nanostructures 105

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.2 Magnetism induced by single atom defects . . . . . . . . . . . . . . . . . 106

7.3 Radiation-induced defect formation . . . . . . . . . . . . . . . . . . . . . 113

7.3.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.3.2 Off-plane recoils . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115



TABLE OF CONTENTS 3

7.3.3 In-plane recoils . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8 Conclusions 121

8.1 Overview of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

8.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

A Si 2p photoelectron spectra at silicon surfaces and interfaces 125

Bibliography 135

Curriculum vitae 157

Publications 158



Acknowledgements

First of all, I am grateful to my thesis supervisor Prof. Lothar Helm, an excellent scientist

and a man of generous soul. His advises and explanations were always helpful for me.

His laugh and smile create a very warm and pleasant atmosphere in the group. He gave

me a unique chance to realize my own scientific ideas. Many thanks for this!
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Abstract

The phenomenon of magnetism is one of the key components of today’s technological

progress. Magnetic interactions and magnetic materials are essential for the scientific

disciplines of physics, chemistry and biology, making this subject truly multidisciplinary.

This thesis is devoted to magnetic properties of two classes of substances. The first class

represents the complexes of the ions of paramagnetic metals, primarily of the gadolin-

ium(III) ion. These molecular compounds have an important application as magnetic

resonance imaging (MRI) contrast agents for medical diagnostics. The design of more

efficient MRI contrast agents requires a detailed knowledge of their magnetic proper-

ties. The other part of the thesis considers the broad class of recently discovered carbon

nanostructures and materials. Their extraordinary physical properties foretell future

applications of these materials in electronics, medicine and other fields. For instance,

carbon nanotubes loaded with gadolinium(III) ion clusters are highly efficient MRI con-

trast agents.

By using accurate density functional theory calculations in combination with classical

molecular dynamics simulations, we determine hyperfine and quadrupole coupling con-

stants on the nuclei of a first coordination sphere water molecule in gadolinium(III) aqua

complexes. These parameters play a crucial role in the description of the key function,

relaxivity, of MRI contrast agents. We found that the spin-polarization effect induced

by the paramagnetic gadolinium(III) ion results in a Fermi contact hyperfine coupling

of both the 1H and 17O nuclear spins and affects the dipole hyperfine coupling of the
17O nuclear spin of the inner coordination sphere water molecule. The 17O quadrupole

coupling parameters of a coordinated water molecule are found to be very similar to that

of neat water. We also apply the methodology of first principles molecular dynamics

in order to perform realistic simulations of paramagnetic metal ions in water solution.

This allows us to assess structure, dynamics and hyperfine interactions on the water

molecules in the inner and outer coordination spheres of two metal ions: chromium(III)
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and gadolinium(III). In order to perform such calculations, we develop a novel approach

for the evaluation of hyperfine coupling constants in pseudopotential electronic structure

techniques. Our method takes into account the contribution of core electrons.

In the second part of the thesis, we consider magnetic properties of a broad class of

carbon nanostructures derived from two-dimensional graphene. We find that in metallic

carbon nanotubes, an isotropic Knight shift, a hyperfine contribution to the nuclear mag-

netic resonance chemical shift, shows a regular dependence on the nanotube diameter.

By using a more general approach, we reveal systematic dependences of magnetic inter-

actions between arbitrarily distributed spin-polarized conduction electrons and nuclear

spins in the carbon nanostructures derived from graphene. This knowledge is important

for interpreting the results of magnetic resonance experiments and for evaluating the

performance of carbon nanostructures as materials for alternative approaches in elec-

tronics, spintronics and quantum information processing based on electron and nuclear

spins. In addition, we study magnetism in graphene induced by single-atom defects. The

predicted itinerant magnetism due to the defect-induced states in graphenic materials

may account for the experimental observations of ferromagnetism in irradiated graphite

which has potential applications in technology. Finally, our first principles molecular

dynamics study reveals the mechanisms of the irradiation-induced defect formation. We

show that certain defect structures in layered carbon materials can be created selectively

by irradiation at predefined conditions.

Keywords: magnetism, hyperfine interactions, magnetic resonance imaging, contrast

agent, Gd(III) complexes, carbon nanotubes, graphene, graphite, defects



Version abrégée

Le phénomène de magnétisme est une des composantes clé du progrès technologique

d’aujourd’hui. Interactions magnétiques et matériaux magnétiques sont essentiels pour

les disciplines scientifiques de physique, chimie et biologie et rendent ainsi ce sujet vrai-

ment multidisciplinaire. Cette thèse est consacrée à l’étude des propriétés magnétiques

de deux classes de substances. La première représente des complexes de ions métalliques

paramagnétiques, principalement du gadolinium(III). Ces composées moléculaires trou-

vent une application importante comme agents de contraste pour l’imagerie par résonance

magnétique (IRM) pour le diagnostique médical. Le design des agents de contraste pour

l’IRM plus efficace exige une connaissance détaillée de leurs propriétés magnétiques. La

deuxième partie de la thèse considère la large classe des nanostructures et des matériaux

de carbone récemment découverts. Leurs propriétés physiques extraordinaires laissent

prédire des applications futures importants, entre autre, dans l’électronique et la médecine.

Par exemple, les nanotubes de carbone chargés par des clusters de gadolinium(III) sont

des agents de contraste extrêmement efficaces pour l’IRM.

En utilisant la théorie de la fonctionnelle de la densité en combinaison avec les simu-

lations de dynamique moléculaire classique, nous déterminons les constantes de couplage

hyperfine et quadripôlaire des noyaux des molécules d’eau de la première sphère de co-

ordination des complexes de gadolinium(III). Ces paramètres jouent un rôle crucial dans

la description de la fonction clé, la relaxivité, des agents de contraste pour l’IRM. Nous

avons constaté que l’effet de polarisation par spin incité par le gadolinium(III) param-

agnétique aboutit à des interactions hyperfines de contact de Fermi tant du spin nucléaire

du proton que de l’oxygène-17 et affecte les interactions hyperfines dipôlaires du spin de

l’oxygène-17 de la molécule d’eau de la sphère de coordination intérne. Les paramètres de

l’interaction quadripôlaire de l’oxygène-17 d’une molécule d’eau coordonnée se trouvent

être très semblables à ceux de l’eau pure. Nous appliquons aussi la méthodologie de la

dynamique moléculaire ab initio pour effectuer des simulations réalistes d’ions de métaux
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paramagnétiques dans des solutions aqueuses. Cela nous permet d’évaluer la structure,

la dynamique et les interactions hyperfines sur les molécules d’eau dans les sphères de

coordination internes et externes de deux ions, le chrome(III) et le gadolinium(III). Nous

développons une approche originale pour l’évaluation des constants hyperfines dans les

techniques de structure électroniques pseudopotentielles qui nous permets d’effectuer ces

calculs. Notre méthode tient compte de la contribution des électrons de cœur des atomes.

Dans la deuxième partie de la thèse, nous considérons des propriétés magnétiques

d’une large classe des nanostructures de carbone construits de graphène bi-dimension- nel.

Nous constatons une dépendance régulière de la contribution au déplacement chimique de

la résonance du spin nucléaire, le Knight-shift isotropique, avec le diamètre dans le cas des

nanotubes de carbone métalliques. En utilisant une approche plus générale, nous révélons

des dépendances systématiques d’interactions magnétiques entre les spins des électrons

de conduction arbitrairement distribués et les spins nucléaires dans les nanostructures de

carbone dérivés de graphène. La connaissance de cette dépendance est importante pour

l’interprétation des résultats d’expériences de résonance magnétiques et pour l’évaluation

de la performance des nanostructures de carbone comme matériaux pour les approches

alternatives dans l’électronique, spintronics et le traitement de l’information quantique

basé sur les spins d’électrons et de noyaux. En plus, nous étudions le magnétisme dans le

graphène incité par les défauts monoatomiques. Le magnétisme itinérant, prédit en raison

des états incités par défauts dans les matériaux dérivés de graphène, peut être la source

d’observations expérimentales de ferromagnétisme dans le graphite irradié ayant des ap-

plications potentielles en technologie. Finalement, nos études de dynamique moléculaire

ab initio révèlent les mécanismes de la formation de défauts incités par l’irradiation. Nous

montrons que certaines structures de défaut dans les matériaux de carbone laminaires

peuvent être créés de manière sélective par irradiation aux conditions prédéterminées.

Mots clé: magnétisme, interactions hyperfines, imagerie par résonance magnétique,

agents de contraste, complexes de Gd(III), nanotubes de carbone, graphène, graphite,

défauts





Chapter 1

Introduction

The topics covered in my thesis link different scientific disciplines: medical diagnostics,

chemistry, and physics, under the common theory of magnetic interactions in matter.

This chapter will introduce an unprepared reader to the fields of my thesis with the

emphasis on landmark discoveries. Its first part explains the basic principles of mag-

netic resonance imaging (MRI) and how it can be improved using MRI contrast agents.

The second part introduces the reader into the world of carbon-based materials and

nanostructures. It explains the importance of magnetic interactions and defects in these

systems. To some extent, there exists a linkage between the two: carbon nanostructures

can be used in biomedical applications, including MRI.

1.1 MRI contrast agents for biomedical diagnostics

Magnetic resonance imaging is a powerful technique for medical diagnostics and for many

fields of research ranging from biology to material science. As a diagnostic tool, it

combines several unique advantages over other techniques. Firstly, it is a non-invasive

technique and it does not utilize ionizing radiation. In other words, it is harmless for

patients. Secondly, MRI is able to provide very detailed information about soft tissues in

the form of three-dimensional images. Finally, this technique is able to characterize and

discriminate tissues by their physical and biochemical properties, evaluate blood flow,

contraction and relaxation of organs.

The physical principle behind MRI is nuclear magnetic resonance (NMR). NMR was

discovered by Felix Bloch and Edward Purcell back in 1946 [1–3]. Both of them were

awarded the Nobel Prize in Physics as early as in 1952 for their discovery. The NMR
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(a) (b) (c)

Figure 1.1: A clinical MRI scanner (a) and MRI images of torso (b) and brain (c).

phenomenon is based on the fact that the atomic nuclei which possess a spin angular

momentum interact with magnetic fields. Nuclear spins behave as small magnets: their

orientations are no longer energetically equivalent once an external magnetic field has

been applied. This creates a non-zero equilibrium magnetization of the ensemble of

nuclear spins. A short radiofrequency pulse can perturb this equilibrium. After the pulse,

nuclear spins start relaxing to equilibrium and emit a detectable radiofrequency signal.

The spectrum of this signal is the NMR spectrum. Individual resonance frequencies

reflect the magnitude of the applied magnetic field, the nature of nuclear spins and

their local chemical environment. Apart from being the underlying principle of MRI,

NMR has also made an enormous impact on the other fields of science and technology:

NMR spectroscopy has become the most important analytical tool in organic chemistry;

elementary quantum computers based on this phenomenon have been built; NMR is used

for detecting geological structures, etc.

It took two decades until MRI was developed from the physical principles underlying

NMR. In 1971 Raymond Damadian published his finding that tumor tissue has longer

NMR relaxation time than normal tissue [4]. Two years later, Paul Lauterbur came out

with the idea that magnetic field gradients can be used for spatial localization of the NMR

signal [5]. He demonstrated this concept using a setup with two test tubes. The same

year, Peter Mansfield also suggested the use of field gradients for spatial localization

[6] and suggested so-called “echo-planar imaging” [7]. In 1977, Raymond Damadian

performed the first MRI scan of the human body [8] and Richard Ernst, awarded the

Nobel Prize in Chemistry in 1991, suggested the use of phase and frequency encoding

and Fourier transform [9] which is routinely used in today’s MRI. Very recently, in 2003,
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the works of Lauterbur and Mansfield in the field of MRI were recognized by the Nobel

Prize in Physiology or Medicine.

Nowadays, over 1 million MRI scans are performed in the world every week. Most

commercial MRI scanners utilize magnetic fields of 0.3−3 Tesla. Such machines have

became affordable even for small hospitals. The spatial resolution is better than 1 mm

and three-dimensional scans of the whole human body can be performed. The resonance

of water protons is primarily used for diagnostic purposes since water constitutes about

63% of our bodies and the natural abundance of 1H isotope is 99.9%. However, high

natural abundance isotopes like 23Na and 31P can also be used. Inhaled hyperpolarized
3He and 129Xe are used for the MRI of lungs.

(a) (b)

Figure 1.2: T1-weighted MRI images of the brain before (a) and after (b) the injection of

MRI contrast agent.

More advanced MRI techniques have been developed in last years. So-called functional

MRI (fMRI) permits measurements of signal changes in the brain due to changing neural

activity [10]. Magnetic resonance spectroscopy imaging (MRSI) permits one to obtain

a full NMR spectrum from a selected region in the human body, i.e. the contents of

individual chemical compounds in human organs can be investigated [11]. Diffusion

tensor imaging (DTI) allows for mapping of fiber directions in brain for the study and

diagnostics of diseases [12]. This list of specialized MRI techniques is far from complete.

Magnetic resonance imaging contrast agents are chemical compounds that enhance

the contrast between healthy and diseased tissue. Therefore, MRI contrast agents are

able to increase accuracy and sensitivity of MRI diagnoses. The contrast created is due

to the non-uniform decrease of the relaxation times of proton spins in tissue by means
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of the fluctuating magnetic interaction, the hyperfine interaction, with the electron spins

of magnetic contrast media. Two types of MRI contrast agents are currently used in

practice: stable complexes of paramagnetic metal ions, typically of the Gd3+ ion, and

superparamagnetic contrast agents based on iron oxide nanoparticles. The gadolinium-

based contrast agents are advantageous in many cases since they provide bright contrast

in T1-weighted images (Fig. 1.2).

The gadolinium-based MRI contrast agents are complexes containing a Gd3+ ion, a

chelating ligand and, typically, one or two water molecules in the inner sphere of the

Gd3+ ion. The choice of Gd3+ as a paramagnetic ion is for several reasons. First of

all, this ion situated in the middle of the lanthanide series is characterized by a large

magnetic moment due to the half-filled 4f shell (7 unpaired electrons!). Secondly, due to

the symmetric S state this ion has a relatively long electron spin relaxation time which

is one of the necessary requirements for efficient paramagnetic relaxation enhancement

(PRE). The bare Gd3+ ion has a considerable drawback − toxicity. For this reason the

paramagnetic Gd3+ ion is used in the form of inert complexes with chelating ligands.

In complexes with such ligands the ion is normally nine-coordinate, with seven or eight

coordination sites occupied by the ligand. The majority of commercial MRI contrast

agents use poly(amino carboxylates) as ligands. Chemical structures of some of these

ligands are shown in Figure 1.3. One or two sites in the coordination sphere of the ion are

occupied by water molecules. The role of this water molecule is crucial for the efficiency

of MRI contrast agent since its nuclear spins are strongly influenced by the magnetic

moment of the neighbor Gd3+ ion.

Development of more efficient novel MRI contrast agents is one of the important goals

of the research in this field. The efficiency of an MRI contrast agent can be quantified

by its relaxivity, r1, which is defined as the increase of the longitudinal relaxation rate of

the water protons per mM of the paramagnetic compound,

1

T1,obs

=
1

T1,d

+ r1[Gd
3+], (1.1)

where 1/T1,obs and 1/T1,d are the longitudinal relaxation rates in the presence and in the

absence of the MRI contrast agent, respectively. The relaxivity can be divided into the

contributions of the inner and outer coordination spheres, r1=r
IS
1 +rOS

1 .

Modeling the relaxivities of contrast agents is by no means a simple task. A number

of theories have been developed, e.g. the Solomon-Bloembergen-Morgan theory [14–

17] which describes the relaxation of the inner sphere water molecule in paramagnetic
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Figure 1.3: Chemical structures of some commercially available Gd-based MRI contrast

agents (adopted from Ref. [13]).

complexes. I will refrain from going into details of these theories in this preliminary

introduction. More detail can be found in Chapters 2 and 3 and in original references.

However, in the most general form the relaxivity can be written as a function of two sets

of parameters

r1 = f({Aiso,
←→
T ,
←→
Q , ...}, {kex, T1e, T2e, τR, ...}). (1.2)

The first set of parameters is responsible for interactions of nuclear spins with electron

surrounding. Regarding the paramagnetic relaxation enhancement, the most important

here are the Fermi contact (Aiso) and the dipolar (
←→
T ) hyperfine interactions (HFIs), i.e.

the magnetic interaction between the spins of nuclei and electrons. The interactions of

nuclear quadrupoles with the electric field gradient (EFG) described by the quadrupole

coupling tensor
←→
Q are important for the description of relaxation of nuclei with a spin

number larger than 1/2, like 17O nuclei. The second set of parameters in eq. (1.2) is

responsible for the dynamic part of the problem. The most important parameters here

are the exchange rate between the bound water molecules and the bulk water, kex, the

longitudinal and transverse electronic relaxation times, T1e and T2e, and the rotational
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Te

kex

τ
R

A   ,T iso

t

Figure 1.4: Scheme showing important interaction (Aiso,
←→
T ) and dynamic (Te, kex and τr)

parameters defining the efficiency of an MRI contrast agent (GdDOTA on this figure).

correlation time τR which describes the tumbling of the vector connecting the Gd ion and

the inner sphere protons. These parameters are schematically summarized in Figure 1.4.

The dynamic parameters, primarily kex and τR, can be tuned by tailoring the structure

of chelating ligand. For instance, high relaxation rates of the inner sphere water protons

are favored by long rotational correlation times. Such large τR values have been recently

achieved by the synthesis of higher molecular weight ligands through the attachment

of the poly(amino carboxylate) ligands to proteins, micelles or dendrimers. Figure 1.5

illustrates how the inner sphere 1H relaxivity changes as a function of kex and τR with

the rest of external parameters being fixed.

Development of novel efficient MRI contrast agents requires detailed knowledge of the

underlying parameters. Thus, a question naturally rises: How to assess these parameters?

An evident way is to use experimentally available data. Several techniques can provide

such data. First, there are the nuclear magnetic resonance dispersion (NMRD) profiles,

where the relaxivity is measured as a function of the external magnetic field. Another
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Figure 1.5: Inner sphere 1H relaxivities, calculated as function of kex and τR at 20 MHz. (∆2

= 0.03×1020 s−2 and τv = 15 ps)

useful technique is 17O NMR. Although the relaxation of proton spins is of primary

importance, probing the 17O nuclei provides important information about the dynamics of

the inner sphere water molecule. Variable temperature measurement of the 17O chemical

shifts and relaxation rates help to determine kex and τR. Electron spin relaxation can

be assessed by means of electron spin resonance (ESR) spectroscopy. The large amount

of experimental data collected using these techniques is then fitted to known physical

models and provides the whole set of parameters [18].

Another way to assess these parameters is performing in silico, i.e. computational,

virtual, experiments. Interaction parameters, hyperfine and quadrupolar coupling con-

stants, can be obtained from electronic structure calculations. Molecular dynamics sim-

ulations can provide information about correlation times. A large part of this thesis

is dedicated to such computational experiments for the rational design of efficient MRI

contrast agents.
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1.2 Carbon based materials for future technologies

Carbon is the basis of organic life on planet Earth due to its ability to form a huge number

of molecular frameworks with itself and other elements. However, until about 20 year ago

only two distinct carbon allotropes were known: diamond and graphite. Very recently

this situation has changed dramatically. A wide range of all-carbon nanostructures have

been discovered and the definition of a distinct carbon allotrope became vague.

Graphite, a naturally occurring form of carbon, is composed of two-dimensional layers

of sp2 carbon atoms bound to each other by only weak Van der Waals forces (Fig. 1.6).

The anisotropy of the three-dimensional graphite lattice results in anisotro- py of electric

and thermal conductance, mechanical properties. Graphite is used as marking material

in pencils and as lubricant due to this mechanic anisotropy.

In 1985 a zero-dimensional form of carbon called fullerene has been discovered [19]. In-

dividual fullerene molecules are hollow structures obtained by wrapping a single graphite

layer over a closed surface with some number of topological defects (five-membered rings)

introduced. The most common representative is the C60 molecule. Its nearly spherical

shape closely resembles a soccer ball. For their discovery Harald Kroto, Robert Curl and

Richard Smalley were awarded the Nobel Prize in Chemistry in 1996.

In 1991, Sumio Iijima discovered one-dimensional forms of carbon which are now

called carbon nanotubes [20]. Like fullerenes, carbon nanotubes are closely related

to graphite. Single-walled carbon nanotubes can be obtained by rolling-up a single

graphite sheet to form cylindrical surfaces. More complex superstructures, bundles of

nanotubes and multiwalled carbon nanotubes, in which individual single-walled carbon

nanotubes are bound together by the weak Van der Waals interactions, are often pro-

duced. Presently, carbon nanotubes are routinely synthetized by carbon-arc discharge,

laser ablation of carbon, or chemical vapor deposition on catalytic particles [21].

A two-dimensional single graphite sheet, named graphene, was isolated only in 2004 by

researchers from Manchester and Moscow [22]. Ironically, monoatomic layers of graphene

were produced by simple mechanical exfoliation of graphite. In other words, graphene

was found in a pencil trace. The same year, graphene was also produced by the thermal

sublimation of silicon from a silicon carbide surface [23]. Discoveries of unusual physical

properties of graphene, such as the anomalous quantum Hall effect and the absence of

localization [24, 25], have fueled enormous interest to this simple honeycomb-like struc-

ture.
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0D:     fullerenes

     (1985)

1D:    carbon nanotubes

     (1991)

2D:     graphene

     (2004)

3D:     graphite

Figure 1.6: Carbon materials of different dimensionalities. The columns show their atomic

structures and natural appearance. The images of the single C60 molecule and of the bundle

of carbon nanotubes were obtained using scanning tunneling microscopy (STM). The image of

the graphene flake was obtained with the help of atomic force microscopy (AFM).

The electronic structure of graphene can be deduced from a simple nearest-neighbor

tight binding model [26]. Its band structure is schematically shown in Figure 1.7. Valence

and conduction bands form two conical intersections in the Brillouin zone at K points

with the electron energy linearly dependent on the wave vector. Graphene is a semimetal.

In other words, it is a metal with zero density of states at the Fermi level, or a gapless

semiconductor. The unusual spectrum in the vicinity of the Fermi level resembles the

Dirac spectrum of massless fermions, relativistic quantum particles with spin 1/2. The

role of the speed of light in the Dirac-like equation plays the Fermi velocity vF ≈ c/300.

This similarity has led to a popular paradigm of relativistic physics of graphene. In any
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K
K’

Figure 1.7: Band structure of graphene.

Conduction and valence bands form conical in-

tersections at points K and K ′. The Brillouin

zone of graphene is shown on the projection

plane.

case, the behavior of charge carriers in graphene is expected to be different from that in

normal metals and semiconductors with parabolic dispersion of electron energies.

The electronic properties of carbon nanotubes are another interesting topic. Carbon

nanotubes can have different atomic structures depending on the orientation of the cir-

cumference vector with respect to the graphene lattice and on the nanotube diameter

(Fig. 1.8a). Carbon nanotubes are commonly classified by the pair of chiral indices, (n,m),

which relate the circumference vector ~C=n~a1+m~a2 to the unit vectors of the graphene lat-

tice. (n,n) carbon nanotubes are called armchair nanotubes, (n,0) are zigzag nanotubes

while the rest are chiral carbon nanotubes (Fig. 1.8b). Deriving the band structures of

carbon nanotubes from the graphene band structure using the zone folding approxima-

tion [27] one finds surprising regularities confirmed by experimental observations. All

nanotubes with n−m=3l (l – integer number) are metals, the rest are semiconductors.

In reality, all n−m=3l carbon nanotubes except armchair nanotubes possess tiny band

gaps due to the curvature effect. Band gaps of semiconducting nanotubes are inversely

proportional to their diameters. These enviable regularities would permit one to control

the characteristics of an electronic device based on carbon nanotubes by tailoring its

atomic structure – a paradigm for the next generation engineering.

Although carbon nanotubes are anticipated as a component of next generation ma-

terials with extreme mechanical properties, in my thesis I focus primarily on electronic

properties of carbon based materials. A quick review of the current achievements and a
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(a) (b)

Figure 1.8: (a) Rolling-up a graphene sheet along different choices of the circumference

vector (red arrow) produces different nanotube structures. (b) Geometries of armchair, zigzag

and chiral single wall carbon nanotubes.

forecast for the nearest future provide motivation for the work described in the second

part of my thesis.

First of all, carbon nanotubes and graphene display exceedingly high carrier mobili-

ties [28]. This makes them potential successors to silicon in manufacturing future elec-

tronic devices. Working prototypes of field effect transistors based on carbon nanotubes

have been manufactured [29]. However, no technology for the production of compli-

cated large-scale electronic devices based on carbon nanotubes has been developed yet.

Graphene, however, allows nanopatterning by lithographic techniques [30] which makes

it very promising for manufacturing electronic devices using existing technologies. An

implementation of field-effect transistor based graphene nanoribbons has been reported

very recently [31].

Carbon based nanostructures are also viewed as building blocks for alternative direc-

tions of electronics, e.g. spintronics [32]. Spintronics anticipates the use of the spin of

an electron in addition to its charge, which is the basis of traditional electronics. It is

predicted that spintronics will bring in the advantages of nonvolatility of data storage,

faster data processing, higher storage density and lower energy consumption. One has to

distinguish spintronics from magnetoelectronics which uses electron spins only for storing

information. This is widely used in current data storage technology (e. g. read-write

heads of hard drives). Spintronics devices use spin-polarized currents also for transport-
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ing data. Here lies one of the problems of spintronics – the preservation of spin-polarized

currents in conducting materials. In a typical non-magnetic metal, a non-equilibrium

current of spin-polarized electrons relaxes to the equilibrium state with zero magnetiza-

tion after traveling few tens of nanometers. This relaxation is driven by spin-orbit and

hyperfine interactions. The use of carbon nanotubes and graphene, in which spin-orbit

interaction is negligible and hyperfine interactions are reduced, extends the spin diffusion

length scale by at least one order of magnitude (to sub-micrometer lengths) [33, 34]. A

spin diffusion length of 1.5 µm has been achieved very recently [35]. Can we extend this

length further by minimizing hyperfine interactions, and how?

The question of possible long-range magnetic ordering in all-carbon materials now

rises naturally. In current technological applications, magnetic materials are based ex-

clusively on d and f elements. Carbon-based magnetic materials would bring a new

prospective to technologies relying on magnetism. Such materials may have low density,

be transparent or environment-friendly. Surprisingly, the first organic ferromagnet, the

γ-phase p-nitrophenyl nitronyl nitroxide (p-NPNN) was discovered only in 1991 [36]. The

ferromagnetic transition temperature (or Curie temperature, Tc) above which the long-

range magnetic ordering is suppressed was only 0.65 K. Since that time a great number of

similar crystalline stable free radicals have been studied, but all have Curie temperatures

too low for practical applications. In 2001 Makarova et al. reported the ferromagnetism

of rhombohedral C60 under high pressure [37] with a Curie temperature near 500 K.

Although this discovery was refuted recently (refer to the paper retraction notice [38])

because the magnetic signal observed in [37] was attributed to the cementite (iron carbide

Fe3C) impurity, the paper initiated a new wave of search for magnetism in light element

compounds. The high temperature ferromagnetism in graphite induced by the radiation

treatment [39, 40] seems to be undoubted. It is believed that the radiation-induced de-

fects (see Fig. 1.9) play a crucial role in explaining ferromagnetism of irradiated graphite,

but detailed knowledge of the underlying physical mechanism remains unknown.

Point defects created by irradiation do not only modify the electronic structure of

carbon materials. Irradiation treatment can also be used for a purposeful modification

of mechanical properties of carbon materials. A striking example is the reinforcement

of carbon nanotube bundles by an 80 keV electron beam irradiation. Individual carbon

nanotubes are held together in a bundle only by weak Van der Waals forces which results

in a low shear modulus, an undesired property. The irradiation with electrons of moderate

energies produces defects linking neighbor carbon nanotubes by strong covalent bonds.
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(a) (b)

(c) (d)

Figure 1.9: Transmission electron mi-

croscopy (TEM) images of the defects in (a)

carbon nanohorns [41] and (b) double-wall

carbon nanotubes [42] produced by the elec-

tron irradiation. These experimental images

were interpreted as a cluster of the vacancies

and adatoms (c) and as intimate interlayer de-

fects (d).

A 30-fold increase of the bending modulus has been observed for irradiated nanotube

bundles [43]. However, the atomic structure of these covalent links is unknown. An

important questions is: can one control irradiation effects in carbon nanostructures and

create certain defect structures selectively?

1.3 Outline of the thesis

The thesis focuses on theoretical investigations of magnetic properties of the above men-

tioned magnetic systems. The method of choice is the density functional theory in our

theoretical studies. The outline of the consequent chapters is as follows:

In Chapter 2 and Chapter 3 we study, respectively, hyperfine and quadrupole interac-

tions on the nuclei of a first coordination sphere water molecule of gadolinium(III) aqua

complexes. The gadolinium(III) aqua ion, [Gd(H2O)8]
3+, and the [GdDOTA(H2O)]−

complex used in real-world clinical diagnostics will serve as prototypical models.

In Chapter 4 we present a methodology for calculating the hyperfine interaction pa-

rameters in electronic structure techniques using pseudopotentials.

Chapter 5 describes the results of ab initio molecular dynamics simulations of two

paramagnetic metal ions in water solutions. The chromium(III) ion serves as a test case,

while the results for gadolinium(III) ion have direct relevance to the class of complexes

used as MRI contrast agents.

Hyperfine interactions in carbon nanostructures are studied in Chapter 6. The in-

vestigation of Knight shifts in metallic carbon nanotubes is presented in the first part.
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Afterwards, a more general theory of hyperfine interactions in carbon nanostructures is

described.

In Chapter 7 we present our viewpoint on the phenomenon of magnetism induced by

point defects in carbon nanostructures. The first principles molecular dynamics study of

the irradiation-induced defect formation in layered carbon nanostructures is presented in

the second part of the chapter.

Chapter 8 concludes the key results of my thesis and gives prospectives for future

studies in the field.

In the Appendix I describe work on the theory of X-ray photoemission spectroscopy

of silicon surfaces and interfaces which was performed during my doctoral studies.



Chapter 2

Hyperfine interactions in gadolinium

aqua complexes

2.1 Introduction

The ligand hyperfine interactions, the hyperfine interactions of distant (ligand) nuclei in

paramagnetic d-transition metal and lanthanide complexes, are the driving force of NMR

relaxation of solvent nuclei in solutions of paramagnetic species [44]. The paramagnetic

relaxation enhancement (PRE) phenomenon found an important practical application in

medical diagnostics. It is the underlying physical principle beyond the contrast agents

for magnetic resonance imaging (MRI) [13, 45–48]. Currently, typical representatives of

MRI contrast agents are gadolinium(III) complexes because of their high spin state (8S

state, half-filled f -shell) and slow electron spin relaxation. Gd(III) based MRI contrast

agents are probably one of the most striking examples where the purely quantum nature

of HFI directly leads to a diagnostic tool, namely, increase in contrast in an MRI image,

which cannot be described by means of any kind of classical theory.

Furthermore, paramagnetic d-transition metal and lanthanide ions are used as natural

or artificial probes to study structure of biological objects using experimental techniques

mentioned above [49]. For instance, paramagnetic relaxation enhancement (PRE) stud-

ies of systems containing highly paramagnetic Mn2+ and Gd3+ ions can provide ultimate

long-range structural constraints up to 40 Å for determination of the structure of biolog-

ical objects [44, 50–53].

In the case of gadolinium aqua ions, the main contribution to the paramagnetic

enhancement of longitudinal relaxation comes from dipolar contribution to HFI. The
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PRE for first coordination sphere water molecules is commonly described by Solomon-

Bloembergen-Morgan (SBM) equations [14–17]. In the original formulation, these equa-

tions suggest the point-dipole approximation in which unpaired electrons are considered

as localized at the position of the paramagnetic metal center. Any spin distribution

effects over the system are therefore neglected. Due to this approximation the dipolar

contribution to HFI can be described by using only information on the distance between

the nucleus of interest and the nucleus of the paramagnetic center. This information can

be obtained from diffraction experiments, for example. It is also worth mentioning that

full knowledge of the dipolar HFI tensor is not easily accessible with existing experimental

techniques and therefore the point-dipole approximation is inevitable.

Quantum chemical calculations can provide some a priori knowledge of dipolar HFI.

The first step in this direction was made by Kowalewski et al. [54–56] in early stud-

ies of model aqua complexes of first row transition metal ions using the unrestricted

Hartree-Fock (UHF) method. Their results clearly demonstrated the limitations of the

point-dipole approximation. Later UHF studies of Das et al. [57–59] and density func-

tional theory (DFT) calculations of Clostridium pasteurianum iron- (III) rubredoxin pro-

tein model system by Wilkens et al. [60] confirmed this conclusion. Quantum chemical

description of the system makes it possible to generalize the Solomon-Bloembergen- Mor-

gan equations and to avoid the point-dipole approximation even at the estimative level.

The origin of ligand HFI in complexes containing a paramagnetic lanthanide ion is dif-

ferent from that of d-transition metal ions. Due to the core character of the f -shell

any significant contribution of ligand atomic orbitals to singly occupied molecular or-

bitals (SOMOs) is improbable [61]. However, the effect called spin-polarization [62] may

manifest in lanthanide complexes. A more detailed knowledge about the mechanisms of

HFI in lanthanide complexes is required to obtain reliable parameters for structural and

dynamic investigations.

In this Chapter, we study isotropic and dipolar HFI on 1H and 17O nuclei of a first

coordination sphere water molecule in Gd(III) complexes. The main purpose of this part

of our work is to show the limitations of point-dipole approximation for dipolar contri-

butions to HFI of first coordination sphere water molecules in Gd(III) complexes and to

propose corrections if possible. The deep understanding of underlying physical phenom-

ena in this class of chemical compounds is a necessary element for future development of

effective MRI contrast agents for medical and other applications.
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2.2 Hyperfine interactions and nuclear spin relax-

ation

Hyperfine interactions are magnetic interactions between nuclear and electron spins. The

corresponding spin-Hamiltonian of this interaction can be written as

Ĥ = S · ←→A · I (2.1)

where
←→
A is the 3×3 HFI tensor and S and I are the vectors of the electron and the

nuclear spin, respectively. The HFI tensor can be split into isotropic and anisotropic

parts,

←→
A = Aiso

←→
1 +

←→
T (2.2)

where Aiso is the isotropic hyperfine coupling constant (scalar);
←→
1 is the 3×3 unit matrix,

and
←→
T is the traceless matrix of the anisotropic contribution. Within the commonly used

Breit-Pauli approximation [63], the scalar isotropic (Fermi contact) hyperfine coupling

constant on nucleus N is

Aiso(N) =
4π

3S
βeβNgegNρ

s(~RN) (2.3)

and a matrix element of the anisotropic (dipolar) contribution is

Tij(N) =
1

2S
βeβNgegN

∫
ρs(r)

(r−RN)2δij − 3(ri −RNi)(rj −RNj)

(r−RN)5
dr (2.4)

where βe and βN are Bohr and nuclear magnetons, respectively, ge and gN are free-

electron and nuclear g-values, and S is the total electronic spin of the atom, ion, or

molecule. Thus, both contributions depend only on the distribution of the electron spin

density, the difference between the majority spin density and the minority spin density,

ρs(r)=ρ↑(r)− ρ↓(r), of the system in the spin state S and physical constants.

The physical interpretations of the two contributions to
←→
A are as follows. The

isotropic contribution (Fermi contact), Aiso, is proportional to the value of the spin den-

sity at the position of nucleus N , therefore it possesses a local character. Physically this

contribution represents a magnetic field generated at the point of nucleus by the presence

of the electron magnetic moment itself. On the contrary, the anisotropic contribution,
←→
T , is the dipolar integral over the whole space and has therefore a nonlocal character. It
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represents the dipole-dipole type of magnetic interaction between the magnetic moments

of nuclear and electron spins. The dipolar contribution vanishes if the spin density is

highly symmetric when observed from the point of nucleus N .

In many cases the spin density distribution is determined by the shapes of singly

occupied molecular orbitals (SOMOs). This contribution is usually called spin-deloca-

lization and it is always positive, if one follows the above-mentioned convention for spin-

up and spin-down electron densities. A second part of spin density comes from so-called

spin-polarization effects, which originate from nonequal potentials experienced by spin-

up and spin-down electrons and orthogonality constraints imposed on MOs: this leads

to different shapes of spin-up and spin-down MOs (which otherwise would be doubly

occupied). This contribution can be positive as well as negative at the location of nucleus

N , but it always integrates to zero. Spin-polarization effects can be described in short

as “an effective attraction”: the localized unpaired electrons “attract” the nearby ones

of the same spin. This can result in a negative spin density in the vicinity of SOMO

nodes and where SOMO density is vanishing and in a slight increase of positive spin

density, produced by the spin-delocalization effect. Spin-polarization is often referred to

as a second-order effect [64]. The superposition of these two effects will be referred to as

spin-distribution from now on.

In chemical systems involving paramagnetic metal ions it is common to separate the

notions of hyperfine coupling constants on the metal nucleus and on ligand nuclei. In

this work we discuss only ligand hyperfine interactions which are often referred to as

superhyperfine coupling. The simplest possible model for ligand HFI is the point-dipole

approximation [56]. Within this approximation spin-distribution effects are neglected

and the dipolar ligand HFI tensor
←→
T PD depends only on the distance between the metal

and ligand nuclei, rMX . Thus,
←→
T PD can be written in the form

←→
T PD = βeβNgegN

1

r3
MX

(2 0 0
0 −1 0
0 0 −1

)
(2.5)

assuming that the metal-ligand nucleus vector is (rMX , 0, 0). It is also worth mentioning

that this approximation results in a zero isotropic hyperfine coupling constant on all

ligand nuclei since all the spin density is located on the metal ion. Thus, nonzero ligand

isotropic hyperfine coupling constants (which are often experimentally measurable) tell

us immediately about the deficiency of the point-dipole approximation. The sign of the

ligand hyperfine coupling constant provides the sign of the spin density at the position
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of ligand nuclei and thus gives the important information about the relative magnitude

of spin-delocalization and spin-polarization effects.

Hyperfine interaction results in a shift of NMR resonance frequency and in an en-

hancement of nuclear spin relaxation. The SBM equations [14–17] describe the increase

of longitudinal, 1/T1, and transverse, 1/T2, relaxation rates of ligand nuclei in the inner

coordination sphere of a paramagnetic complex due to the time-dependent interaction

with the electron spin. As in the general case of hyperfine interactions, relaxation rates

can also be split into a scalar (Fermi contact) 1/T SC
i and a dipolar 1/TDD

i contribution,

1

T SC
1

=
2S(S + 1)

3

(
A

~

)2 [
τs2

1 + ω2
Sτ

2
s2

]
(2.6)

1

T SC
2

=
2S(S + 1)

3

(
A

~

)2 [
τs2

1 + ω2
Sτ

2
s2

+ τs1

]
(2.7)

1

TDD
1

=
2

15

(βeβNgegN)2

r6
MX

S(S + 1)
(µ0

4π

)2
[
7

τd2

1 + ω2
Sτ

2
d2

+ 3
τd1

1 + ω2
Iτ

2
d1

]
(2.8)

1

TDD
2

=
1

15

(βeβNgegN)2

r6
MX

S(S + 1)
(µ0

4π

)2
[
13

τd2

1 + ω2
Sτ

2
d2

+ 3
τd1

1 + ω2
Iτ

2
d1

+ 4τd1

]
(2.9)

where ωS and ωI are the electron and nuclear Larmor frequencies in rad·s−1, rMX is the

distance between the nucleus of the paramagnetic ion and the ligand nucleus under obser-

vation, and τsi and τdi are characteristic correlation times of scalar and dipolar relaxation

processes which in turn depend on the correlation times of molecular rotation, τR, on the

residence time of the ligand in the inner coordination sphere of the paramagnetic ion,

τM , and on electron spin relaxation times, T1e,T2e. Note that A/~ in SBM equations is

equal to 2πAiso as defined in eq. 2.3.

Once the principal values (two independent parameters) of the dipolar HFI tensor
←→
T

are known (from quantum-chemical calculations, for example), it is possible to overcome

the point-dipole approximation. One can rewrite the “HFI factor” in the dipolar SBM

equations in a generalized form introducing the notation of an “effective” distance reff

[54–56] for the dipole-dipole interaction,

reff =

(
S

βeβNgegN

)2 [
T 2

zz +
1

3
(Txx − Tyy)

2

]−1/6

(2.10)



30 2. Hyperfine interactions in gadolinium aqua complexes

where Tzz is the maximal absolute value of the principal components of the dipolar HFI

tensor and Txx, Tyy are the other two eigenvalues of
←→
T . Because of the 1/r3 dependence

of dipolar interactions, even small spin-distribution effects on the ligand nucleus can sig-

nificantly influence the resulting value of the effective distance of the dipolar hyperfine

interaction. This is practically illustrated in Fig. 2.1 where ligand centered contribu-

tion enhances or diminishes the dipolar hyperfine coupling. For relaxation rates, this

dependence is even stronger since HFI enters in square in eqs. (2.6-2.9) thus resulting

in 1/r6 dependence. It is useful to decompose the dipolar HFI into a point-dipole and a

ligandcentered contribution:

←→
T =

←→
T PD +

←→
T LC (2.11)

Several simplifications have been proposed in the literature for the analysis of ligand-

centered contributions [65–67]. However, all these models were intrinsically linked to

specific chemical systems. The approach presented below is free from specific approxi-

mations and still provides a clear insight into relations between the dipolar HFI tensor

and
←→
T PD.

(a) (b) (c)

r    reff
r    <reff r    >reff

Figure 2.1: Demonstration of possible effects of spin distribution in paramagnetic metal

complexes on the ligand dipolar HFI. While in all three cases the majority of the electron spin

(red arrow) density is distributed on the distant metal ion, the local spin density distribution

in the vicinity of the ligand nucleus spin (blue arrow) may have little effect (a), enhance (b) or

diminish (c) the overall dipolar HFI.

2.3 Computational approach

The two-stage computational strategy has been applied to calculate dipolar HFI ten-

sors. In the first stage, we studied as model compound [Gd(H2O)8]
3+ with a square
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antiprismatic coordination polyhedron of D4d symmetry (Figure 2.2). The geometry of

the system is the same as described by Borel et al. [68] except for the Gd–O distance

which was fixed to 2.40 Å for the sake of better agreement with experimental studies of

Gd3+ in aqueous solution [69]. Due to the small size and high symmetry of the aquaion,

quantum chemical calculations of the complex are rather undemanding. That allowed

us to perform a very detailed study of the influence of the basis set quality and other

computational aspects on the HFI tensor.

H1

H2

Figure 2.2: The structure of the model Gd3+ octa aqua complex of D4d symmetry. The

four-fold symmetry axis is aligned to be vertical.

The second stage involves a study of the [Gd(DOTA)(H2O)]− complex in aqueous

solution. To take into account solvent effects and to provide sufficient statistical averaging

of the calculated HFI tensor we used a cluster method (see Chapter 11 in Ref. [62]

and references therein). This approach implies the ensemble averaging of a property

calculated for a set of single configurations (often referred to as “snapshots”) extracted

from a molecular dynamics simulation trajectory. This approach has been proven to be

reasonable for studying properties such as NMR chemical shifts [70], nuclear quadrupolar

coupling constants [71, 72], hyperfine coupling constants [73], and g-tensors [74] of fluids

and biosystems in solution. We applied this approach to investigate an extended system
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including almost 100 atoms with the focus on the Gd3+ ion in the complex and on the

water molecule directly bound to it.

A classical molecular dynamics simulation of the [Gd(DOTA)(H2O)]− complex in wa-

ter has been performed in a periodic box containing the complex anion, Jorgensen TIP3P

water molecules [75], and a Na+ counterion using Amber 6.0 code [76] (T=300 K, P=1

atm, NPT ensemble). The parametrization of [Gd(DOTA)(H2O)]− and the details of

the simulation have been extensively described [77, 78]. It is known from experiment

that the [Gd(DOTA)(H2O)]− complex is present in solution as a mixture of major M

(80%) and minor m (20%) conformers with different coordination polyhedra and ligand

conformations [79]. Only the major M isomer has been simulated and was therefore

considered in the present study. The configuration space sampling (100 snapshots) was

extracted from the trajectory at regular intervals of 10 ps. The time series of geometric

parameters and calculated properties show no autocorrelation. The single configuration

(cluster) for quantum chemical calculations consisted of the [Gd(DOTA)(H2O)]− com-

plex and the 6 second sphere water molecules closest to the inner sphere water molecule

(74 atoms in total). Including second sphere water molecules ensures an adequate treat-

ment of close-range solvent effects. Moreover, using the polarizable continuum model

(PCM) calculations, we found that far-range solvent effects do not significantly influence

the hyperfine coupling constants of the first coordination sphere water molecule. We

neglected therefore in our quantum chemical calculations long-range solvent effects, and

all calculations were performed for isolated clusters chosen from the snapshots. A typical

example of a single configuration is shown in Figure 2.3.

Calculations of lanthanide compounds along with those of other heavy elements re-

quire an adequate treatment of relativistic effects [80]. In general, there are few alter-

native ways to treat relativistic effects. Usually one has to chose between all-electron

treatment (including only scalar or both scalar and spin-orbit relativistic effects) and

relativistic effective core potentials (RECP), which themselves can also be pure scalar

or include also the spin-orbital part. The use of RECP can significantly reduce compu-

tational efforts since core electrons are removed and replaced by an effective operator.

Several RECP parametrizations for gadolinium [81, 82] are available for routine applica-

tions. These pseudopotentials were proven to reproduce reliably experimental molecular

geometries and vibrational spectra of gadolinium compounds [83, 84]. However, we found

that for HFI tensor calculations all-electron treatments are much better than RECP ap-

proaches we considered. Praticularly, with some RECPs we encountered severe problems



2.3 Computational approach 33

Figure 2.3: A typical “snapshot” extracted from MD simulation of [Gd(DOTA)(H2O)]−.

The Gd3+ ion and first coordination sphere water molecule are shown in balls and sticks; the

polyaminocarboxylate ligand DOTA and 6 second coordination sphere water molecules are

presented as tubes.

with the SCF convergence. In other cases, our RECP calculations did not reproduce

even the sign of spin-density on ligands. Therefore, in the following we will only discuss

the results of all-electron approaches.

Currently, the family of Douglas-Kroll-Hess (DKH) [85] transformation based meth-

ods and zero order regular approximation (ZORA) [86, 87] are the methods most widely

tested and used among the all-electron relativistic approaches. In a first stage of our

computational study we compare second order Douglas-Kroll-Hess method (DKH2) im-

plemented in the Gaussian03 suite of programs [88] with the ZORA method available in

ADF2003 package [89]. For consistency the point-nucleus model was used in both methods

(this is a good approximation in the present study since we are interested in HFI ten-

sors on ligand nuclei only). Spin-orbit coupling terms were not taken into account since
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they were not expected to be important for HFI tensor calculations due to the electronic

structure and the high coordination (8 or 9) of Gd3+ in the compounds under study. In

addition, only minor effects were found by recent calculations of spin-orbit corrections to

HFI tensor for lighter nuclei [90, 91].

The choice of basis set becomes a nontrivial task considering the calculations of

isotropic hyperfine coupling constants. There are two main problems associated with

basis sets in such calculations. First, the accurate representation of nuclear cusp is nec-

essary for evaluation of spin density at the point of nucleus. While this can be naturally

covered using Slater type orbital (STO) basis sets, extra tight exponents are needed for

Gaussian type orbital (GTO) basis sets. Second, it is not sufficient to use large con-

tractions (in the case of GTO basis sets) for the description of the core region because

additional flexibility is required to take into account spin-polarization effects [92, 93].

Therefore, the core basis functions have to be considerably uncontracted if GTO basis

sets are used or simply represented by a sufficient number of functions of STO basis sets.

The frozen core approximation is unacceptable in calculations of HFI if the core MOs

are frozen on the nucleus of interest. In the present study, we used both GTO and STO

basis sets for the calculations of the model Gd3+ octa aqua complex. The GTO set used

in all DKH2 calculations was composed from relativistic basis sets of Nakajima et al.

[94] by complete uncontraction and, in addition, for the light atoms, it was augmented

with the polarization functions from the IGLO-III basis set [95]. In ZORA calculations

on [Gd(H2O)8]
3+ we used the standard TZ2P STO basis set from the ADF package. How-

ever, here the concept of basis set “of high local quality” [96] (locally dense basis set)

was used in order to reduce the amount of computational resources required. In our case

the TZ2P basis set was used only for the part of interest, Gd3+ and first coordination

sphere water molecules, while the rest of the system was treated using the DZ basis

set with frozen 1s core. On Gd the frozen core up to the 4d shell was used while no

frozen core approximation was employed for the atoms of first coordination sphere water

molecules. Using model calculations we showed that this approximation does not affect

superhyperfine coupling constants on the ligand nuclei.

While most quantum chemical calculations are nowadays performed with the DFT

approach, the question about its performance in calculations of a particular property

is not an easy one. DFT for calculations of HFI of organic radicals gives acceptable

results, and good accuracy can be achieved with pure density functionals except for

some pathological cases. However, transition metal complexes are much more difficult
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to calculate, and some pictorial failures of pure density functionals are known [97]. For

instance, DFT tends to overestimate the coordination bond covalency in Cu2+, which in

turn leads to a more delocalized character of SOMO in such systems. Moreover, there is

no a priori known best exchange-correlation functional for calculation of hyperfine cou-

pling constants: all GGA functionals behave more or less similarly while hybrid density

functionals usually give better results [92, 97]. The use of hybrid density functionals

(especially with a large admixture of HF exchange) increases, however, spin contami-

nation, which could lead to inferior results [92]. The electronic structure of lanthanide

compounds differs significantly from d-transition metal complexes: the core character of

unpaired f -shell electrons makes an admixture of excited states energetically unfavorable.

Thus, in principle, an admixture of the Hartree-Fock exchange should not lead to severe

spin-contamination. The question about the performance of DFT for the description of

spin-polarization driven effects on HFI tensor in lanthanides is still unexplored, and we

present here a first attempt of such benchmark calculations. Among available exchange-

correlation density functionals the exchange functional of Becke [98] and the correlation

functional of Perdew and Wang [99] (this combination is known as the BPW91 func-

tional) were chosen relying on benchmark calculations from Munzarovà et al. [92]. Thus

we used BPW91 as a pure DFT functional, B3PW91 [100] as its hybrid modification, and

the Hartree-Fock method for completeness of the consideration. All methods were used in

their spin-unrestricted implementation necessary to take into account spin-polarization

effects.

2.4 Results and Discussion

2.4.1 Hyperfine couplings in gadolinium aqua complex

The detailed calculations on the small model [Gd(H2O)8]
3+ allowed us to assess the reli-

ability of density functional theory calculations of HFI for Gd complexes. The obtained

isotropic 17O hyperfine coupling constants (HFCC) (Table 2.1) are between 0.61 and

1.02 MHz for the DFT calculations. An admixture of the HF exchange to the exchange-

correlation potential (B3PW91 vs. BPW91) pushes the calculated 17O HFCC in the

direction of the HF results, which is not unexpected. The difference between ZORA and

DKH results for isotropic 17O HFCC can be attributed to the neglect of so called picture-

change effect in present DKH calculations. Taking into account that, due to a very local
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character of the Fermi contact operator, the isotropic constants are very difficult to eval-

uate computationally, the results show reasonable mutual agreement. Furthermore, the

DFT calculations are consistent with the experimental values of 0.84 MHz [18, 101] and

0.71 MHz [102] for [Gd(H2O)8]
3+. Our model calculations do not include long-range

solvent effects which are expected to be insignificant for HFI. Therefore, both pure and

hybrid density functionals look reliable to describe ligand nuclei HFI in the compounds

studied. The positive isotropic HFCC, Aiso, on 17O nuclei corresponds to a negative

spin-density at the point of the O nucleus of −0.0118 a.u.−3 while the most negative

value of spin-density within cross sections shown in Figure 2.4 is −0.1342 a.u.−3.

Figure 2.4: Spin density map of the [Gd(H2O)8]
3+ model system (calculated at the

BPW91/DKH2/Hirao level of theory, in a.u.−3) shows the Gd3+ ion and one of the water

molecules. Cross sections of size 2×4 Å in XOZ and YOZ planes are shown.

The calculated Tzz values (Table 2.1) of the 17O HFI anisotropy tensor are noticeably

lower (about−1.35 MHz) than predicted by the point-dipole approximation (−1.55 MHz)

using eq. 2.5 and rGd−O =2.40 Å. All quantum chemical methods used in this study give

results in good mutual agreement, which is not surprising since it is well-known that HFI

anisotropy is much less sensitive to the computational aspects than the isotropic part

[62]. Again this excellent agreement supports our confidence in using the DFT method

in the calculations of HFI on ligand nuclei in lanthanide compounds. The rhombicity of
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HFI anisotropy tensor, Txx−Tyy, depends on the choice of quantum chemical method.

The pure density functional BPW91 yields the largest positive Txx−Tyy values (0.242

and 0.178 MHz) as a consequence of possible residual π-binding involving f -electrons.

This is not surprising since pure density functionals are known to overestimate the cova-

lency of coordination bond. However, for Gd3+ the rhombicity influences only slightly the

effective distance reff (eq 10), which is almost solely defined by the Tzz value. Our cal-

culations of the HFI anisotropy tensor are in qualitative agreement with the estimations

of Raitsimring et al. [103]. In their calculations they estimate the spin population of the

whole s-pz hybrid orbital of the O atom from the experimental isotropic 17O HFCC and

neglect any valence shell and core shell spin-polarization effects. We have shown recently

(see Chapter 4) that these effects might be significant and can be taken into account

within quantum chemical calculations [104].

The calculated 1H isotropic hyperfine couplings are very small (Table 2.1). The

increase of amount of exact exchange tends to decrease spin density at 1H nucleus and

even to change its sign. This can be attributed to the fact that the hydrogen atoms lie

very close to a node of the spin-density surface (see Figure 2.4). The calculated 1H HFI

anisotropy tensors are in very good agreement with each other and with the point-dipole

approximation. All tested quantum chemistry methods give a negligible ligand-centered

contribution to the 1H HFI tensor.

The basis sets used in our calculations are sufficient since calculated HFCCs do not

show significant changes upon the addition of extra basis functions. The purity of spin

states is proved by calculated 〈S2〉 values (for DFT methods we use Kohn-Sham determi-

nant to evaluate 〈S2〉). For BPW91, B3PW91, and HF calculations with GTO basis set

the calculated values of 〈S2〉 are 15.7556, 15.7556, and 15.7576, correspondingly, while

the nominal value for a pure octet state is 15.75.
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Table 2.1: Calculated 17O and 1H hyperfine tensors for the first coordination sphere

water molecules of the [Gd(H2O)8]
3+ model system.a

Aiso Txx Tyy Tzz reff

method (MHz) (MHz) (MHz) (MHz) (Å)

17O

BPW91/ZORA/TZ2P 0.61 0.802 0.560 −1.362 2.50

BPW91/DKH2/Hirao 0.78 0.761 0.583 −1.344 2.51

B3PW91/DKH2/Hirao 1.02 0.716 0.633 −1.349 2.51

HF/DKH2/Hirao 1.60 0.681 0.671 −1.352 2.51

exp./point−dipoleb 0.84 0.775 0.775 −1.551 2.40
1H

BPW91/ZORA/TZ2P 0.022 −2.652 −2.652 5.277 3.105

0.028 −2.651 −2.626 5.277 3.106

BPW91/DKH2/Hirao −0.001 −2.655 −2.623 5.278 3.105

0.009 −2.653 −2.623 5.275 3.106

B3PW91/DKH2/Hirao −0.031 −2.666 −2.618 5.283 3.104

−0.023 −2.663 −2.618 5.281 3.105

HF/DKH2/Hirao −0.044 −2.677 −2.606 5.283 3.104

−0.029 −2.674 −2.607 5.280 3.105

exp./point−dipoleb 0.03±0.02 −2.643 −2.643 5.287 3.1037

a Two different values for 1H correspond to two types of protons in the model

system. H1 and H2 protons as shown in Figure 2.2 belong to the same water

molecule and are equivalent for different water molecules. H1 protons are

equatorial and H2 are axial with respect to the symmetry axis. The Gd–H1

and Gd–H2 distances are equal.
b reff obtained using the point-dipole approximation.
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Table 2.2: Comparison of calculated (BPW91/ZORA/ TZ2P) and experimental hy-

perfine interaction parameters for [Gd(H2O)8]
3+ and [Gd(L)(H2O)]n−.a

[Gd(H2O)8]
3+ [Gd(L)(H2O)]n−

calc. exp. calc.b exp.

17O

rGd−O (Å)c 2.4 2.56 (0.06)

reff (Å)d 2.50 2.72 (0.06)

Aiso (MHz) 0.61 0.79e 0.58 (0.11) 0.59h

0.84f 0.75i

0.75g

Txx (MHz) 0.802 0.76g,l 0.623 0.76i

Tyy (MHz) 0.560 0.62g,l 0.452 0.62i

Tzz (MHz) −1.362 −1.38g −1.061 (0.09) −1.38i

1H

rGd−H (Å)c 3.1037 3.27 (0.14)

reff (Å)d 3.106 3.09j 3.27 (0.14)

Aiso (MHz) 0.025 0.04e −0.032 (0.08) −0.04k

0.03j

Txx (MHz) −2.652 −2.67j −2.306 −2.75k

Tyy (MHz) −2.626 −2.67j −2.256 −2.75k

Tzz (MHz) 5.277 5.34j 4.562 (0.66) 5.5k

a The distribution widths from molecular dynamics sampling are given in paren-

theses.
b L = DOTA.
c Nuclear distance.
d Effective distance of dipole-dipole interaction.
e From NMR chemical shift (Ref. [102]), corrected for coordination number of 8.
f From NMR chemical shift (Ref. [18]).
g From ENDOR experiments (Ref. [105]).
h L = DOTA, NMR chemical shift (Ref. [18]).
i L = MS-325, ENDOR experiments (Ref. [103]).
j From ENDOR (Ref. [105]).
k L = HPDO3A, ENDOR experiments (Ref. [105]).
l From the estimated rhombicity of 0.14 MHz for the planar model 2 (Ref. [103]).
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The qualitative inspection of spin density maps presented graphically in Figure 2.4

shows the strong spin-polarization effect on the water molecule. While most of the pos-

itive spin density resides on the Gd3+ ion itself, electron density along Gd–O bond is

significantly spin-polarized, leading to two important consequences. Firstly, the calcu-

lated Tzz value (OZ axis is oriented along Gd–O bond) of −1.35 MHz for 17O (Table 2.1)

is noticeably lower than the value of −1.55 MHz predicted by the point-dipole approxima-

tion (eq. 2.5). This reduction of the Tzz value leads to an effective distance of reff=2.50 Å

for the dipole-dipole interaction (eq. 2.10), which is considerably longer than the Gd–O

internuclear distance rGd−O=2.40 Å (Table 2.2). One can think about this effect as a par-

tial compensation of magnetic dipole-dipole interaction between the positive spin-density

on the Gd3+ ion and the 17O nucleus by the negative spin-density induced on the ligand.

Furthermore, it is interesting to note the positive spin density located in the YOZ plane

perpendicular to the plane of the water molecule (Figure 2.4). This is reflected in the big-

ger value of Txx−Tyy for BPW91 calculations and can be a consequence of some residual

π-binding involving f -electrons or a spin alternation effect. However, as it was discussed

above, the small rhombicity of the oxygen HFI anisotropy tensor has negligible influence

on the resulting value of the effective distance of dipolar interaction reff (Gd–O). Sec-

ondly, the 17O isotropic hyperfine coupling constant, Aiso, is positive as the consequence

of a negative spin density at the oxygen nucleus and the negative magnetic moment of the
17O nucleus. As we already mentioned in the beginning of this section, the experimental

values of 0.71 MHz [102] and 0.84 MHz [101] lie within the 0.61−1.02 MHz range of DFT

predictions (Table 2.1). 1 The magnitude of the coupling is relatively small since the

s−pz hybrid atomic orbital of O, which is mostly affected by spin-polarization, has little

of s-character and therefore its node lies very close to the nucleus.

The Gd–H effective distance of dipole-dipole magnetic interaction recalculated via

data of quantum chemical calculations (Table 2.2) is only slightly bigger than the dis-

tance between the nuclei, rGd−H . The point-dipole approximation is therefore valid for

hydrogens of water molecules in [Gd(H2O)8]
3+. The validity of this approximation for 1H

was found in a previous study on dipolar HFI in d-transition metal aqua ions [55]. The

rationalization of this observation is that p-type atomic orbitals on hydrogen play only a

1Please note: There is some confusion about the sign of the 17O isotropic HFCC in Gd3+ complexes.

In contrast to recent experimental work the correct sign of Aiso=A/h of a water molecule bound to

Gd3+ is positive (corresponding to negative spin density at the point of nucleus), leading to a downfield

shift of the 17O resonance.
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minor role in bonding (and thus could not contribute significantly to the anisotropy of the

HFI tensor) whereas the s-type atomic orbital gives zero contribution to the anisotropy

of the tensor (but determines the isotropic constant Aiso).

The calculated 1H isotropic hyperfine couplings are close to zero and in good agree-

ment with experimental data. For instance, single-crystal EPR studies [106] put this value

between −0.015 and +0.04 MHz while the most reliable ENDOR [105] gives +0.03±0.02

MHz. Bryden et al. [107] deduced 1H HFCC from NMR data to be about 0.005 MHz.

We conclude that there is rather large uncertainty in the experimental data due to the

small absolute magnitude of the coupling.

2.4.2 Hyperfine couplings in GdDOTA

The isotropic 17O HFCCs obtained using the DFT cluster approach with averaging over

a set of snapshots selected from a classical molecular dynamic simulation are in a very

good agreement with experimental data. A major parameter influencing the 17O HFCC

is the Gd–O distance, rGd−O, which fluctuates during the molecular dynamics simulation.

Figure 2.5a shows the isotropic hyperfine coupling constant as a function of rGd−O. The

averaged Aiso(O) is 0.58 MHz (standard deviation: 0.11 MHz) for an average distance of

2.56±0.06 Å; that is in excellent agreement with the value of 0.59±0.03 MHz determined

from 17O NMR chemical shift data [18]. In all geometric configurations obtained from

the snapshots the spin density at the position of oxygen nucleus is negative in accord

with the spin-polarization mechanism. The magnitude of Aiso(O) strongly correlates

with the Gd–O distance and the spin-polarization effect decays rapidly with the increase

of rGd−O. The mean Gd–O distance from the classical MD simulation is however about

0.1 Å longer than that of the solid-state X-ray [108] or the solution XAFS structure [109].
17O electron nuclear double resonance spectra of the MS-325, a Gd3+ complex with an

acyclic ligand, recorded in frozen solution, gave spectra of a shape similar to that of the

Gd3+ aqua ion [103]. The authors concluded therefore that the 17O hyperfine coupling

parameters of both complexes are the same, Aiso=0.75 MHz.

The calculated mean value of the 1H isotropic hyperfine coupling constant (−0.032

± 0.08 MHz) is very small and varies from about −0.2 to +0.1 MHz (Figure 2.5b).

Again a strong correlation with the Gd–H distance is observed. The corresponding NMR

experimental value of Bryden et al. [107] for [Gd(DOTA)(H2O)]− is about 0.075 MHz

while the 2D Mims ENDOR result [105] for [Gd(HP-DO3A)(H2O)]− is −0.04±0.02 MHz.



42 2. Hyperfine interactions in gadolinium aqua complexes

Regarding the slightly longer Gd–H average distance from the MD simulations (r(Gd-

H)=3.27 Å compared to 3.1 Å from ENDOR) the agreement between calculated and

experimental Aiso(H) is also very satisfactory.
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Figure 2.5: 17O (a) and 1H (b) hyperfine coupling constant, Aiso, plotted as function of Gd–

O(H) distance for 100 configurations extracted from MD trajectory of [Gd(DOTA)(H2O)]−.

We express the results of anisotropic HFCCs in terms of effective distances of dipole-

dipole interactions, reff (eq. 2.5). understanding. It allow us to compare the results of

the calculations with those obtained within the point-dipole approximation. Figure 2.6

shows the values of the r−6
eff factor as function of the Gd-ligand nucleus distances. The

values of r−6
eff , obtained from eq. 2.10, are based on the calculated dipolar HFI tensors

for 100 MD snapshots. The point-dipole approximation used in the SBM equations uses

internuclear distances rGd−X , and the corresponding factors r−6
Gd−X are shown as dashed

lines in Figure 2.6.

From Figure 2.6a it can be seen that for 17O the point-dipole approximation signif-

icantly overestimates the dipolar interaction between the ligand nuclear spin and the

electron spin of the ion: The expectation value of the effective distance factor for dipo-

lar relaxation is 〈r−6
eff (Gd-O)〉=2.51×10−3 Å−6 compared to the internuclear gadolinium-

oxygen distance of 〈r−6(Gd-O)〉=3.64×10−3 Å−6. This corresponds to the following aver-

age distances of dipole-dipole magnetic interactions: 〈reff (Gd-O)〉=2.72 Å and 〈r(Gd-O)

〉=2.56 Å, respectively. Neglecting spin-polarization effects leads therefore to an overes-

timation of the dipolar 17O nuclear spin relaxation rates by approximately 45%.

The point-dipole approximation is however valid to describe the anisotropic HFI be-

tween Gd3+ and 1H of the inner sphere water molecule in [Gd(DOTA)(H2O)]−. From

Figure 2.6b one can note that r−6
eff (Gd-H) deviates only very slightly from r−6(Gd-H) at
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Figure 2.6: The r−6
eff (Gd-O) (a) and r−6

eff (Gd-H) (b) factors for the oxygen and hydrogen

atoms of bound water in [GdDOTA(H2O)]− obtained from eq. 2.10 based on the calculated

dipolar HFI tensors of the 100 MD “snapshots”. The dashed lines corresponds to r−6(Gd-O)

and r−6(Gd-H), respectively, calculated using the point-dipole approximation.

short Gd–H distances and the average values are virtually identical: 〈r−6
eff (Gd-H)〉=8.48

×10−4 Å−6 and 〈r−6(Gd-H)〉=8.56 ×10−4 Å−6.

2.5 Practical conclusions

The study of physicochemical parameters of gadolinium based MRI contrast agents is to a

large extent based on 1H and 17O NMR relaxation measurements. The strong interaction

between the nuclear spins and the electron spin of Gd3+ dominates the relaxation prop-

erties and allows the determination of rotational correlation times and water exchange

rates, for example. Thus, an accurate knowledge of the isotropic and anisotropic parts

of the hyperfine coupling constant is imperative for an accurate assessment of the data.

Our quantum chemical investigation of hyperfine coupling constants between Gd3+

ion and bound water molecules shows that the 1H isotropic hyperfine coupling constants,

Aiso, are small. Thus, the contribution of scalar relaxation to the relaxation enhancement

can therefore be safely neglected as it has already been deduced from experimental data.

What is more essential, the evaluation of the anisotropic part of the A-tensor shows that

the point-dipole approximation is valid for 1H NMR of bound water molecules. The

distance rGd−H introduced in SBM theory can therefore be safely set to the distance

between the gadolinium and the proton nuclei.

Reduced transverse 17O NMR relaxation rates 1/T2r are, in the case of Gd-based
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complexes, dominated by the scalar relaxation mechanism which depends on Aiso. This

isotropic hyperfine coupling constant can be best determined experimentally by 17O NMR

shift measurements. Our calculated Aiso(O) strongly correlates with the metal-oxygen

distance, and therefore, NMR shift measurements give at least a qualitative indication

for rGd−O: smaller coupling constants are indicative for longer Gd–O distances.

Reduced longitudinal 17O NMR relaxation rates, 1/T1r, are controlled to about two-

thirds by the dipolar contribution, 1/TDD
1 , and to about one-third by the quadrupolar

contribution, 1/TQ
1 [45]. The quantum chemical evaluation of the anisotropic HFI tensor

←→
T has shown that spin-polarization effects play an essential role for proper evaluation

of 17O HFI tensor. The point-dipole approximation, based on internuclear distances,

significantly overestimates the interaction between electron and 17O nuclear spin. To

compensate for the 45% decrease of 1/TDD
1 by using the correct distance for dipolar

interaction (2.72 Å instead of 2.46 Å) a 25% increase of the rotational correlation time

τR is needed.



Chapter 3

17O quadrupole couplings in

gadolinium aqua complexes

3.1 Introduction

In the previous Chapter we considered magnetic the coupling electron spins and nuclear

spins in the system by means of hyperfine interactions. Another important contribution

to the effective spin Hamiltonian is the quadrupole interaction which couples nuclei with

spin I≥1 with the electric field gradient (EFG) at the nucleus [110–112]. In an anisotropic

phase this coupling leads to a quadrupole fine structure showing 2I equidistant lines

with a separation proportional to the EFG. In an isotropic phase the EFG averages out

and only a single resonance is observed. Rapid molecular motions lead to stochastic

fluctuations of the EFG inducing transitions between the spin levels. Spin relaxation of

quadrupole nuclei is therefore due to fluctuations of the magnetic field and of the EFG,

although the later mechanism is generally dominating.

The electric field gradients at the nucleus are due to the total intra- and intermolec-

ular charge distribution around the nucleus. If a quadrupole nucleus is a part of a

molecule, EFG is mainly of intramolecular nature and fixed in the molecular frame of

reference. Its time fluctuation comes mainly from the rotational motion of the molecule.

For monoatomic species the EFG has an intermolecular origin. In the electrostatic ap-

proach for intermolecular quadrupole relaxation the EFG is generated by surrounding

electric multipoles [113–116]. The relation between nuclear quadrupole relaxation and

the correlation time characterizing molecular tumbling, τR, is particularly simple in case

of fast tumbling (extreme narrowing, ωτR << 1, with ω being the resonance frequency
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in rad s−1). This makes it an ideal tool to determine τR, provided the EFG is known.

Oxygen-17 NMR has been successfully used in recent years to study poly amino carboxy-

late complexes of gadolinium(III) used as contrast agents in medical magnetic resonance

imaging (MRI) [45]. Transverse 17O relaxation rates have become the most important

source for water exchange rate constant on these complexes. Longitudinal 17O relaxation

rates provide an easy and relatively direct method to determine rotational correlation

times for the Gd–O vector which are in general equal to τR of the complex.

In the last decade several research groups used quantum chemical calculations to

determine quadrupole coupling parameters which combine electric field gradients and the

electric quadrupole moment of the nucleus [62, 71, 72, 117–128]. The rotational correlation

time of water molecules in coordination compounds can be determined by measuring 17O

relaxation rates of bound water molecules. The use of 2H, which is also a quadrupole

nucleus, is in general prohibited because it exchanges rapidly with those on surrounding

water molecules. The biggest effort of both experimental and theoretical research was

dedicated to quadrupole coupling parameters of pure water in gas, liquid and solid state.

The condensation effects, leading to a difference in quadrupole coupling constants for

gas, liquid phase water and ice, are largely understood [62, 72, 120, 124–128]. In contrast,

controversial experimental data and no recent theoretical studies were provided for 17O

quadrupole couplings for water molecules in metal aqua complexes.

In this Chapter, we investigate electric field gradients on the water molecule oxygen

nucleus using density functional theory (DFT) and molecular dynamics (MD) techniques.

The implications of our calculations for 17O NMR relaxation studies are discussed.

3.2 Calculation of 17O quadrupole couplings

3.2.1 Theoretical foundations

High spin nuclei (I≥1) in addition to their magnetic dipole moment possess an electric

quadrupole moment. Different nuclear spin projections split in the electrostatic field of

surrounding electrons and nuclei according to the following effective spin Hamiltonian

operator:

ĤQ(I, I) = I · ←→Q · I, (3.1)
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where
←→
Q is the symmetric and traceless nuclear quadrupole coupling tensor. The

quadrupole coupling tensor elements, Qij, are related to the electric field gradient (EFG)

tensor elements, qij = ∂2V (rI)/∂ri∂rj, as

Qij[MHz] = −2.3496 ·Q[fm2] · qij[a.u.], (3.2)

where V (rI) is the electrostatic potential at the point of nucleus I and Q is the nuclear

quadrupole moment in fm2 [71, 121]. Typically, instead of the full quadrupole coupling

tensor two simple quantities are used, the quadrupole coupling constant (QCC), χ = Qzz,

and the asymmetry parameter, η = (Qxx − Qyy)/Qzz, where |Qzz| ≥ |Qyy| ≥ |Qxx| are

the principal values of the quadrupole coupling tensor [129]. In this notation, the nuclear

relaxation due to quadrupole interaction can be written in the extreme narrowing as

1

TiQ

=
3π2

10

2I + 3

I2(2I − 1)
χ2(1 + η2/3)τR, (3.3)

where I is the spin quantum number of the nucleus.

3.2.2 Computational methodology

The larger part of the computational methodology used for the EFG calculations has

already been described in Chapter 2. In addition to classical MD simulations, in this part

of our work we performed also MD simulations based on the density functional theory.

The details of these calculations are given below. In spite of the fact that EFG tensors

can be calculated directly in pseudopotential based first principles MD simulations (e.g.

Ref. [130]), we follow the cluster approach in order to keep the consistency with the

classical MD based methodology.

First principles MD simulation of the Gd3+ ion in water was performed using the

Car-Parrinello technique [131] implemented in the CPMD code [132]. The details of these

simulations are described in details later, in Chapter 5.

The cluster configurations were extracted from the classical and first principles MD

simulation in the following way. The Gd3+ aqua ion clusters contained one ion sur-

rounded with the 24 closest water molecules. The EFG tensors of all first coordination

sphere water molecules were calculated. The time interval between extracted snapshots
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in classical MD simulation is in this case equal to 4 ps. Because of the limited dura-

tion of first principles MD simulation the time interval is equal to 0.25 ps in this case.

The total amount of extracted configurations is 14 in both cases, thus, providing 112

EFG tensors for statistical averaging (eight water molecules in the first sphere). The

comparative calculations of condensation effects on the quadrupole coupling parameters

were also performed using results of both classical and first principles simulations of the

same level of theory. The clusters containing the water molecule, on which the EFG

tensor is considered, and 17 closest to it water molecules were extracted in this case.

The [Gd(DOTA)(H2O)]− ion contains only one first coordination sphere water molecule.

In total 100 configurations were extracted from the classical MD trajectory with a time

step of 10 ps. Each configuration consisted of the Gd3+ ion, the DOTA ligand, the inner

sphere water molecule and 6 second coordination sphere water molecules closest to the

inner sphere molecule. This procedure has been previously described in Ref. [104].

3.2.3 Calibration of 17O quadrupole moment

Besides the EFG tensor calculated theoretically in our work, the second physical quan-

tity necessary for the calculation of quadrupole coupling parameters is the quadrupole

moment Q of the nucleus. Unfortunately, reported experimental and theoretical values of

Q(17O) are rather uncertain and range from about −2.3 fm2 to −3.0 fm2 [121]. Moreover,

the values of EFG components slightly depend upon the level of theory and basis set used

in calculations. To overcome these problems Huber and co-workers proposed a nuclear

quadrupole moment calibration procedure [71]. According to this methodology, for a

given level of theory the nuclear quadrupole moment is obtained from the calculations

performed on a set of small molecules with accurate known experimental QCCs. We

exactly reproduce this procedure using a set of 7 small molecules (C2H4O, OCS, HNCO,

H2CO, O2, H2O and CO). The calculated χ values versus the experimental QCCs are

shown in Fig. 3.1. The least-square fit using eq. (3.2) yields the value of −2.45 ± 0.05

fm2 for Q(17O). The R2 value of the fit is 0.996. Our calibrated value agrees well with the

value of −2.558 fm2 recommended by Pyykkö [133] and the range of values between 2.36

fm2 and 2.64 fm2 obtained by Ludwig et al. [121] for different post-Hartree-Fock methods

and different Gaussian basis sets using the same calibration procedure. The principal

components of the 17O EFG tensor of a water molecule at the equilibrium geometry are

qzz = −1.762 (a.u.), qyy = 1.523 (a.u.) and qxx = 0.238 (a.u.). The directions of principal
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axes of the 17O EFG tensor are shown in Fig. 3.2. Thus, the calculated value of the 17O

QCC for the gas-phase water molecule using the calibrated nuclear quadrupole moment

is 10.158 MHz which agrees closely with the experimental value of 10.175 MHz [134]. For

the water molecule at TIP3P geometry the principal values are qzz = −1.727 (a.u.), qyy

= 1.516 (a.u.) and qxx = 0.211 (a.u.) with the same orientation of principal axes. This

gives a slightly smaller value of 9.958 MHz for the QCC which still agrees within 2% with

the experimental value.
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Figure 3.1: Experimental 17O quadrupole coupling constants [71] χ versus calculated values

of qzz for the set of small molecules used in the calibration of 17O quadrupole moment. Least-

squares fitted line is shown on the graph.
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of principal axes of 17O quadrupole coupling

tensor in water molecule.
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3.3 Quadrupole couplings in model aqua complexes

In order to investigate the effects of coordination on the 17O quadrupole coupling pa-

rameters of a water molecule in the first coordination sphere of a metal ion complex we

studied a number of small model systems. Since our computational study models aqua

ions in solution, these effects are studied consistently along with hydrogen bonding effects

which are always present in water solutions. In cationic complexes the water molecules

are always O-coordinated, serving as an electron donor in the coordination bond with

the positively charged ion. In hydrogen bonding a water molecule may participate both

as donor and acceptor providing its oxygen lone pairs or its hydrogen atoms. These two

scenarios are called HO-bonding and HH-bonding, correspondingly. We compare effects

of ion coordination with those of HO-bonding. The geometry of HO-bonded and Gd3+-

coordinated systems are shown on Fig. 3.3. The hydrogen bond length is set to 1.8 Å.

The model of the [Gd(H2O)8]
3+-complex is described in details in Ref. [104]. The Gd–O

distance is chosen to be 2.4 Å in accordance with experimental data [69]. The two O-

bonding scenarios are indicated with the Roman numerals I and II, respectively. The

geometry of the water molecule is the geometry of a TIP3P water molecule.

Furthermore, we distinguish three possible ways of O-bonding which are indicated

by capital letters in our model nominations. The letter A stands for complete absence

of O-bonding (A is just a TIP3P water molecule). In models indicated with B the tilt

angle θ (the angle between the bond and the dipole moment vector in isolated water

molecule) is 0◦. In models indicated with C the angle θ is half of the tetrahedral angle

(54.74◦). Models named D differ in respect to models indicated with C by the presence

of an additional HO-bond tilted by 54.74◦.

Effects of HH-bonding are investigated in models indicated with a prime (’). In

these models both hydrogen atoms of the water molecule are H-bonded to other water

molecules. In total 14 models were investigated using different combinations of the models

described above.

Before discussing the results of the model calculations in detail, it is worth to mention

that environmental effects on the largest principal value of the EFG tensor, which is

directly linked to χ, have the strongest impact on the value of χ
√

1 + η2/3. In all

model systems studied the order of the absolute magnitudes of the EFG tensor principal

values remains the same as in an isolated water molecule (Fig. 3.2 and Table 3.1). The

orientations of the principal vectors of the EFG tensor do not change significantly. The
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X X X

X

 I II

B C D
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Figure 3.3: Construction of model sys-

tems. Top: Configurations of the model

HO-bonded water molecule (I) and the

first coordination sphere water molecule

(II) in [Gd(H2O)8]
3+. Middle: Three

modes of the HO-bonding and the coor-

dination to Gd3+ ion (denoted as B, C

and D) in model systems study. X refers

to either a HO-bonded water molecule or

the [Gd(H2O)7]
3+ moiety. Bottom: HH -

bonded configuration (denoted with prime

(’)) of the water molecule in model sys-

tems as example of a B’ system.

largest deviation of 12◦ was observed in model IIC’ for the principal vectors oriented

along x- and z-axes. Qualitatively, the effects of coordination bonding and HO-bonding

were found to be very similar. This suggests that in aqua ions 17O quadrupole coupling

parameter χ
√

1 + η2/3 should not differ significantly from that of a water molecule in

the bulk liquid. In models IB and IIB the values of χ are very similar to those in the

isolated water molecule (model A) while the asymmetry parameter η is slightly smaller

for the latter. Upon tilting the water molecule (models IC and IIC) a decrease of the χ

value and an increase of η were observed. Both changes are stronger in the case of binding

to a metal ion (II). An additional HO-bond (models ID and IID) lowers the value of χ
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Table 3.1: Calculated 17O quadrupole coupling parameters in model water molecule clusters

and gadolinium(III) aqua complexes. Numbers in parentheses show deviation of quadrupole

tensor principal axes (in degrees) in model systems from those in the gas-phase water molecule.

qxx qyy qzz χ η χ
√

1 + η2/3

(a.u.) (a.u.) (a.u.) (MHz) (MHz)

A 0.2113 1.5157 −1.7270 9.96 0.76 10.86

A’ 0.0908 1.2973 −1.3882 8.00 0.87 8.96

IB 0.2646 (<1) 1.4695 (<1) −1.7342 10.00 0.69 10.77

IB’ 0.1748 (<1) 1.2370 (<1) −1.4118 8.14 0.75 8.88

IC 0.1916 (2) 1.4498 (<1) −1.6414 9.46 0.77 10.35

IC’ 0.0936 (4) 1.2156 −1.3091 (4) 7.55 0.86 8.42

ID 0.1739 (<1) 1.3985 (<1) −1.5724 9.07 0.78 9.94

ID’ 0.0522 (<1) 1.1526 (<1) −1.2047 6.95 0.91 7.85

IIB 0.3301 (<1) 1.3535 (<1) −1.6835 9.71 0.61 10.29

IIB’ 0.2913 (<1) 1.0562 (<1) −1.3475 7.77 0.57 8.18

IIC 0.1368 (7) 1.3311 (<1) −1.4679 (7) 8.46 0.81 9.35

IIC’ 0.0615 (12) 1.0508 (1) −1.1123 (12) 6.41 0.89 7.21

IID 0.1229 (5) 1.3039 (<1) −1.4269 (5) 8.23 0.83 9.12

IID’ 0.0362 (8) 1.0212 (1) −1.0574 (7) 6.10 0.93 6.92

further without affecting significantly η. For all model systems, adding two HH-bonds

resulted both in a decrease of χ and in an increase of η. Thus, one can conclude that in

general all possible environmental effects upon condensation and coordination of a gas

phase water molecule result in a lowering of the value of χ
√

1 + η2/3. Among the models

studied, the largest decreases of 3 MHz and 3.9 MHz were observed for systems ID’ and

IID’, respectively.

The dependence of 17O quadrupole coupling parameters of the inner sphere water

molecule on the Gd–O distance and the tilt angle θ was investigated for model IIB

(Fig. 3.4). We found that the variation of the Gd–O distance weakly influences both χ

and η: only a slight increase of χ and χ
√

1 + η2/3 and a slight decrease of η upon the

distance elongation is observed. The dependence on the angle θ is more pronounced.

In particular, χ decreases by more than 1.7 MHz if θ is increased from 0◦ to 90◦. At

the same time the asymmetry parameter η increases from 0.6 to almost 1 in the same
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range of θ-values. Because of the determinant role of χ in χ
√

1 + η2/3, the overall value

decreases by about 1.4 MHz.
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Figure 3.4: Dependence of calculated 17O quadrupole coupling parameters on the Gd–O

distance r (left) and the tilt angle θ (right) in the Gd3+ octa aqua model complex IIB.
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3.4 Quadrupole couplings of gadolinium aqua ions in

solution

3.4.1 Liquid water and gadolinium aqua complex

The next stage in approaching a realistic computational model is the conjunction of quan-

tum chemical calculations with MD simulations. We compare the condensation effects

in liquid water and coordination effects in Gd3+ aqua ion using classical and the density

functional theory Car-Parrinello molecular dynamics (CPMD). On one hand, density

functional theory tends to overstructure liquid water [135, 136]. On the other hand,

CPMD is more suitable for the description of coordination compounds than classical MD

based on empirical force fields. In our CPMD simulations of the Gd3+ aqua ion the

average Gd–O distance for the first coordination sphere water molecules is 2.37 Å which

is in good agreement with the average value of 2.4 Å obtained in experimental studies

[69]. The coordination polyhedron of a square antiprism also agrees with experimental

data on eight coordinated lanthanides [137, 138]. However, the results of classical MD

simulations of the Gd3+ aqua ion using the force field developed for a realistic descrip-

tion of the coordination sphere of the gadolinium poly amino carboxylates [77, 78] show

significant discrepancies with the experimental data. A mean coordination number of 10

and, consequently, a larger Gd–O distance of 3.0 Å were found in our simulations.

The calculated distributions of parameters χ, η and χ
√

1 + η2/3 for neat liquid water

are shown in Fig. 3.5a. A significant difference between the results based on the classical

and on the CPMD simulations is only observed for the asymmetry parameter η. In the

CPMD simulation the distribution is shifted towards higher values of η. This is consistent

with the overall overstructuration of DFT water [135, 136]. The average values of χ, η

and χ
√

1 + η2/3 obtained from the CPMD simulations are equal to 8.11±0.08 MHz,

0.82±0.01 and 8.98±0.08 MHz, respectively. The corresponding classical MD results

are 8.38±0.07 MHz, 0.66±0.01 and 8.98±0.08 MHz, respectively. Thus, even despites

the difference in η values the average values of χ
√

1 + η2/3 parameter are very similar

The values of χ and η obtained by Huber from the calculations based on classical MD

simulations are 8.76±0.09 MHz and 0.79±0.02 for η and χ, correspondingly [72]. Using

a CPMD simulation to sample configuration space Pennanen et al. obtained 7.77 MHz

(χ) and 0.79 (η) [128], Ropp et al. experimentally found 8.96 MHz at 300K for the

χ
√

1 + η2/3 parameter [139].
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Figure 3.5: Histogram plots of the distribution of the 17O quadrupole coupling parameters cal-

culated for (H2O)18 clusters (a), first coordination sphere water molecules of [Gd(H2O)8]
3+ (b)

and [Gd(DOTA)(H2O)]− (c) sampled from classical (full line) and CPMD simulations (dashed

line). Vertical lines indicate corresponding mean values.

The distributions of the calculated quadrupole coupling parameters for water in the

first coordination sphere of Gd3+ are shown in Fig. 3.5b. As in the case of neat liquid

water the asymmetry parameter η is also larger for calculations based on CPMD simula-

tions. However, in this case also a smaller χ is observed for the CPMD result compared

to the result of classical MD. This difference can be explained by an increase of the tilt

angle of Gd3+ first sphere water molecules in density functional theory results (〈θ〉 = 23◦

for the CPMD based configurations vs. 〈θ〉 = 13◦ from the classical MD simulations).

The average values of χ, η and χ
√

1 + η2/3 obtained from classical MD simulations are

equal to 9.06±0.06 MHz, 0.60±0.01 and 9.59±0.07 MHz, correspondingly. The CPMD

simulation gives 8.23±0.06 MHz, 0.72±0.01 and 8.91±0.06 MHz, respectively. Despites
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the poor description of the coordination sphere of the Gd3+ ion using classical force

fields, the average values of χ
√

1 + η2/3 parameter are very similar. It is notable, that

the quadrupole coupling parameters do not show large differences with those of liquid

water. This disagrees with the much lower value from simultaneous fitting of 17O NMR,
1H NMRD and EPR data [18], and the more recent results of Dunand et al. [140].

Our calculations are, however, in reasonable agreement with a recent ENDOR study of

Raitsimring et al. which give χ=6.5 MHz and η ≥0.8 [103].

To confirm the finding of insensitivity of 17O quadrupole coupling parameters to the

coordination effects of H2O in the first sphere of metal ions, we performed an additional

study of the EFG tensor in the Ca2+ aqua ion. The results of a CPMD simulation from

Ref. [141] were used in the same way as in the case of the Gd3+ aqua ion. The simulated

calcium ion has a lower charge (2+) and an octahedral coordination sphere (coordination

number 6). We found the values for χ, η and χ
√

1 + η2/3 of 17O to be equal to 8.1±0.2

MHz, 0.78±0.03 and 8.9±0.2 MHz, respectively. These results a very similar to those

found for [Gd(H2O)8]
3+ and liquid water, and we therefore conclude that quadrupole

coupling parameters are in general not very sensitive to coordination effects on closed

shell metal ions and lanthanides which can in this respect be considered as quasi-closed

shell ions. This conclusion also agrees with the early theoretical and NMR relaxation

studies of alkali cation crown ether complexes by Eliasson et al. [142].

3.4.2 GdDOTA aqua complex

To study the quadrupole coupling parameters of first sphere water molecules in gadolin-

ium poly(amino carboxylate) complexes calculations on [Gd(DOTA)(H2O)]−, an ap-

proved MRI contrast agent, have been performed. Because of the considerable size of the

chelating ligand DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate) no CPMD

simulation has been carried out. The distributions of the calculated quadrupole coupling

parameters for [Gd(DOTA)(H2O)]− are shown in Fig. 3.5c. The average values of χ,

η and χ
√

1 + η2/3 are equal to 8.42±0.06 MHz, 0.46±0.01 and 8.72±0.05 MHz, corre-

spondingly. Again, the resulting parameters are similar to those found in neat water and

in the first sphere of aqua ions.
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3.5 Implications for 17O NMR relaxation studies

Optimization of the rotational correlation time, τR, is a key for the development of more

efficient contrast agents for MRI and therefore its experimental determination is crucial

[45]. A reliable way to get τR values is the simultaneous analysis of variable temperature
1H NMRD, 17O NMR and EPR data [18, 143]. In the early simultaneous analysis the

same rotational correlation time has been assumed for the Gd–O vector (important for
17O relaxation) and for the Gd–H vector (important for 1H relaxation). The apparent

discrepancies in fitting longitudinal 17O relaxation rates and 1H NMRD curves together

were resolved by either fitting the apparent Gd–H distance or the quadrupole coupling

constant [18]. This led in the latter case to an increase of the quadrupole coupling pa-

rameter χ
√

1 + η2/3 up to a factor of 2. In a later study Dunand et al. allowed for

an internal motion of the water molecule in the complex, leading to different rotational

correlation times τRH and τRO [140]. From sterical considerations a τRH/τRO ratio be-

tween 0.65 ≤ τRH/τRO ≤ 1 has been determined. From direct observation of the 17O

relaxation of bound water in the slowly exchanging [Ln(DOTAM)(H2O)]3+-complexes

(Ln=Eu, Tb) in acetonitrile solution at low temperature a quadrupole coupling parame-

ter of 5.2±0.5 MHz has been deduced. Struis et al. determined experimentally values of

6.6 MHz or 5.7 MHz for water bound to Mg2+, depending if viscosity changes for very

highly concentrated solutions are considered or not [144].

Table 3.2: Summary of the calculated mean values of 17O quadrupole coupling parameters for

water molecules in different chemical environments simulated using classical molecular dynamics

(TIP3P) and CPMD simulations.

χ η χ
√

1 + η2/3

(MHz) (MHz)

liquid H2O TIP3P 8.38 0.66 8.98

CPMD 8.11 0.82 8.98

Gd(H2O)3+
n TIP3P 9.06 0.60 9.59

CPMD 8.23 0.72 8.91

Ca(H2O)2+
6 CPMD 8.1 0.78 8.9

[Gd(DOTA)(H2O)]− TIP3P 8.42 0.46 8.72

Our quantum-chemical calculations led to the conclusion that the quadrupole cou-
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pling parameter χ
√

1 + η2/3 depends only slightly on binding of the water molecule to

lanthanide ions. The value of 8.7 MHz calculated for [Gd(DOTA)(H2O)]− is equal to

the value determined in neat water (9.0 MHz) within the precision of the calculations.

Even if the quadrupole coupling parameter χ
√

1 + η2/3 enters as squared value in the

calculation of the relaxation rates we have to keep in mind that quadrupole relaxation

constitutes only between 25 % and 33 % to the overall 17O relaxation of water molecules

bound to Gd3+ in poly amino carboxylate complexes. The mayor contribution is dipolar

relaxation due to interaction with the electron spin of the paramagnetic center.

In conclusion, the 17O quadrupole coupling parameters of a coordinated water molecule

are in general very similar to that of a water molecule in the bulk environment (Table 3.2).

The fixed value of 9.0 MHz for the quadrupole parameter χ
√

1 + η2/3 can therefore be

safely used in experimental estimations of the rotation correlation time of closed shell

ion and lanthanide ion aqua complexes.



Chapter 4

Pseudopotential calculations of

hyperfine interactions

4.1 Introduction

The mathematical expressions underlying hyperfine coupling constants are simple. How-

ever, the local nature of this property makes its computation difficult for electronic

structure theory methods based on the optimization of global properties such as the to-

tal energy. While all-electron approaches based on localized basis sets (e.g. Gaussian

or Slater type atomic orbitals) have already proven to give satisfactory results for the

calculation of isotropic hyperfine coupling constants, there is still a lack of methods for

calculations of this property in pseudopotential based approaches. These are of particu-

lar importance for condensed matter physics [145] and plane wave based first-principles

dynamics applications in chemistry and biology [146].

The difficulty in evaluating hyperfine coupling constants within pseudopotential-based

calculations is due to two main reasons. The first one concerns the behavior of the pseudo

wavefunctions in the vicinity of the nucleus (within the predefined core radius) which dif-

fer from the all-electron ones while playing a decisive role in the determination of both

isotropic and dipolar (though to a lesser extent) hyperfine coupling constants. The so-

lution to this problem was proposed by Van de Walle and Blöchl [147] who employed a

so-called reconstruction of the all-electron wavefunction in order to calculate hyperfine

couplings from the pseudo wavefunctions. It is worth noting that in DFT calculations this

correction does not solve the problem of the behavior of the exchange-correlation poten-

tial in the vicinity of the nucleus, necessary for a correct description of spin-polarization
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effects on the valence orbitals. Furthermore, no extended benchmarks of this method

were provided until now. Secondly, the complete elimination of the core electrons in

pseudopotential calculations implies complete disregard of the spin-polarization of core

electrons. While this effect has only negligible influence on the valence wavefunctions of

the system, its contribution to the isotropic hyperfine coupling constants can be signifi-

cant. This is explained by the high magnitudes of the atomic core s-type wavefunctions

at the point of the nucleus which in turn can result in high values of the spin-density.

In this Chapter, we will consider the spin-density ρs(r)=ρ↑(r)−ρ↓(r) as the sum of

valence and core contributions, ρs
v(r) and ρs

c(r). We will first review available approaches

for calculating the valence contribution to the hyperfine coupling constants. A novel

methodology for calculating the dipolar hyperfine coupling tensor in supercell calculations

will be presented. Afterwards, we will present a practical method for calculating the

core spin-polarization contribution to the Fermi contact hyperfine coupling constants.

The accuracy of our approach is supported by the benchmark calculations on the small

molecular radicals of first row elements, which show that the core electrons can not be

disregarded in the case when the unpaired electron populates other than s-type atomic

orbitals centered on the considered atom. Finally, we will make an attempt to assess the

importance of core spin-polarization effects across the periodic table.

4.2 Valence contribution to hyperfine coupling con-

stants

4.2.1 Isotropic hyperfine coupling constants

In pseudopotential electronic structure calculations, the behavior of valence one-electron

wavefunctions deviates from their all-electron counterparts. This is so because of the

absence of the orthogonality conditions with core electrons removed from the problem

and because of special requirements of computational methods. In plane wave basis set

implementation this special requirement is the extreme smoothness of pseudopotential

wavefunctions for the purpose of minimization of the number of basis functions. How-

ever, these deviations are restricted in space and occur only within the atomic-centered

spheres of small radius. This radius is often equal to the pseudopotential cutoff radius

rc which is of the order of 1 a. u. for the first row elements. Figure 4.1 illustrates typical



4.2 Valence contribution to hyperfine coupling constants 61

pseudopotential and all-electron wavefunctions on the example of the oxygen atom. The

difference is evident, the 2s pseudopotential wavefunction is smooth, nodeless and has

no cusp. The absolute magnitude of the 2s pseudopotential wavefunction at the origin

is much smaller than the magnitude of its all-electron counterpart.
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Figure 4.1: Comparison of 2s (a) and 2p (b) all-electron (AE) and pseudopotential (PP)

atomic wavefunctions for oxygen atom.

Since the shape difference is localized within the small atom-centered spheres, not in

the “bonding regions”, chemical and most of physical properties are correctly described

by the pseudopotential electronic structure theories. This does not apply to the hyperfine

coupling constants discussed here. A reconstruction of the all-electron (AE) wavefunc-

tions ψi(r) from the pseudopotential ones, ψ̃i(r), has to be performed in this case. This

procedure in its most general form can be described by the following expression [148]

ψi(r) = ψ̃i(r) +
∑

j

[φj(r)− φ̃j(r)]〈p̃j|ψ̃i〉rc
, (4.1)

where φi(r) and φ̃i(r) are the AE and PP atomic wavefunctions, respectively. Index j

is the composition of the atomic site position rj and the angular momentum quantum

numbers of the valence atomic level {ljmj}. The notation 〈·|·〉rc
stands for the scalar

product evaluated within the core radius rc. The functions pj are the projector functions

which have to satisfy the following condition:

〈p̃j|φ̃i〉rc
= δij. (4.2)

For the purpose of the present discussion it is convenient to reformulate the Fermi contact
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hyperfine coupling formula (eq. 2.3) introduced in Chapter 2 as

Aiso(I) =
4π

3

µeµNgegI

〈Sz〉

∫
ρs(r)δ(r)dr, (4.3)

where µe and µI are Bohr and nuclear magnetons, ge and gI are g-values of free electron

and nucleus I, 〈Sz〉 is the expectation value of the total electronic spin z-component.

The vector r is taken relative to the position of nucleus I.

By constructing the projector pi from the Dirac’s delta function δ(r) and performing

the reconstruction of only the s component of the AE wavefunction, Van de Walle and

Blöchl arrived to the simple expression for the valence spin density at the point of nucleus

[147]

ρs
v(0) = ρ̃s

v(0) +
ρ̃s

v(0)

|φ̃s(0)|2
(
|φ̃s(0)|2 − |φs(0)|2

)
, (4.4)

which can be directly applied to the calculations of Fermi contact HFCCs.

4.2.2 Dipolar hyperfine coupling constants

Unlike the strictly localized Fermi contact operator, the dipole-dipole interaction operator

obeys a r−3 decay law. Evaluation of the matrix elements of the hyperfine anisotropy

tensor involves the integration in real space:

Tij(I) =
1

2

µeµNgegI

〈Sz〉

∫
ρs(r)

3rirj − δijr2

r5
dr. (4.5)

For infinite periodic systems its straightforward evaluation by the numerical integra-

tion in real space is unrealistic. In computational approaches based on plane wave basis

sets the pseudopotential spin density is naturally available in the G-space linked to the

real space density by the Fourier transform [149]

ρ̃s(r) =
1

Ω

∑

|G|<Gc

ρ̃s(G)eiG·r, (4.6)

where the summation is taken over all plane wave basis functions defined by the G-space

vectors G enclosed within the sphere of radius Gc. Ω is the real space supercell volume.

Complete expression for the elements of the hyperfine anisotropy tensor is then [147, 150]

Tij(I) =
1

2

µeµNgegI

〈Sz〉
×

[
−

∑

|G|<Gc

4π
3GiGj − δijG2

G2
ρ̃s(G)eiG·rI+

∫

r<RC

(ρs(r)− ρ̃s(r))
3rirj − δijr2

r5
dr

]
+ ∆Tij.

(4.7)
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The first term accounts for the dipolar couplings evaluated from the pseudopotential

spin density in G-space. The second term represents the correction due to the difference

ρs(r) − ρ̃s(r) in the core region of atom I which can be evaluated numerically in real

space. The last term, ∆Tij, which accounts for the contributions due to the difference

ρs(r)− ρ̃s(r) from the neighboring atomic regions, is negligible in most cases [147].

Although the formulation (4.7) is suitable for most practical calculations, it is not

convenient for our specific purpose. Dipolar HFI parameters evaluated in G-space take

into account interaction with an infinite array of periodic images. We aim modeling

of solutions in the ideal case of an infinite dilution of paramagnetic ion. In this case,

the contribution of the spin density localized on the paramagnetic ion closest to the

nucleus under considerations as well as associated ligand-centered contributions has to

be considered. This can be efficiently achieved by the integration in real space over the

volume of supercell with the paramagnetic ion translated to its center. In the plane

wave codes such an integration is convenient to perform on the uniform real space grid.

However, due to the behavior of the dipolar operator close to the origin (nucleus under

consideration) such integration can not be performed accurately on uniform grids. We

solve this problem by introducing a “pseudo-dipolar” operator f(r)
3rirj−δijr2

r2 . Unlike

1/r3, the function f(r) is smooth and has no singularity at the origin. The complete

expression for the hyperfine anisotropy tensor elements takes the form

Tij(I) =
1

2

µeµNgegI

〈Sz〉
×

[ ∫

Ω

ρ̃s(r)f(r)
3rirj − δijr2

r2
dr+

∫

r<RC

(
1

r3
ρs(r)− f(r)ρ̃s(r))

3rirj − δijr2

r2
dr

]
.

(4.8)

On the reconstruction stage (the second term) we reconstruct the product f(r)ρ̃s(r)

rather than just the pseudopotential density ρ̃s(r). Following the principles of construc-

tion of norm-conserving pseudopotential wavefunctions [151] we obtain f(r) by sewing

together 1/r3 and a smooth function at r < rc (Fig. 4.2)

f(r) =





1
r3 , r ≥ rc,
∑2

i=0 ciji(r), r < rc,
(4.9)

where ji(r) are spherical Bessel functions of the first kind [152] and the coefficients ci are

determined by the conditions of continuity of f(r) and its first two derivatives at rc:

dnf(rc)

drn
=
dn(1/r3

c )

drn
, n = 0, 1, 2. (4.10)
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The value rc is chosen to be equal to the pseudopotential cutoff radius.

It is worth mentioning that the quadrupolar coupling tensor can be calculated in a

similar way once the spin-density ρs(r) is substituted by the total charge density and the

physical constants are properly changed in eq. (4.8).
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Figure 4.2: Behavior of the radial-

dependent parts of the dipolar operator,

1/r3, and the pseudo-dipolar operator, f(r)

(rc=1 a.u.).

4.3 Core spin-polarization correction

4.3.1 Methodology

We propose a simple approach for the estimation of the core spin-polarization contribu-

tion to the total spin-density. The approach is based on the solution of the unrestricted

Kohn-Sham equations for core states only in the external potential of frozen valence spin-

up and spin-down electron densities (termed frozen valence spin-density below). These

densities are constructed to reproduce those of the system under consideration in the

core region of nucleus I. Practically, this can be achieved using both basis set based

approaches or numerical calculations on a spherically symmetric atom. While the first

approach substantially depends on the choice of a basis set, making it less flexible, the

second one implies that the error introduced by the spherical averaging of the external

potential can be neglected.

Our implementation is based on the second method. The accuracy of a frozen valence

spin-density approach for the calculation of ρs
c(rI) can be validated for the case of atoms

(rI=0 for simplicity) using the following simple computational scheme. Here we limit

our study to the first-row atoms C, N, O and F using electronic configurations where

only the p-shell is spin-polarized. For the first-row atoms the core electrons belong only
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Table 4.1: ρs
c(0) (in a. u.) from all-electron (AE) and frozen valence spin-density (FV) PBE

[153] DFT numerical atomic calculations.

Atom Configuration ρs
c(0), AE ρs

c(0), FV

C 2s{1↑,1↓}2p{2↑,0↓} −0.199294 −0.199265

N 2s{1↑,1↓}2p{3↑,0↓} −0.441030 −0.440956

O 2s{1↑,1↓}2p{3↑,1↓} −0.417946 −0.417854

F 2s{1↑,1↓}2p{3↑,2↓} −0.273401 −0.273335

to the 1s-shell thus the core contribution to the spin-density at the point of the atomic

nucleus can be written as ρs
c(0) = φ↑

1s

2
(0)−φ↓

1s

2
(0). The densities ρ↑v(r) and ρ↓v(r) are ob-

tained from frozen core calculations, with the atomic core wavefunctions φ↑
1s(r) = φ↓

1s(r)

are taken from all-electron calculations in the corresponding spin-averaged configuration

2s{1↑,1↓}2p{n
2
↑,n

2
↓}. The results of our frozen valence spin-density calculations based on

the above mentioned densities ρ↑v(r) and ρ↓v(r) are then compared to all-electron results

for ρs
c(0) (See Table 4.1). For light atoms we observed that the difference between these

two approaches never exceeds 0.1%. Thus, the core spin-polarization has almost no influ-

ence on the valence wavefunctions of these atoms. It should also be mentioned that in the

case of first-row atoms the with spin-polarized p-shell, ρs
v(0) is positive and of comparable

magnitude to the core contribution. Therefore, the neglect of core spin-polarization will

result in large errors in the Fermi contact hyperfine coupling constants.

Figure 4.3 illustrates the spin-polarization for an oxygen atom in its triplet spin

state (2s{1↑,1↓}2p{3↑,1↓} configuration). In this case the spin density at r=0 is the

result of the spin-polarization of the 1s and 2s states due to the different exchange-

correlation potentials (Fig. 4.3b) for spin-up and spin-down electrons. We observe that

ρs
c(0) (= ρs

1s(0)) and ρs
v(0) (= ρs

2s(0)) are comparable in their magnitudes while their

signs differ: the core spin-density has a negative value in contrast to the valence one

(Fig. 4.3c). Both contributions have sharp extrema at the point of nucleus, but integrate

to zero. Similar behavior was observed for the series of benchmark molecules chosen as

validation examples.

The electronic structure calculations of more complicated molecular and condensed

matter systems using pseudopotentials require some additional care. In this case a re-

construction of the all-electron wavefunctions [130, 147, 148] ψ
↑(↓)
i (r) from the pseudo

wavefunctions ψ̃
↑(↓)
i (r) has to be performed since the shapes of ψ̃

↑(↓)
i (r) differ from those
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Figure 4.3: (a): Radial parts φnl(r) of atomic one-electron wavefunctions of the oxygen atom.

(b): Self-consistent exchange-correlation potentials vxc(r) for the majority and minority spin

components for the oxygen atom. (c): Contributions of the electronic sub-shells to ρs(r) in the

spin-polarized (2s{1↑,1↓}2p{3↑,1↓} configuration) oxygen atom. The thick line shows the total

spin density ρs(r).

of ψ
↑(↓)
i (r) within the core radius rc around the nucleus. Here, we propose a simple

procedure which takes into account the specificity of our problem. In our approach we

construct an atom in which spin-up and spin-down valence electron densities ρ
↑(↓)
v (r)

mimic those of the system under consideration in the neighborhood of the nucleus I. We

expand these densities in terms of the spin-up and spin-down partial atomic occupation

numbers ω
↑(↓)
l and the valence orbitals φl(r) of the spherically symmetric all-electron atom

(all orbitals correspond to the spin-averaged all-electron wavefunctions used to generate

the pseudopotentials)

ρ↑(↓)v (r) =
∑

l

ω
↑(↓)
l φ2

l (r). (4.11)

The occupation numbers can be calculated using the following general expression

ω
↑(↓)
l =

N↑(↓)∑

i

l∑

m=−l

〈ψ̃↑(↓)
i |φ̃lm〉rc

〈φ̃lm|ψ̃↑(↓)
i 〉rc

, (4.12)

assuming that the pseudo atomic orbitals form a complete basis set within a small radius

rc around the nucleus. The pseudoatom valence orbitals φ̃lm(r) = R̃l(r)Ylm(r) are repre-

sented as the product of the radial part R̃l(r) and the spherical harmonic Ylm(r). N↑ and

N↓ are the numbers of spin-up and spin-down electrons in the system, correspondingly.

For periodic systems the proper sampling of the first Brillouin zone must also be included
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into these expressions to account for the dependence of the pseudo wavefunctions of the

system on the crystal momentum.

Our implementation is based on the following expression for the atomic occupation

numbers

ω
↑(↓)
l =

N↑(↓)∑

i

l∑

m=−l

〈fYlm|ψ̃↑(↓)
i 〉2

〈f |R̃l〉
2 , (4.13)

where the cutoff function f(r) is used in order to limit the overlap integral only to the

atom-centered sphere around the nucleus under consideration. For reasons of compu-

tation efficiency in our implementation expression (4.13) is evaluated in G-space. We

take a cutoff function f(G)=1 which in the real space representation approaches a Dirac

delta function δ(r=0) when the plane wave cutoff tends to infinity, Gc → ∞. Another

motivation for this choice is that in this case ω
↑(↓)
0 = ρ̃

↑(↓)
v (0)/R̃2

0(0) and therefore one

obtains ρs
v(0) = (ω↑

0−ω↓
0)φ

2
0(0) = ρ̃s

v(0)R0
2(0)/R̃2

0(0), which is identical to “scaling up the

spin-density” eq. (4.4). From this point of view our approach is the extension of simple

wavefunction reconstruction scheme from Ref. [147] to the angular momenta l > 0.

4.3.2 Benchmarks

To provide the necessary benchmarks we compare the quality of our results based on

pseudopotentials and plane wave basis sets with all-electron calculations performed using

Slater-type orbitals. STO basis sets correctly describe the cusp condition and thus usually

provide the most accurate theoretical predictions of hyperfine coupling constants. The

benchmark set consists of a representative series of small molecular doublet radicals

containing only hydrogen and first-row atoms C, N, O, F. The core spin-polarization

effects are important for these atoms and originate uniquely from the 1s core shell. For

these molecules reliable experimental data are also available together with computational

results obtained from both all-electron DFT and high level ab initio methods. For the sake

of completeness, we also compare our results for pseudopotential plane wave calculations

with frozen core all-electron calculations in order to estimate the importance of core

spin-polarization effects. The results are summarized in convenient form in Figure 4.4.

The basic goal of this work is not an accurate reproduction of experimental data but

rather a comparison of two different computational methodologies in the context of what

is known experimentally. For this reason, vibrational averaging or environment effects,

important for the precise prediction of hyperfine coupling constants, were not taken into
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Figure 4.4: Comparison of Fermi contact hyperfine coupling constants (in Gauss units) calcu-

lated using the all-electron (AE) and the pseudopotential (PP) approaches in seven molecular

radicals(CH3, C2H3, C3H5, H2CN, HCO, FCO, NO2). The filled symbols correspond to the

values corrected for the core spin-polarization contribution. The 19F HFCC in FCO is out of

the scale. The inset compares the values calculated using the pseudopotential scheme with the

core spin-polarization correction and the accurate experimental data. For the inset the same

scale of values applies [154–163].

account. In both approaches we use the Becke gradient-corrected exchange density func-

tional [98] together with the gradient-corrected correlation density functional proposed

by Perdew [164]. The unrestricted solution of the Kohn-Sham equations was used in

order to account for spin-polarization effects in the valence wavefunctions. In the plane

wave calculations we used original norm-conserving Troullier-Martins pseudopotentials

[151] generated from spin-averaged wavefunctions computed for atoms in their ground

states. For the construction of the hydrogen atom pseudopotential we used an occupation

number of 0.7 instead of the nominal value 1.0. The cutoff radii used in the generation of

all other pseudopotentials are the same as the ones given in Ref. [165]. These values cor-

respond to rather hard pseudopotentials. Nonlinear core corrections [166] (NLCC) were

applied for the first-row elements. The NLCC core radii were chosen experimentally to



4.3 Core spin-polarization correction 69

achieve a compromise between a reasonable NLCC “softness” and accuracy of results.

For clarity all these values are summarized in Table 4.2.

Table 4.2: Cutoff radii rc used for the pseudopotential generation and NLCC core radii rcore

(in a. u.). The same values of rc were used for both s- and p-channels of the first-row elements.

H C N O F

rc 0.5 1.14 0.96 0.83 0.73

rcore - 1.03 0.77 0.65 0.58

The Gauss-Hermite integration with 16 points was used for the calculation of the

nonlocal parts of the pseudopotential. The calculations were performed in a 12 Å×
12 Å×12 Å isolated cubic box using Tuckerman-Martyna’s Poisson equation solver [167].

The size of the box was chosen large enough to make the results consistent with STO

calculations on isolated molecules. The plane wave cutoff of 100 Ry for the wavefunction

expansion was chosen to ensure the basis set completeness, while for the electron density

expansion a consistent cutoff of 400 Ry was used. The first Brillouin zone was sampled

only at the Γ point. These calculations were performed with a modified version of the

CPMD code [132]. STO calculations were performed with the basis set of TZ2P quality

using the ADF2003 code [89]. All geometries were optimized at the same level of theory

using STO basis sets. We use frozen valence spin-density calculations implemented in

a numerical atomic DFT code from the ESPRESSO program package [168], which allows

for predefined frozen wavefunctions and partial atomic occupation numbers. The all-

electron wavefunctions were reconstructed taking into account only the s-channel for H,

while for the first-row atoms also the p-channel was reconstructed. This is a necessary

condition for an accurate evaluation of the correction since spin population of valence

p-type orbitals often produce a strong spin-polarization of s-core orbitals (See Chapter

19 in Ref. [62]).

The results in Figure 4.4 prove the accuracy of the proposed correction scheme. For

the simplest case of 1H hyperfine coupling constants, no spin-polarization effects occur

and the pseudo wavefunctions in the vicinity of these nuclei resemble the all-electron

wavefunctions apart from the absence of the nuclear cusps. Thus, the wavefunction re-

construction approach proposed by Van de Walle and Blöchl gives results very close to

the all-electron STO calculations and to experimental data as well. Comparison between

the all-electron calculations and the frozen core STO calculations also shows small dif-
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ferences in the 1H hyperfine coupling constants. This confirms the hypothesis about

the negligible influence of the spin-polarization of core orbitals on the valence ones. For

heavier elements in the first row of the periodic table the core spin-polarization contribu-

tion is present. From Fig. 4.4 one can see that ρs
c(rI) is usually lower in magnitude and

has an opposite sign compared to ρs
v(rI). The HFCCs calculated without the core spin-

polarization correction tend to be overestimated (open squares in Fig. 4.4). In some cases

ρs
c(rI) is negligible while in others (e. g. 14N HFCC in H2CN) it cannot be neglected.

This observation is in perfect agreement with the STO calculations.

In conclusion, the proposed core spin-polarization correction recovers the largest part

of the error in pseudopotential plane wave calculations of the Fermi contact HFCCs when

compared to all-electron calculations and experimental results. It turned out that for the

first-row elements the core contribution to the isotropic HFCCs is significant. In the last

part of this Chapter, we will try to assess its importance for the rest of the periodic table.

Since core electrons of the first-row elements have s symmetry, they do not contribute to

the dipolar hyperfine couplings. Investigation of the core-level contribution to the dipolar

HFCCs for heavier elements is left for future investigations.

4.3.3 Trends across the periodic table

Probing HFIs with magnetic resonance experiments, both ESR and NMR, can be per-

formed for the nuclei of the elements constituting a larger part of the periodic table.

There is also no restriction on performing the calculations of HFCCs for any element

in the periodic table. Moreover, pseudopotential calculation are more common for the

systems involving heavy elements since they allow decreased computational demand by

disregarding core electrons from the problem and by avoiding an explicit treatment of rel-

ativistic effects. However, a general picture of core contributions to the isotropic HFCCs

across the periodic table is still missing. It is difficult and demanding to deduce this

general picture from the studies on various molecular and solid state systems. So, we

turn to the methodology based on the atomic density functional theory calculations and

perform a systematic study of the core contributions to the Fermi contact HFCCs for

all elements starting with Li (Z=3) till Rn (Z=86). We do not intend to provide a

quantitative theory of HFIs transferable to all possible complex molecular or solid state

environments. Instead, we would like to provide a semi-qualitative picture to reveal the

relative importance of core electrons in different parts of the periodic table.
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Our computational methodology is based on the same all-electron numerical atomic

code as used before. This code is able to perform relativistic calculations in the scalar

approximation. The PBE exchange-correlation density functional [153] has been used.

The quantity of interest is the the response of core electrons to the spin-polarization of

valence sub-shells,

Rc
l =

∂ρs
c(0)

∂ωs
v,l

, (4.14)

where ωs
v,l=ω

↑
v,l−ω

↓
v,l is the spin-differential population of valence electrons with angular

momentum l. The response is calculated within the finite difference approximation. The

electronic configurations of atoms are the spin-averaged ground state configurations of

neutral atoms. The valence sub-shells are the sub-shells filled in the corresponding pe-

riod. For the elements with zero population in one of the valence sub-shells (which is

typical for the beginning of periods) we modify the ground state electronic configuration

by promoting 0.1 electron to the empty valence sub-shells from the populated ones. For

example, the ground state of calcium is [Ar]4s2 - we use [Ar]4s1.84p0.13d0.1 in our calcu-

lations. We found that the Rc
l values and the |φv,0(0)|2 values are relatively insensitive

to such rehybridization effects and to the charge of the atom. The rest of electrons are

considered as core electrons.
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Figure 4.5: Values of |φv,0(0)|2 as a function

of the atomic number Z. The labels indicate

the noble gases terminating periods.

First, it is important to discuss how the valence contribution |φv,0(0)|2 varies across

the periodic table. The semi-logarithmic plot (Fig. 4.5) shows the values of |φv,0(0)|2 as

a function of atomic number Z. The values span 5 orders of magnitude and exhibit a

monotonic (except non-regular ground state configurations) increase of |φv,0(0)|2 within

the periods. The slopes of the |φv,0(0)|2 versus Z curves are higher for the elements filling

the shells with lower angular momentum.
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Figure 4.6: Response of l=0 valence elec-

trons to the spin-polarization of the valence

states with l>0 presented as the ratio Rv
l /Rv

0.

One would naturally ask about the response of valence s-electrons to the spin-polarization

of the valence states with l>0. Unfortunately, in this case the picture provided by the

atomic calculations has very limited transferability to complex systems. Nevertheless,

the trends are worth discussion at least on the qualitative level. Figure 4.6 shows the

dependence of the Rv
l = ∂ρs

v(0)/∂ωs
v,l on the atomic number Z for l>0. The dependence

is presented in the convenient form of ratio Rv
l /R

v
0=R

v
l /|φv,0(0)|2. At a glance, the val-

ues of Rv
l are in general about one order of magnitude smaller than the values of Rv

0.

The absolute magnitudes of Rv
l /R

v
0 tend to decrease with increasing l. For l=1 the ratio

Rv
l /R

v
0 is negative and Rv

l /R
v
0>−0.1 except the late elements in the first and second rows

where it is positive. For l=2 this ratio is in general positive and Rv
l /R

v
0<0.1 except the

first two elements in the fifth and sixth periods where it reaches Rv
l /R

v
0≈0.2. For l=3

the ratio is always positive and remarkably small, Rv
l /R

v
0<0.03.

Finally, we discuss the relative core spin-polarization ratios Rc
l/R

v
0 obtained from the

numerical DFT calculations on atoms (Fig. 4.7). The response of the core electrons to the

spin-polarization of the valence s-subshells tends to be positive and achieves respectable

magnitudes for the first row elements. For the alkali elements of consequent periods it is

also rather large and negative. Spin-polarization of the valence p-subshell results in large

negative values of ρs
c(0). It tends to be much smaller in all the consequent periods. This

explains the relative importance of core spin-polarization effects on Fermi contact HFCCs

for the first row (Li to Ne) elements. For the third period elements (Na to Ar) the core

spin-polarization contribution is much less pronounced. This can be explained by the

fact that in the third period the spin-polarization contributions of 1s and 2s electrons

have opposite signs and partially cancel each other. Spin-polarization of d electrons lead

to negative values of ρs
c(0) which are large for all periods starting from the fourth where
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Figure 4.7: Relative core spin-polarization ratios Rc
l /Rv

0 (l=0,...,3) across the periodic table.

The labels indicate the noble gases terminating periods.

the 3d subshell is filled. The relative magnitudes tend to decrease within the periods. On

the contrary, the spin-polarization of f electrons results in small positive values of ρs
c(0)

in the sixth period. Taking into account the fact that the spin-polarization of valence s

electrons is small too, the core spin-polarization in lanthanide compounds still may be

important.





Chapter 5

Paramagnetic ions in water: ab

initio molecular dynamics

5.1 Introduction

In Chapters 2 and 3, we modeled solvated aqua ions by means of cluster approach.

Although this technique has fulfilled our needs for studying electron-nuclear interactions

of the inner coordination sphere of aqua complexes, there exists another approach. This

approach is based on the periodic boundary conditions. The solute molecule along with

the predefined amount of solvent molecules fill a periodically repeated supercell. All

solvatation effects can be modeled explicitly in this way. Below, we will use this approach

to assess the distant hyperfine interactions, in the outer coordination sphere. In addition,

the supercell approach is the basic framework for the molecular dynamics simulations

based on the density functional theory. The capability of classical force fields for modeling

transition metal and lanthanide aqua ions in solutions and associated reactions is limited.

First principles molecular dynamics has already proved to provide accurate descriptions

of aqueous solutions of ions [141, 169–173]. Moreover, the electronic structure properties

can be obtained on-the-fly, without any need of changing the computational model. In

this Chapter, we extend the scope of ab initio simulated metal ions to paramagnetic Cr3+

and Gd3+ ions.

The choice of the Cr3+ ion was not random. Structure and dynamics of the first and

second hydration shells of Cr3+ have been extensively studied in the last ten years both

experimentally [174–180] and by means of classical MD simulations [177, 178, 181, 182].

The inert first coordination sphere, as well as strong hydrogen binding due to polarization
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of first sphere water molecules, leads to a well structured second coordination sphere. A

residence time of water molecules in the second sphere of 128 ps at 298 K could be

measured by 17O NMR due to a significant hyperfine interaction between the electron

spin of Cr3+ and the 17O nuclear spin [177]. In this Chapter we show that the measured

Fermi contact hyperfine field of the second coordination sphere water molecules can be

reproduced by means of the supercell approach. In the second part of the Chapter,

we study the structure, dynamics and hyperfine interactions both in inner and outer

coordination spheres of the Gd3+ aqua ion important for biomedical applications.

5.2 Methodology

Accurate calculation of the hyperfine parameters requires carefully designed pseudopo-

tentials (see Chapter 4) which in turn require high plane wave kinetic energy cutoffs.

The tight convergence of the wavefunction is another necessary condition for accurate

hyperfine coupling calculations. Thus, HFCCs can not be calculated accurately from in-

stant wavefunctions in Car-Parrinello simulations. Car-Parrinello MD simulations [131]

do not follow Born-Oppenheimer surface precisely and the spin density distribution in

the system tends to be more delocalized which may significantly decrease the accuracy of

calculated hyperfine coupling constants. A quenching of the wavefunctions to the Born-

Oppenheimer surface has to be performed. Finally, explicit description of the localized

4f states of the gadolinium ion is necessary for the calculation of hyperfine couplings.

However, the lanthanide f electrons do not contribute to chemical binding and can be

included in the pseudopotential core for performing molecular dynamics simulations. For

the purpose of our study, we perform MD simulations using “soft” pseudopotentials. A

set of atomic configurations is then extracted from the MD trajectory and the calcula-

tions of HFCCs are performed using “hard” pseudopotentials and a higher plane wave

kinetic energy cutoff. In both cases we use the Becke exchange density functional [98] in

combination with the Lee-Yang-Parr correlation density functional [183].

The periodically repeated simulation box consisted of a metal ion and 54 and 56 water

molecules in the simulations of the solutions of Cr3+ and Gd3+ ions, respectively. Dimen-

sions of the cubic boxes (a=11.513 Å and a=11.648 Å, respectively) were calculated on

the basis of the experimental values for the absolute molar volumes of the ions [184, 185]

and assuming a water density of 1 g·cm−3. The first two coordination spheres of the

ions entirely fit into the box of this size (see Fig. 5.1 for illustration). The 3+ charge of
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the ions was neutralized by a uniform background charge in these simulations. The MD

simulation was carried out for 2.5 ps and 4.0 ps for chromium(III) and gadolinium(III)

ions, respectively, after an initial equilibration of 1 ps. Limitations due to short simula-

tion time were compensated by the altered temperature which was kept around 350 K.

Hyperfine coupling constants are in general not temperature dependent. The fictitious

electron mass was set to 600 a. u. The time step used was equal to 5 a. u. (0.121 fs). Hy-

drogen nuclei were treated classically and had a mass of the deuterium isotope. For the

MD simulation we used Vanderbilt ultrasoft pseudopotentials [186] for all elements. The

[Ne] core configuration was used for the Cr3+ ion. The [Xe]4f7 core configuration with

f electrons included in core was used for the Gd3+ ion. The plane-wave kinetic energy

cutoff for valence electron wavefunctions was set to 30 Ry and 35 Ry, respectively.

Figure 5.1: A typical configuration of the ab

initio molecular dynamics simulation of Cr3+

with 54 water molecules in a cubic box at

350 K.

For the calculation of isotropic HFCCs in the Cr3+ ion solution, 5 snapshots were

extracted from the MD trajectory in 0.5 ps intervals. Thus, 30 Aiso(
17OI) values, 60

Aiso(
1HI) values for first sphere water and approximately 60 Aiso(

17OII) values for second

sphere water are available for statistical analysis. The total amount of 270 values of

Aiso(
17O) and 540 values of Aiso(

1H) was calculated for the whole system. A larger

amount of data available from 14 snapshots extracted in 0.25 ps intervals has been used

for the Gd3+ HFCC calculations. This results in 112 values of the inner sphere 17O

hyperfine couplings and 224 values of the inner sphere 1H hyperfine couplings. The total

amount of HFCCs was 784 and 1568 values for 17O and 1H nuclei, respectively.
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This quantity of data is sufficient for reliable statistical analysis. The interval of time

sampled is enough to provide the averaging over molecular vibrations in the system. Since

stable coordination spheres were observed for both ions, we suggest that the simulation

times used are enough to get accurate mean values. The statistical errors of the calculated

hyperfine couplings are standard deviations of the mean. The valence wavefunctions in

the calculations HFCCs were expanded in the plane wave basis set to cutoffs of 80 Ry

and 140 Ry for the Cr3+ and Gd3+ calculations, respectively. In these calculations we

used norm-conserving pseudopotentials [151] with a [Ne]3s23p6 core configuration for

chromium. For gadolinium the core configurations was [Kr]4d10. The nonlinear core

correction [166] was used on chromium, gadolinium and oxygen. The wavefunctions were

converged with the preconditioned conjugate gradient method using a maximum value

of 10−6 for the largest element of the gradient of the wavefunction.

The 1H water isotropic hyperfine coupling constants and valence contribution to 17O

water hyperfine coupling constants were calculated from pseudopotential spin density

using the method of Van de Walle and Blöchl [147]. The 1s core spin-polarization con-

tribution to 17O hyperfine coupling constants and the dipolar hyperfine couplings were

calculated using the methods described in the previous Chapter.

5.3 Discussion and results

5.3.1 Aqueous solution of Cr3+: a test case

The Cr−O and Cr−H radial distribution functions (RDF) from the Car-Parrinello sim-

ulation are given in Fig. 5.2. The octahedral coordination sphere was stable and no first

coordination sphere water exchange events were observed during the simulation. The av-

erage Cr−OI distance in the first coordination sphere is 2.033 Å, and the average Cr−HI

distance is 2.696 Å. The Cr−OI distance compares well with existing experimental val-

ues of 2.03 ± 0.02 Å (large angle X-ray diffraction [187]), 1.97−1.99 Å (X-ray diffraction

[188–190]), 1.98 Å (neutron diffraction [191]), 1.97−2.01 Å (extended X-ray absorption

fine structure [179, 180, 187]) and other theoretical studies [177](see also Table 1 in Ref.

[177, 192–195] and Table 1 in Ref. [195]).

The Cr−O RDF shows a well pronounced second coordination sphere of Cr3+ in

aqueous solution. The limit of the second coordination sphere, determined on the basis

of the second minimum of CrO RDF, is 4.75 Å. The second sphere coordination number
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Figure 5.2: The Cr−O (full line) and Cr−H

(dashed line) radial distribution functions

(RDF).

is 12.6 and the average Cr−OII distance is 4.17 Å. The available experimental data give

values of 12−14 for the second sphere coordination number and 3.95−4.25 Å for the

Cr−OII distance [179, 188–191, 193, 194]. The combined QM/MM study [195] led to a

slightly longer Cr−OII distance of 4.36 Å and connected to the higher second sphere

coordination number of 15.4.

The distribution of oxygen atoms of water molecules outside the first coordination

sphere around first shell oxygen atoms, OI , is shown in Fig. 5.3. From the maximum of

the first peak a OI−OII distance of 2.67 Å is obtained. This value is markedly larger

than the 2.41 Å found in a classic MD simulation [177]. However, the agreement with

the results of classical MD using more sophisticated interaction potentials (2.58−2.60 Å

[178, 196]) as well as experimental data (2.60−2.63 Å[187]) is very satisfactory.

 1  2  3  4  5

g(
r)

r ( °A)

OI-OII

Figure 5.3: The RDF of water oxygen out-

side the first coordination sphere around first

shell oxygen atoms OI .
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Figure 5.4: Isotropic scalar coupling constant on 17O (a) and 17H (b), as a function of the

Cr–O and Cr–H distances, correspondingly, calculated from five snapshots.

Figure 5.4 shows the dependence of Aiso(
17O) and Aiso(

1H) on the Cr−O and Cr−H

distances, respectively. The mean isotropic HFCC for first coordination sphere water

molecules, 〈Aiso(
17OI)〉, is equal to 1.9 ± 0.3 MHz which corresponds to a negative

average value of spin-density on the 17OI nuclei, due to a negative gyromagnetic ratio for
17O. This suggests a strong spin-polarization mechanism of the distribution of unpaired

electron density in the first coordination sphere (Fig. 5.5a). However, the positive value

observed for first shell water protons, 〈Aiso(
1HI)〉 = 2.1 ± 0.2 MHz, corresponds to a

positive value of spin density at the positions of 1HI nuclei. The Aiso(
1HI) values also

show a clear dependence on the Cr−HI distance (Fig. 5.4b). A possible explanation is

that the spin-delocalization contribution (always positive) depends on the tilt angle θ for

first sphere water molecules (Fig. 5.6) which is commonly defined as the deviation from

a radial alignment of the water dipoles. The Aiso(
17OI) increases when θ approaches

radial alignment of water dipoles, but at the same time Aiso(
17OI) shows no visible

dependence on the Cr−OI distance. However, Aiso(
1HI) decreases with θ approaching

180◦, and shows therefore a dependence on the Cr−HI distance with a negative slope. The

experimentally measured value for Aiso(
1HI) is 2.1 MHz [44, 192], in prefect agreement

with our calculations. No experimental Aiso(
17OI) value is available due to very slow

exchange of first shell water molecules on Cr3+.

Our calculations show also considerable spin-polarization of the second coordination

sphere water molecules (Fig. 5.5b) leading to negative Aiso(
17OII) values for the Cr−O

distance values between 3.7 and 4.8 Å (Fig. 5.4a). It is worth noting that while the
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(a) (b)

Figure 5.5: Isosurface plots of the spin-density distribution around the paramagnetic Cr3+

ion for an isovalue of 0.002 a.u.−3 (a) and 0.0001 a.u.−3 (b). The positive (excess spin) spin-

density is shown in red and the negative spin density is shown in blue. The spin-polarization

of second coordination sphere water molecules can be observed (b).

spin polarization over second coordination sphere bears mainly negative character (see

Fig. 5.5b) the positive spin density at the positions of 17OII nuclei prevails. The average

second sphere 17O HFCC, 〈Aiso(
17OII)〉 = −0.20 ± 0.02 MHz, is an order of magnitude

smaller than 〈Aiso(
17OI)〉. Our calculated value is in agreement with the experimental

values of −0.215 MHz and of −0.24 MHz (recalculated for a second sphere coordination

number of 12) [177, 197]. An interesting feature is the change in sign of Aiso(
17O) from

positive to negative between first and second coordination sphere. Such a behavior has

been observed experimentally for [Ti(H2O)6]
3+ [198]. The outer sphere chemical shift

of the 17O NMR resonance is about 5 % of the first sphere shift with a negative sign.

Golding and Stubbs calculated as early as in 1979 isoshielding maps for a d1 transition

metal ion in a strong crystal field [199]. From their calculations, water oxygen sitting close

to the triangular faces of the octahedron formed by the coordinated water molecules have

opposite chemical shifts with respect to those on the vertices of the octahedron. Hyperfine

coupling to second sphere water molecules is also observed on polyaminocarboxylate

complexes of gadolinium(III), used as contrast agents in magnetic resonance imaging in

medicine [45]. On these complexes, water exchange of the first sphere water molecule is

relatively slow and an outer sphere term has to be used to fit the chemical shift data.

This outer sphere term was suggested to be about 1/10 of the first sphere term which
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Figure 5.6: Isotropic scalar coupling constant on 17O (a) and 17H (b), as a function of the

water molecule tilt angle θ.

agrees with our findings [18]. In the case of the Gd3+ aqua ion [Gd(H2O)8]
3+ such a term

could not be quantified because water exchange is very fast [101].

5.3.2 Hyperfine interactions in aqueous solution of Gd3+

During the MD simulation of the gadolinium(III) ion in water a well defined first co-

ordination sphere containing 8 water molecules (square antiprism coordination polyhe-

dron with all water molecules being on average equivalent) was observed in agreement

with experimental data [137]. The average inner sphere distances, rGd−O=2.37 Å and

rGd−H=3.04 Å also agree very well with experimental results [69, 103, 105]. The Gd−O

and Gd−H radial distributions functions are shown in Figure 5.7a. Our results also show

close agreement with the Car-Parrinello simulations of Ikeda et al. [200, 201] performed

for the diamagnetic yttrium(III) cation which is known to be the closest analog of the

gadolinium(III) cation [69]. They have obtained 2.38 Å average Y−O distance and the

square antiprism as the most stable coordination polyhedron. However, free energy sur-

face minima corresponding to other coordination numbers have been observed in their

metadynamics simulations. For an individual inner sphere water molecule the Gd−O

distance is subjected to fluctuations of large amplitude (between 2.1 Å and 2.8 Å). In

the case of Gd3+ ion this interval is wider than in the case of Cr3+ ion with inert first

coordination sphere. It is notable (Fig. 5.7b) that during the MD simulations the first

coordination sphere undergoes dynamic distortions leading to significant elongation of
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the Gd−O bond of individual water molecules. The Gd−O distance averaged over the

first coordination sphere shows much smaller variation around the mean value.

The second coordination sphere is well pronounced but to a smaller extent comparing

to other metal ions forming very stable and inert first coordination spheres (e.g. Cr3+

ion). The distance of closest approach to the Gd3+ ion for both O and H atoms of the

outer coordination sphere water molecules is 3.8 Å. The corresponding maxima of the

radial distribution functions are 4.6 Å and 5.0 Å, respectively.
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Figure 5.7: (a): Radial distribution functions gGd−O(r) (thick solid line) and gGd−H(r) (thick

dashed line) for Gd3+ ion in liquid water. The thin lines represent the running coordination

number n(r). (b): Time evolution of the Gd–O distances RGd−O during a representative 1 ps

interval of the Car-Parrinello MD simulation. The black dashed line shows the time evolution

of the average Gd–O distance for the inner coordination sphere water molecules.

The qualitative features of the electron spin density distribution are shown in Fig-

ure 5.8. The spin-polarization pattern of the eight inner sphere water molecules (Fig. 5.8a)

is very similar to the one described in Chapter 2. The second part of the figure, Fig. 5.8b,

shows the contour plot of the electron spin density in a plane passing through the Gd3+

ion. Apart form the spin-polarization of the inner sphere water molecules, one can note

one spin-polarized outer sphere water molecule, though to a smaller extent. As in the

case of the inner sphere water molecules, the spin-polarization affects primarily the lone

pair orbitals of the water molecule.

The calculated Fermi contact HFCCs of the inner sphere water molecules are in

agreement with the experimental data and the results of cluster calculations described

in Chapter 2. The expectation value of the inner sphere 17O HFCC, 〈Aiso(
17OI)〉 =

0.65±0.03 MHz, compares to the reported experimental values ranging from 0.75 MHz
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Figure 5.8: (a) Atomic structure and isosurface plot of the spin density around Gd3+ ion

in solution. Red surfaces correspond to 0.0002 a. u.−3, blue surfaces correspond to −0.0002

a. u.−3 values. (b) Contour plot of the the spin-density distribution in a plane passing through

Gd3+ ion. An area of 10 Å×10 Å is shown. The Gd3+ ion, located in the middle, gives rise to

a positive magnetization density of large magnitude. The anisotropic spin polarization of four

inner sphere and one outer sphere water molecules can be also recognized on the plot.

to 0.84 MHz [18, 102, 105], and 0.61 MHz predicted by the BPW91/ZORA/TZ2P calcu-

lations described in Chapter 2. The values of the 17O HFCCs are spread over the broad

interval [−0.04 MHz; 1.26 MHz] and shows a pronounced dependence on the Gd−O

distance (Fig. 5.9a). Similarly, the inner sphere 1H HFCC shows a strong dependence

on the Gd−H distance (Fig. 5.9b). The mean value 〈Aiso(
1HI)〉 = 0.085±0.005 MHz is

larger than the experimental values 0.03±0.02 MHz [102] and 0.04 MHz [105] as well as

the value of 0.025 MHz obtained in our previous calculations for the model aqua com-

plex with a longer Gd−O distance of 2.40 Å. However, in terms of absolute value this

difference is very small: both experimental and theoretical values are close to zero.

The mean value of the second coordination sphere 17O HFCC, 〈Aiso(
17OII)〉=−0.005±

0.001 MHz, is calculated supposing an upper limit of the second coordination sphere at

rGd−O=6 Å. The largest values of Aiso(
17OII) are observed for the water molecules closest

to the Gd3+ ion (Fig. 5.9a, inset). The outer sphere 1H HFCC is almost zero, Aiso(
1HII)

= 0.00027±0.00007 MHz. The ligand hyperfine couplings of the Gd3+ aqua ion show the

same qualitative trends as for the solvated Cr3+ ion discussed previously. However, both

the absolute magnitudes of the HFCCs and the ratios of the outer sphere HFCCs to the

inner sphere couplings are smaller in the Gd3+ case. This can be attributed to a more
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organized character of the Cr3+ second coordination sphere involving a strong hydrogen

bonding between the water molecules of the two coordination spheres.
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Figure 5.9: Isotropic hyperfine coupling constants as a function of the distance to Gd3+ ion

for 17O (a) and 1H (b) nuclei. Insets show the values for second coordinations sphere water

molecules.

As it was done in Chapter 2, the dipolar HFIs are expressed in terms of the effective

distances, reff . Figure 5.10 shows the enhancement factors of the dipolar interaction,

(r/reff )
3. In agreement with the results of Chapter 2, the 17O dipolar HFIs are partially

screened due to the spin-polarization. The average value is 〈(r/reff )
3(17O)〉 = 0.91

and the screening become stronger with descreasing the Gd−O distance. The dipolar

interactions of the 17O nuclei of the second coordination sphere water molecules are

enhanced in respect to what is expected from the point-dipole approximation and its

magnitude is largest for the water molecules closest to the Gd3+ ion. However, the

enhancement is relatively week and does not exceed 3% (Fig, 5.10a). The screening of

the 1H dipolar HFIs in the inner coordination sphere is very small, (r/reff )
3(1H)=0.995.

The effects of the spin-polarization on the anisotropic 1H HFIs in the outer sphere are

negligible.

In conclusion, we have studied the structure, dynamics and ligand hyperfine couplings

of bulk aqueous solutions of paramagnetic Cr3+ and Gd3+ ions using ab initio molecular

dynamics techniques. The primary emphasis is on the HFIs of the water molecules in

the outer sphere of the Gd3+ ion. The calculated isotropic HFCCs values for the inner

sphere water molecules and for the Cr3+ second sphere water molecules agree well with

the experimental data. The Gd3+ outer sphere isotropic HFCCs are weaker than those
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Figure 5.10: Dipolar hyperfine interaction enhancement factors as function of distance to

Gd3+ ion for 17O (a) and 1H (b) nuclei.

calculated for Cr3+. The magnitudes of the Fermi contact HFCCs in the outer sphere

are about two orders of magnitude smaller than in the inner sphere. In the case of

Cr3+ ion the spin-polarization of outer sphere water molecules is more pronounced due

to the higher degree of organization of the second coordination sphere. We expect that

in poly(amino carboxylate) complexes of Gd3+ the outer coordination sphere may be

better organized in the vicinity of carboxylate groups compared to the octa aqua ion.

The dipolar HFIs are well described within the point-dipole approximation with the

exception of 17O dipolar interactions in the inner coordination sphere.



Chapter 6

Hyperfine interactions in carbon

nanostrucures

6.1 Introduction

In this Chapter, we consider hyperfine interactions in a different class of atomic structures

- in carbon nanostructures. Carbon nanostructures have attracted enormous interest due

to the broad diversity of atomic structures and topologies and due to their unusual phys-

ical properties. Graphene, a honeycomb-patterned single layer of graphite, is considered

as a predecessor of the class of carbon-based nanostructures. Its closest relatives include

fullerenes, carbon nanotubes (CNTs), carbon nanohorns, nanofoams, etc. Outstanding

electronic properties of these materials promis many applications of carbon nanostruc-

tures in technology, more specifically, as the components of future nanometer-sized elec-

tronic devices, nanoelectromechanical systems, conducting composites and many more

[21]. A general understanding of hyperfine interactions in carbon nanostructures is an

important part of the progress in this field because of the following two reasons.

Firstly, probing HFIs with nuclear magnetic resonance (NMR) or electron spin reso-

nance (ESR) techniques provide an information about structure and dynamics of materi-

als [202, 203]. Consider an example of carbon nanotubes, which are presently produced in

large quantities. For instance, CNTs may be either metallic or semiconducting [27, 204]

with the electronic properties depending on their atomic structure which is commonly

characterized by the pair of chirality indices, (n,m), as explained in Introduction. Ef-

ficient methods for separation of metallic and semiconducting CNTs and their further

purification have been developed [205]. At this stage, the nuclear magnetic resonance
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(NMR) technique widely used in chemistry and material science can be applied to the

study of the composition of CNT samples. However, performing NMR experiments on

CNTs is by no means trivial and promising results have been achieved only recently. The
13C nuclear spins of semiconducting and metallic CNTs have been identified by means of

spin-lattice relaxation rate measurements [206], and NMR spectra of single-wall CNTs,

purified from paramagnetic impurities, have been obtained [207]. In the latter case, the

NMR signal has been resolved into the contributions of semiconducting and metallic

CNTs at a ppm-level resolution. As we will show below, the HFIs make an important

contribution to the NMR chemical shift of metallic carbon nanotubes.

Secondly, graphene and related carbon nanostructures are considered as potential

building blocks for the alternative approaches of future electronics: spintronics [32], ex-

ploiting the electron spin degree of freedom, and quantum information processing, operat-

ing with electron spins [208] or nuclear spins [209]. Carbon nanostructures are attractive

for this applications because of the negligible spin-orbit coupling [210, 211], which is the

primary source of the electron spin decoherence in heavy element compounds. Promis-

ing results for the coherent electron spin transport in carbon nanotubes [33–35, 212, 213]

indicate potential of these materials. Single electron devices based on carbon nanotubes

have also been recently studied [214, 215]. In this prospective the HFIs are expected to

be the leading contribution to the spin decoherence in carbon materials [210, 213, 216].

Minimizing HFIs with nuclear spins is necessary for achieving longer electron spin co-

herence times [217] while in some instances the HFIs play an important role of the link

between the spins of electrons and nuclei in the system [209, 218–220]. A common un-

derstanding of HFIs is therefore necessary for engineering efficient devices for spintronics

and quantum information processing applications based on graphenic nanostructures.

The rest of this Chapter is divided in two parts. In the first part we study in details

the contribution of HFIs to the NMR chemical shift, so called Knight shift, in metallic

CNTs. In the second part, we aim understanding of HFIs in graphenic nanostructures in

its broadest sense, i.e. how does a spin polarized π electron with an arbitrary distribution

in an arbitrary carbon nanostructures is coupled to nuclear spins?
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6.2 Isotropic Knight shift of metallic carbon nan-

otubes

The shift of the Larmor frequency of the nuclear spin is described by the chemical shift

tensor,
←→
δ = ←→σ ref −←→σ +

←→
K , which is defined by the magnetic shielding relative to a

standard reference, ←→σ ref −←→σ , and the Knight shift tensor
←→
K , which originates from

the Pauli paramagnetism, occurring only in metals [221]. In the same way as it was

done in the previous chapters for the HFI tensor, we split the Knight shift tensor and

the chemical shift tensor into the scalar isotropic parts (e.g. Kiso = 1
3
Tr[
←→
K ] for the

Knight shift contribution) and the remaining traceless anisotropy tensors. In reality

solid samples of carbon nanotubes are orientationally disordered. The isotropic chemical

shift δiso and partial information about chemical shift anisotropy tensor can be obtained

from the static NMR measurements of such samples. Moreover, high resolution solid

state NMR experiments are often performed under isotropic averaging conditions such

that only isotropic quantities are measured. Latil et al. [222, 223] theoretically predicted

a separation of about 11 ppm between the isotropic chemical shifts of metallic and in-

sulating CNTs due to the London ring current contribution to the magnetic shielding.

However, they have concluded that the ring current contribution does not provide more

details about the atomic structure of CNTs which is commonly characterized by the pair

of chirality indices, (n,m).

The isotropic Knight shift,

Kiso =
Aiso

γeγn~2
χp =

8π

3
(〈|ψ|2(0)〉+ η)χp, (6.1)

is closely related to the isotropic hyperfine coupling constant and originates from the

Fermi contact HFI involving the conduction electrons. One can separate the contributions

due to the effects of (i) the conduction electrons, which is proportional to the squared

magnitude of conduction band wavefunction at the point of the nucleus, ψ(0), and (ii)

the ensemble of spin-polarized valence bands and atomic core states [224, 225]. The later

contribution can be collected in the common parameter η. The Pauli spin susceptibility,

χp ≈ 2µ2
Bg(ǫF ), is proportional to the density of states at the Fermi level, g(ǫF ). Thus,

Kiso provides an information about the conduction states which can be related to the

atomistic structure of the metallic system under investigation.

In a single two-dimensional graphite layer, graphene, ψ(0) = 0 because conduction

bands have π-character and all nuclei lie in the nodal plane of these states. Rolling up
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the graphene sheet into a carbon nanotube causes partial sp2-sp3 rehybridization which

means that the π states receive some s-character rapidly increasing with a decreasing

CNT diameter. The rehybridization contribution to isotropic Knight shift is positive. The

Knight shifts are relatively well studied for the kindred class of conducting compounds,

alkali metal graphite intercalates, in which individual graphene sheets maintain their

planarity. Negative isotropic Knight shifts up to 100 ppm in magnitude were measured

experimentally [226] for these systems. However, the density of states at the Fermi level

in graphite intercalates is higher compared to that of metallic carbon nanotubes [27, 204].

This reduces the estimates of the negative spin-polarization contribution to the order of

several ppm.

Other possible contributions to isotropic Knight shifts in CNTs concern ultranarrow,

chemicaly modified, bundled and multi-walled CNTs. (i) It has been shown by first

principles calculations [227, 228] that (n,0), (n=3-6) single-wall CNTs (termed irregular

CNTs below, regular otherwise) are true metals. The density of states at the Fermi

level, g(ǫF ), is higher than predicted by the zone folding approximation [27, 204] and

the conduction bands might have higher s-character in these cases. (ii) For chemically

functionalized CNTs additional possibilities can be exploited. A chemical modification

may change both g(ǫF ) as well as the spatial character of the conduction states. In

addition, introduced nuclei of functional groups may also experience isotropic Knight

shifts. This suggests to perform NMR measurements on nuclei other than 13C in order

to probe the conduction states of a sample. (iii) Nanotube bundling may affect the band

structure of CNTs by breaking the metallicity of otherwise metallic CNTs or closing

the gap in semiconducting ones. The pseudogap opening in conducting nanotubes has

been observed experimentally and studied theoretically [229, 230] while the band gap

closing in otherwise semiconducting nanotubes was predicted theoretically [231]. Reich

et al. showed in their computational study [231] that in (10,0) nanotube bundles the gap

between π and π∗ bands closes due to the dispersion perpendicular to the nanotube axis.

The curvature-induced metallization of double-wall semiconducting nanotubes has also

been predicted recently [232].

Unlike its isotropic contribution, the Knight shift anisotropy originates from the

dipole-dipole interaction between the electron spin and the nuclear spin. The dipolar

contribution can be accessed by analyzing the static line shape of the NMR spectum

or through the nuclear relaxation rate measurements. In case of conducting CNTs, the

dipolar Knight shift originates from the direct contribution of conduction π-states and
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almost unaffected by spin-polarization and sp2-sp3 rehybridization effects [202]. Its value

provides a direct information about g(ǫF ) what was used in a number of studies of carbon

nanotubes and graphite intercalation compounds [206, 222, 223, 233].

6.2.1 Computational methods

The computational method we use is based on the all-electron density functional the-

ory (DFT) approach within periodic boundary conditions [234] implemented in the

GAUSSIAN03 code [88]. Following the methodology of Weinert et al. [235], we perform

unrestricted self-consistent field (SCF) calculations with arbitrary external magnetic field

H. In order to keep the numerical errors of the SCF calculations small it is necessary

to apply strong magnetic fields, about two orders of magnitude stronger than the ones

conventionally used in NMR measurements. For instance, in case of the (6,6) CNT

calculation an external magnetic field of 1.3 × 107 G was applied in order to achieve

magnetization of 0.002 electrons per atom. The corresponding Fermi contact hyperfine

field at the 13C nuclei is about 21 G in this calculation. We confirmed that for these

systems such strong external fields are still in the linear regime for the change of the

hyperfine field with respect to the external one. The calculated isotropic Knight shift,

Kiso =
8π

3
γe
ρ↑(0)− ρ↓(0)

H
, (6.2)

with γe being the electron gyromagnetic ratio and ρ↑(↓)(0) being the spin-up(down) elec-

tron density at the nucleus site. The SCF approach permits to include explicitly con-

tributions coming from the magnetization of the conduction electrons, possible spin-

polarization effects and the exchange-correlation spin susceptibility enhancement [236].

The Becke exchange [98] and Lee-Yang-Parr correlation [183] generalized gradient

approximation density functionals and Dunning’s D95(d) Gaussian-type orbital basis set

[237] have been used in our calculations. In this basis set both valence and core functions

are double split as a necessary condition for an accurate description of spin-polarization.

We found that this basis set is a reasonable compromise between accuracy and com-

putational cost. In order to check the accuracy of this combination of basis set and

density functional we have performed test calculations of 13C isotropic hyperfine cou-

pling constant for the planar CH3-radical. A number of detailed experimental works and

theoretical calculations are available for this simple radical. In this system the unpaired

electron resides on an orbital of pure p-character. Thus, the Fermi contact contribution
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of the singly occupied molecular orbital to the 13C isotropic hyperfine coupling constant

is zero like in a graphene sheet. This isotropic coupling can be reproduced with good

accuracy by DFT calculations (see e. g. Ref. [238]). At the chosen level of theory the cal-

culated 13C isotropic hyperfine coupling constant of the CH3-radical amounts to 26.40 G,

while the BLYP basis set limit value is 26.13 G. The coupled-cluster singles and doubles

(CCSD) theory in combination with D95(d) basis set gives 27.72 G. All these results

compare well with the experimental value of 28.4 G determined by Chipman [239] for

the planar radical. The crucial step for an accurate calculation of Knight shifts using

self-consistent approach is the Brillouin zone integration. We have used an interpolative

approach, which is a one-dimensional version of the linear tetrahedron method [240–243].

No thermal smearing has been applied. In all our calculations the uniform Brillouin zone

integration mesh consists of 512 k-points.

We have restricted our consideration to conducting armchair (n,n) (n=3-12) and

zigzag (n,0) (n=3-6,9,12,15) nanotubes which have diameters up to 1.6 nm. The struc-

tures of these nanotubes have been generated [244] assuming a 1.421 Å carbon-carbon

bond distance. The geometries of the ultranarrow zigzag nanotubes (n,0) (n=3-6) have

been relaxed at the same level of theory as the one used for the calculation of Knight

shifts. This is necessary since an effect of the bond length alternation [245] becomes

important for ultranarrow CNTs. The small curvature-induced band gaps [246] in wider

zigzag CNTs have not been taken into account.

6.2.2 Results

The calculated values ofKiso for regular metallic CNTs are shown in Fig. 6.1 as a function

of their diameter. The shifts have been predicted to be negative for the CNTs with

diameter larger than 0.5 nm while a positive value of 5.4 ppm has been predicted for the

narrow (3,3) CNT. We explain the observed trend as the sum of the contributions due to

the spin-polarization for the flat graphene sheet (Ksp
iso) and due to the curvature-induced

rehybridization (Krh
iso). The spin-polarization contribution is proportional to the density

of states at the Fermi level, Ksp
iso = B·g(ǫF ) (g(ǫF ) is the density of states at the Fermi per

carbon atom). The negative constant B equal to −228 ppm·eV·spin has been predicted

on the basis of calculations for the flat graphene sheet. This result can be compared

to the experimental range between −530 and −270 ppm·eV·spin for MCn (M = K, Cs;

x≥8) graphite intercalation compounds [226].
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Figure 6.1: Isotropic Knight shifts of conducting single-wall CNTs. In regular metallic

nanotubes Kiso shows dependence on the nanotube diameter as a result of interplay between

the spin-polarization (Ksp
iso) and the rehybridization (Krh

iso) contributions. The squares and

diamonds indicate the calculated shifts for armchair and metallic zigzag CNTs, correspondingly.

The curves show the estimated shift as a function of the CNT diameter d and its individual

contributions (see text). Isotropic Knight shifts of ultranarrow conducting CNTs are shown in

the inset. Three different types of 13C nuclei in (5,0) CNT can be recognized.

The SCF spin-density induced by the external magnetic field is shown in Fig. 6.2.

The positive spin-density due to the direct magnetization of the graphene π and π∗

conduction band electrons prevails. However, negative magnetization has been observed

in the graphene plane (z=0). The magnetization achieves absolute maxima at the sites of

carbon nuclei. This can be explained by both negative 1s core and 2s spin-polarization.

The rehybridization contribution is estimated as Krh
iso = 8π/3(mψ2

2s(0))χp, where m is

the s-content of the π-orbital as defined in the π-Orbital Axis Vector (POAV) analysis

[247] and ψ2s(0) is the magnitude of the carbon atom 2s wavefunction at the point of the

nucleus. This contribution is significant only for the narrowest CNTs and increases very

fast with decreasing diameter. It is remarkable that the estimated trend in Knight shifts

reproduces calculated values.

From our calculations we conclude that the isotropic Knight shift of average diameter

(d > 0.6 nm) metallic CNTs is on the order of 1-2 ppm towards lower frequencies. These
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Figure 6.2: Calculated SCF spin-density (arb. units) for flat graphene sheet in an external

magnetic field in the plane passing through the C-C bond and orthogonal to the graphene sheet

(see inset). Positions of carbon atoms are indicated by circles.

values can be compared to the difference of about 8 ppm between the chemical shifts of

semiconducting and metallic single-wall CNTs obtained experimentally using solid-state

NMR [207]. This experimental value is 3 ppm smaller than the difference of 11 ppm,

theoretically predicted when taking into account only ring current effects. The calculated

negative isotropic Knight shift may explain the difference in predicted and experimentally

observed values. Knight shifts of wider (d > 1.6 nm) CNTs, which are not considered here

can be obtained by means of extrapolation based only on the graphenic spin-polarization

contribution. Rehybridization contribution can safely be neglected for wider CNTs. In

this case, a measured Knight shift reflects the density of states at the Fermi level in a

direct way.

Ultranarrow irregular CNTs show much larger, compared to wider CNTs, positive

isotropic Knight shifts (Fig. 6.1, inset) as a result of significant rehybridization of the

conduction band states and higher g(ǫF ). The highest predicted value is +685 ppm for the

(3,0) nanotube. For the (5,0) single-wall CNT, three types of nuclei can be distinguished

because this CNT is predicted to be slightly flattened. Similar observations concerning

the geometry of the (5,0) CNT have been made in Ref. [234].
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Figure 6.3: Atomic structures of unmodified and fluorinated (4,4) CNTs. The hybridization

states of carbon atoms are indicated. Two unit cells are shown in both cases.

As an example of a chemically functionalized system, the isotropic Knight shifts of

the fluorinated (4,4) armchair CNT [248] have been calculated. The stable configuration

of the single-wall (4,4)-C2F CNT is taken from the computational study of Bettinger et

al. [249]. For the benefit of the reader, the structure of the unmodified and fluorinated

(4,4) CNTs are shown in Fig. 6.3. In this case chemical functionalization causes complete

rehybridization to sp3 state of half of the carbon atoms without breaking the metallicity.

The contribution of these atoms to the conduction states is smaller but their relative s-

contribution is higher. Thus, a positive Knight shift for such atoms is expected. The other

atoms are arranged into flat “strips” which are responsible for conductivity. A negative

graphenic shift is expected on the nuclei of Csp2 atoms. Chemical modification also leads

to an increase of g(ǫF ) in this case, 0.063 (eV·spin)−1 compared to 0.020 (eV·spin)−1 for

the unmodified (4,4) CNT (g(ǫF ) is the density of states at the Fermi per sp2 carbon

atom). Our calculations predict −7.5 ppm, +18.6 ppm and +21.3 ppm isotropic Knight

shifts for the nuclei of Csp2 , Csp3 and F atoms, respectively. The difference in Knight shifts

among the two types of carbon nuclei is 26.1 ppm. Thus the Knight shift contribution to

the total chemical shift is of similar order of magnitude with the typical difference (about

100 ppm) in orbital chemical shifts of Csp2 and Csp3 nuclei. In addition, the Knight shift

anisotropy of Csp3 and of F nuclei is smaller compared to that of Csp2 nuclei what favors

the observation of narrow NMR signals.
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Our results show that the isotropic Knight shifts of metallic CNTs, except ultranar-

row ones, reflect the density of states at the Fermi level. High-resolution NMR can be

used to study the distribution of diameters of conducting CNTs in a sample. Ultra-

narrow zigzag CNTs possess large positive isotropic Knight shifts characteristic of their

chirality indices. Knight shifts can serve as the spectroscopic signatures of these un-

usual structures. Finally, Knight shift measurements can be useful to study chemically

functionalized CNTs. The results of our theoretical study provide a new perspective for

studying carbon nanostructures using NMR.

6.3 Hyperfine interactions in graphenic nanostruc-

tures

In the first part of this Chapter, we considered an important situation of the uniform

distribution of the conduction electron spin density in the system. In other words, this

situation correspond to the case of infinitely long ideal CNTs. In this part, we follow a

different approach. We try to figure out how the arbitrarily distributed conduction elec-

tron spin is coupled to the nuclear spins in the system. In many practical situations, the

conduction electron distribution can be found using simpler computational approaches,

e. g. tight binding method or analytical approximations. To achieve this goal, we study

HFIs in small molecular fragments, a bottom side of the nanoscale regime, but using

a more accurate all-electron basis set and the hybrid exchange-correlation density func-

tional. The consideration is extended to involve curved topologies and the presence of

heteronuclei due to impurities and boundaries.

Once again, the HFI tensor
←→
A is decomposed into the scalar hyperfine coupling

constant Aiso and the dipolar HFI tensor
←→
T . The electron spin density ρs(r) can be fur-

ther decomposed into the contribution of half-populated conduction electron states lying

close to the Fermi level (or singly occupied molecular orbitals in the molecular context),

ρs
c(r)=

∑
c |ψc(r)|2≥0, and the contribution of the fully populated valence states per-

turbed by the spin-polarized conduction electrons, ρs
v(r)=

∑
v |ψv↑(r)|2− |ψv↓(r)|2. The

spin-polarization of the valence electrons is illustrated with a model hydrogen-terminated

graphene fragment in the triplet spin state (Fig. 6.4). While the projection of ρs
c(r) on

the xy plane (Fig. 6.4a) is positive everywhere and reveals an enhancement at the zig-zag

edges, the projection of the total spin-density ρs(r) (Fig. 6.4b) is negative where ρs
c(r)
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(a)

(b)

(c)

Figure 6.4: Projections of the spin-polarized

conduction electron density ρs
c(r) (a) and the

total spin density ρs(r) (b) on the plane of a

small nanographite molecule in its triplet spin

state. The magnitudes of the total spin den-

sity ρs(r, z=0) (c) in the plane of nuclei re-

flects the isotropic hyperfine field. Molecular

framework is shown by black lines.

is close to zero. For the ideal graphene and planar sp2 carbon nanostructures (all nu-

clei lie in the z=0 plane) ρs
c(z=0)=0 due to the pz symmetry of the conduction states,

although the sp2-sp3 rehybridization of conduction states due to the curvature effects

or chemical functionalizations may lead to the positive ρs
c(z=0) contribution [202, 238].

However, there is a contribution of the σ symmetry valence states ρs
v(z=0)6=0 due to

the spin-polarization effect. For the model graphene fragment ρs
v(z=0) (Fig. 6.4c) shows

an alternating pattern with the relative dominance of the negative spin density. Since

the σ bands are situated well above and well below the Fermi level in the graphenic

nanostructures, the valence spin-polarization phenomenon exhibit the property of local-

ity. This property has been exploited by Karplus and Fraenkel almost 50 years ago to

describe the isotropic 13C HFCCs in conjugated organic radicals [250]. The main con-

tribution to the hyperfine anisotropy originates from the total spin population n of the

on-site pz atomic orbital, which also incorporates the contribution of spin-polarized va-

lence states. Assuming a local axial symmetry,
←→
T can be written as a diagonal matrix

with elements Tzz/2=−Txx=−Tyy=Adip, where Adip=
2
5
γeγI~

2n〈1/r3
2p〉 (r2p is the distance
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of the carbon 2p electron to nucleus). Although n is largely defined by the on-site con-

tribution of the half-filled conduction π electron states, a significant contribution from

the spin-polarization of the filled valence states can also be expected.

The all-electron density functional theory calculations on molecular graphenic nanos-

tructures have been performed using the GAUSSIAN03 code [88]. The combination of

the EPR-III Gaussian-type orbital basis set [251] specially tailored for the calculations

of HFCCs and the B3LYP hybrid density functional [98, 100, 183] has been used. All

molecules have been relaxed using the 6-31G** basis set. This computational protocol

can be applied to molecules of limited size and provides HFCC values in excellent agree-

ment with experimental results [252]. For a representative set of experimentally measured
13C HFCCs in small graphenic ion-radicals [253–255] our computations provide the mean

absolute error of only 1.1 MHz (≈2% of the range of magnitudes) which justifies our use

of calculated HFCCs as a reference.

The HFIs in planar graphenic nanostructures were considered for a set of 12 small

planar hydrogen terminated nanographites (Fig. 6.5a) in their triplet spin states. This

provides overall statistics for 103 inequivalent 13C HFCCs. The calculated Aiso and Adip

values are fitted to the extended form of the Karplus-Fraenkel expression

A = aj(1 +
∑

i∈NN

bj∆ri)n
c + c

∑

i∈NN

(1 + d∆ri)n
c
i , (6.3)

where the two terms account for the contributions of the on-site and nearest neighbor

(NN) conduction electron spin populations, nc and nc
i , respectively, calculated from first

principles. The on-site coefficients aj and bj are distinguished for the cases of C atoms

with 3 carbon NNs (j=3) and the boundary atoms with 2 carbon NNs (j=2). The C–C

bond length effects are encountered through the coefficients bj and d with ∆ri=ri−r0 be-

ing the deviation of the bond length ri from the value for the ideal graphene, r0=1.42 Å.

The results of the regressions are summarized in Table 6.1 (1 MHz=4.136×10−3 µeV).

Fig. 6.5(b,c) shows the predicted (using expression (6.3) and fitted parameters) val-

ues Ãiso (Ãdip) versus the calculated Aiso (Adip) values. Regressions to the linear ex-

pression (6.3) provide accurate estimations (root-mean-square-errors are 1.2 MHz and

1.8 MHz for Aiso and Adip, respectively). The calculated isotropic HFCCs span about

the same range of magnitudes (−16.3 MHz<Aiso<23.1 MHz) as the dipolar HFCCs

(−5.3 MHz<Adip<24.1 MHz). The HFCCs of boundary atoms tend to be larger due to

the fact that low-energy states localize at the zigzag graphene edges [256]. The on-site

and the NN spin-polarization effects have competitive character (a3/c≈−2.5) in the case
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of isotropic HFCCs. Our calculations predict ≈50% larger values for the parameters a2,

a3 and c for Aiso compared to those obtained by Karplus and Fraenkel in their early

studies of HFCCs in molecular radicals (a2=99.8 MHz, a3=85.5 MHz and c=−39 MHz)

[250]. This difference can be explained by the explicit incorporation of the electron cor-

relation effects in our calculations and to the characteristic local atomic structure of the

graphene lattice. Both Aiso and Adip show a tendency to enhance the on-site and to

weaken the NN contributions with the increase of C–C bond lengths. The dipolar HFCC

is mostly influenced by the on-site contribution of the half-populated conduction state

and the NN spin-polarization effect is weaker in this case (a3/c≈−7). When compared to

typical solid state environments based on heavier elements, the 13C HFCCs in graphene

and related nanostructures are weaker (e.g. 117 MHz 31P Fermi contact HFCC for the

P shallow donor in Si [257]) and more anisotropic.
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Figure 6.5: (a) Set of graphene fragments used in the present calculations. Fitted Fermi

contact (Ãiso) and dipolar (Ãdip)
13C HFCCs vs the corresponding values, Aiso (b) and Adip

(c), calculated from first principles. The values for inner (3 carbon NNs) and boundary (2

carbon NNs) atoms are shown as red and blue dots, respectively.
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Table 6.1: Parameters (in MHz) fitted to the results of calculations of a set of nanographite

molecules.

This work Ref. [250]

Aiso Adip Aiso Adip

a2 151 144 99.8

a3 135 116 85.5

b2 1.7 2.9

b3 4.9 5.2

c -57.6 -17.3 -39

d -5.5 -13.9

The graphene honeycomb lattice is a bipartite lattice, i.e. it can be partitioned into

two complementary sublattices A and B. We discuss the HFIs for the three general

cases of conduction electron spin distributions over the sublattices: (i) ferromagnetic

nc
A=nc

B>0; (ii) ferrimagnetic nc
A>0 and nc

B=0 and (iii) antiferromagnetic nc
A=−nc

B>0

(see Table 6.2). The first case can be physically realized upon the uniform magneti-

zation of the system with equivalent A and B sublattices, e.g. by applying an exter-

nal magnetic field. The negative Aiso=−35.8 MHz is small due to the partial com-

pensation of the on-site and the NN spin-polarization effects. This value is consistent

with the values derived from the experimental 13C Knight shifts in graphite interca-

lates (−25 MHz<Aiso<−50 MHz) [226] and with the calculated isotropic Knight shifts

in metallic carbon nanotubes [104]. The ferrimagnetic case with the conduction state

distributed over the atoms of only one sublattice (A) is physically realized at the zigzag

edges [256] and around single-atom point defects in sublattice B [258]. Considerable

alternating Fermi contact and dipolar HFCCs are predicted in this case. An antiferro-

magnetic pattern can be realized in the case of heavily disordered systems with localized

defect and edges states in both sublattices [259]. The magnitudes of HFIs are mini-

mized and maximized in the cases of ferromagnetic and antiferromagnetic electron spin

distributions, respectively.

Many carbon nanostructures of reduced dimensionality (e.g. nanotubes and fulle-

renes) represent non-planar topologies. Local curvatures lead to the sp2−sp3 rehybridiza-

tion of carbon atoms and enable a Fermi contact interaction involving the electron spins

of π states [202]. This results in a positive contribution of the π states unless nc is close
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Table 6.2: Hyperfine coupling parameters for three general cases of spin populations nc of

the carbon atoms of A and B sublattices of graphenic systems.

Aiso(A)/nc Aiso(B)/nc Adip(A)/nc Adip(B)/nc

nc
A=nc

B>0 -38 -38 65 65

nc
A>0; nc

B=0 135 -173 116 -52

nc
A=−nc

B>0 308 -308 168 -168

to zero: a contribution due to the NN spin-polarization effect is negative in this case.

The degree of rehybridization m of the π states (smp) can be described using a local

bond angles analysis [247]. For the case of large curvature radii the original expression

for m can be reformulated in a more convenient form, m=d2
cc/8(1/R1 +1/R2)

2, where dcc

is the C–C distance, R1 and R2 are the principal curvature radii. The curvature-induced

contribution to the Fermi contact 13C HFCC is then Acurv
iso =8π

3
γeγI~

2nmφ2
2s(0), where

φ2s(0) is the magnitude of the carbon atomic 2s wavefunction at the point of nucleus.

For a 1.4 nm diameter carbon nanotube Acurv
iso /nc≈8.7 MHz, a value that is smaller than

the spin-polarization contributions for all scenarios given in Table 6.2. However, the

curvature-induced direct coupling grows as R−2 with decreasing R and becomes signifi-

cant, e.g. in the case of ultranarrow (d<1 nm) carbon nanotubes [238].

Table 6.3: Parameters (in MHz) describing the HFIs of nuclei of susbtitutional impurities

(11B and 14N), monoatomic functional groups (1H and 19F) and rehybridized carbon atoms

(13C) at the edges.

Aiso Adip

Nucleus Position a c a c

11B subst. impurity 43 -31 60 5
14N subst. impurity 150 -22 130 -10
1H Csp2 edge -118 20
19F Csp2 edge 240 -40
1H Csp3 edge 350
19F Csp3 edge 750
13C Csp3 edge -68
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Since the natural abundance of the “HFI-active” 13C isotope is small (≈1%), consid-

eration of the nuclei of other elements is important for a complete description of HFIs

in carbon nanostructures. The common substitution impurities are boron and nitro-

gen with all natural isotopes having nuclear spins. Graphene edges can be terminated

by hydrogen and fluorine atoms with both 1H and 19F spin-1/2 nuclei (99.9885% and

100% natural abundance, respectively) having high gyromagnetic ratios (γ(1H)/γ(13C)≈
γ(19F)/γ(13C)≈4). We consider HFIs in a reduced set of molecular fragments (only 3-

and 4-ring structures included) with impurities and edge functionalizations in all possible

positions. The calculated HFCCs have been fitted to the Karplus-Fraenkel relation, with

no ∆r terms included (Table 6.3). Both Fermi contact and dipolar HFCCs of the impurity

nuclear spins show a monotonic increase along the 11B–13C–14N series when compared

to the results for 13C HFCCs (Table 6.1). The NN relative spin-polarization effects (a/c

ratio) on the Fermi contacts HFCCs tend to decrease along the series. While the HFIs of

the nuclear spins in substitution impurities are highly anisotropic, the hyperfine couplings

of the edge nuclei show small anisotropy due to the sp3 character of bonding. When 1H

and 19F edge nuclei are bound to the Csp2 atoms, the isotropic HFCCs are of the same

order of magnitude as those of the 13C spins in the graphene lattice. The influence of

the NN carbon atoms (second NNs to the terminating atom) is very similar for 1H and
19F nuclei and smaller than in the case of 13C HFCCs (aH/cH≈aF/cF≈−6). The spin

polarization effect on 19F HFCCs is stronger and of opposite sign compared to that of

protons (aF/aH≈cF/cH≈−2). When edge atoms are bound to the rehybridized (sp3)

carbon atoms, nc is zero but the NN contribution is significantly enhanced. The NN con-

tribution to the 13C hyperfine coupling of the sp3 edge carbon atom itself (c=−68 MHz)

has a similar magnitude as that of the sp2 edge atoms (c=−57 MHz). HFIs with the

boundary spins (H-terminated edges are often obtained in experiments [260]) have to

be taken into account when designing carbon-based nanoscale devices for spintronics or

quantum computing. A chemical modification of the graphene edges (e.g. substitution of

the hydrogen atoms by alkyl-groups) can be suggested to reduce unwanted effects from

the HFIs with boundary spins.

To conclude, the results of first principles calculations show that the hyperfine inter-

actions in graphene and related nanostructures are defined by the local distribution of the

conduction electron spins and by the local atomic structure. A complete set of parame-

ters describing the hyperfine interactions with the extended Karplus-Fraenkel expression

was determined for the 13C and other common nuclear spins. These results will permit
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control of the magnetic interactions between the spins of electrons and nuclei by tailoring

the chemical and isotopic compositions, local atomic structures, and strain fields in sp2

carbon nanostructures. Some practical recipes for minimizing interactions with nuclear

spins are given.





Chapter 7

Point defects in carbon

nanostructures

7.1 Introduction

In the previous Chapter, we discussed the subject of magnetic interactions in carbon

nanostructures in the light of their possible applications. At this stage, it is fairly diffi-

cult to avoid the question of a possibility of long-ranged magnetic order in such systems.

In fact, magnetic correlations in carbon materials have been reported recently by several

experimental groups [261] for different graphenic systems. Although in most of these

observations the origin of magnetic ordering still remains obscure and even some experi-

ments are questioned, the topic of carbon magnetism has attracted enormous attention.

Since in current technological applications magnetic materials are based exclusively on

d and f elements, new carbon-based magnetic materials would greatly extend the limits

of technologies relying on magnetism. These materials may have low density, unusual

properties (e. g. plasticity or transparency) and, eventually, can be made environment

friendly. Even more promising is the application of such materials in the design of

nanoscale magnetic and spin electronics devices.

While ideal graphite and carbon nanotubes are in itself nonmagnetic, experimen-

tal observations of magnetic ordering are often explained by the presence of impurities

[262], boundaries [263, 264] or defects [265, 266]. Defects in nanographites [267] can be

created intentionally by irradiating material with electrons or ions [39, 41, 42, 268]. By

manipulating the conditions of irradiation it is possible to tune, in a flexible way, the

properties of the carbon-based materials [40, 43, 269, 270]. In the first part of this Chap-
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ter, we investigate the defect-induced itinerant magnetism in graphene. Afterwards, we

study the mechanisms of radiation-induced defect formation in carbon nanostructures.

Understanding these mechanisms is also important is some other contexts. Radiation

resistance of graphite has been one of the major concerns of nuclear industry [271, 272].

Nowadays, radiation treatment by high-energy electrons or ions is also viewed as a versa-

tile tool for the design of new materials. The formation of irradiation-induced defects in

graphite-like layered carbon nanostructures (multiwalled and bundled carbon nanotubes,

nanoonions, etc.) changes their mechanical [43] and electronic properties [40, 270] and

may even trigger dramatic structural changes [273, 274]. However, the structure and

dynamics of defects in graphite and carbon nanostructures as well as the mechanisms

underlying their creation and transformation remain elusive. This knowledge is crucial

for a defect-assisted engineering of nanostructures with applications in, e. g., manufac-

turing of nanoelectromechanical systems [275–278].

7.2 Magnetism induced by single atom defects

Defects in carbon nanostructures exhibit spectacular diversity. In this study we concen-

trate on simple prototypical defect structures. Examples of simple defects in nanographi-

tes are single atom vacancies and hydrogen chemisorption defects. The former defect

type is produced upon irradiation with high energy particles [266] while the latter is the

major outcome of the hydrogen plasma treatment [268]. The common feature of both

types of defects is that only one carbon atom is removed from the π conjugation net-

work of the graphene sheet. The single-atom defects on the graphene lattice give rise

to quasilocalized states at the Fermi level [268, 279–281]. When a defect is created in

one sublattice of the graphene bipartite lattice, only the pz orbitals of carbon atoms in

the complementary sublattice contribute to the quasilocalized state. These states ex-

tend over several nanometers around the defects forming characteristic (
√

3×
√

3)R30◦

superstructures recognized in STM images. Analyzing the position and the orientation

of the superstructures one can precisely locate the defect and determine the sublattice

to which it belongs [258, 279]. The fact that quasilocalized states lie at the Fermi level

suggests that magnetism can be induced by the electron exchange instability. It has been

argued recently, that the Stoner ferromagnetism with high Curie temperatures Tc can be

expected for sp electron systems [282]. On the other hand, the Ruderman-Kittel-Kasuya-

Yoshida (RKKY) coupling [283–285] of localized magnetic moments in graphene is too



7.2 Magnetism induced by single atom defects 107

weak to result in high Tc [286].

By using first principles approaches we investigate magnetism originating from the

quasilocalized states induced by single-atom point defects in graphene. The results ob-

tained can eventually be extended, with some precautions, to defects in other nanographi-

tes. The model system consists of a periodic two-dimensional superlattice of defects in

graphene (Fig. 7.1a). The supercell size can be varied resulting in different distances d

between the neighbor defects on the superlattice and, thus, in different defect concentra-

tions. The results can be further extrapolated to the cases of low defect concentrations.

For the chosen supercell, the resulting distance between neighbor defects is about 3nacc

where acc=1.42 Å is the carbon-carbon distance in graphene. The corresponding number

of carbon atoms per unit cell is 6n2. Our investigation is restricted to the cases with

n=2−6. The largest system considered (n=6) is characterized by about 25 Å separation

between neighbor defects, which corresponds to a defect concentration of 0.5%.

a) b)

c)

d)

Figure 7.1: (a) Definition of the extendable two-dimensional hexagonal lattice of defects

in the graphene sheet. The unit cell and the Wigner-Seitz cell are shown as full and dashed

lines, respectively. The defective atom is labeled by the triangle according to the orientation of

the defect state
√

3×
√

3 superstructure. The size of the supercell shown here corresponds to

9acc separation between neighbor defects (n=3). (b) Structure of the hydrogen chemisorption

defect. (c) Structure of the vacancy defect. (d) Hexagonal closest packing (n=1) of vacancy

defects with the corresponding unit cell.
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Density functional theory calculations were performed using the SIESTA code [287].

The generalized gradient approximation exchange-correlation density functional of Per-

dew, Burke and Ernzerhof (PBE) [153] was employed. All calculations were performed in

the spin-unrestricted manner using the diagonalization-based method for solving Kohn-

Sham equations. The shifted Monkhorst-Pack grids [288] corresponding to a cutoff of

100 Bohr were used to sample the Brillouin zone in two dimensions. Atomic positions

and cell dimensions were relaxed. The numerical atomic orbital basis set of single-ζ

plus one polarization function (SZP) quality was used for the whole range of models

studied. All calculations for the models with n=2−4 were reproduced using the basis

set of double-ζ plus one polarization function (DZP) quality. For all electronic structure

quantities discussed in this study (magnetic moment, Fermi levels and band maxima),

there is a good agreement between the results of the two basis sets, despites the slight

overestimation of the C−C bond length found in the SZP calculations.

In the following we present our results for the two types of defects. The structure of

the hydrogen chemisorption defect is shown in Fig. 7.1b. This defect is characterized by

the slight protrusion of the hydrogenated carbon atom and the very small displacement of

all other neighbor carbon atoms [289, 290]. The single atom vacancy defect in graphene

is nearly planar (Fig. 7.1c). The local three-fold symmetry breaks down due to the Jahn-

Teller distortion induced by the reconstruction of two dangling bonds left after removing

the carbon atom. This gives rise to the in-plane displacement of other carbon atoms in

the graphene lattice [266, 291]. The third dangling bond is left unsaturated providing

a contribution of magnitude 1 µB to the intrinsic magnetic moment of the defect. For

the case of the vacancy type defect (Fig. 7.1d) in the closest packing geometry (n=1) no

single six-membered ring remains. This interesting structure can be considered as yet

another hypothetical allotropic modification of carbon for which one may expect a high

specific magnetic moment.

Magnetism induced by the presence of quasilocalized defect states ψd(r) has been

observed in the case of both defect types. The hydrogen chemisorption defect gives rise

to the strong Stoner ferromagnetism [292] with a magnetic moment of 1 µB per defect at

all studied concentrations (Fig. 7.2a). The flat defect bands give rise to the very narrow

peaks (W<0.2 eV) at the Fermi level (Fig. 7.3a) which are necessary for the stability of

magnetic ordering at high temperatures [282]. The defect band maxima for the majority

spin and the minority spin components lie, respectively, lower and higher than the the

Fermi levels for both defective and ideal graphene. This leads to the conclusion that
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Figure 7.3: Density of states plots for the

systems with the hydrogen chemisorption de-

fects (a) and with the vacancy defects (b)

(n = 4). The dashed line shows the density

of states of the ideal graphene. Labels indi-

cate the character of the defect states.

the hydrogen chemisorption motif is charge neutral and spin-polarized in the wide range

of defect concentrations. On contrary, fractional magnetic moments and weak Stoner

ferromagnetism [292] have been observed for the vacancy-type defect models. A magnetic

moment of 1.15 µB has been predicted for the closest packing of vacancy type defects

(n=1) (Fig. 7.1d), while for smaller defect concentrations the magnetic moment was

found to vary in the range of 1.45−1.53 µB per defect (Fig. 7.2a). For the vacancy-

type defect, the total magnetic moment is determined by the contribution (1 µB) of the

localized sp2 dangling bond state (atom 1 in Fig. 7.4b) and the contribution (<1 µB) of

the extended defect state, ψd(r) (labeled pz in Fig. 7.3). The width of the defect state

bands and the overall modification of the band structure are larger in the case of the

vacancy type defects (Fig. 7.3b). The partial spin polarization of ψd(r) (filled majority

spin band and half-filled minority spin band) is explained by the self-doping (charge

transfer from the bulk to ψd(r)), which arise from the stabilization of the defect state.
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The stabilization of vacancy defect extended states is possible in the case of a significant

coupling between the second nearest neighbor atoms belonging to the same sublattice

[281]. In the case of the vacancy defect, the indirect coupling is justified by the formation

of the covalent bond between the two carbon atoms 1’ (Fig. 7.4b) that follows the defect

reconstruction. No such bond is possible in the case of hydrogen chemisorption. Thus,

the character of the defect-induced magnetism depends on the possibility of bonding

between the second nearest neighbor atoms due to the reconstruction. This provides an

interesting opportunity for tailoring magnetic properties of materials. The defect state

exchange splitting dǫx, defined as the difference between the corresponding majority spin

and minority spin band maxima, decreases as the defect concentration decreases. This

is not surprising since the degree of the localization of the defect states depends on

the defect concentration [281]. At the lowest studied defect concentration of 0.5%, the

exchange splittings were found to be 0.23 eV and 0.14 eV for the hydrogen chemisorption

and vacancy defects, respectively. In the latter case, the splitting is smaller due to the

partial spin polarization of the defect band. Since in both cases dǫx>kBT for T ≈300 K,

the Stoner theory predicts Tc above room temperature for defect concentrations of the

order of 1%. The decrease of the Stoner theory Tc due to spin wave excitations is expected

to be ineffective for the case of carbon based materials [282]. At low concentrations the

magnetism in defective nanographites is expected to be sensitive to the variations of the

Fermi energy resulting from self-doping, presence of other defects or applied bias, and to

the disorder-induced broadening.

The distributions of the electron spin magnetization density in the vicinity of both

types of defects clearly show the characteristic
√

3×
√

3 patterns also observed for the

charge density in the STM experiments. For the hydrogen chemisorption defect the

projection of the spin density (Fig. 7.4a) on the graphene plane clearly shows three-fold

symmetry. For the vacancy type defect the symmetry is broken due to the Jahn-Teller

distortion (Fig. 7.4b). The localized magnetic moment associated to the dangling bond of

atom 1 can also be observed. The simulated STM images (Fig. 7.4c and 7.4d) based on our

calculations agree with experimental observations [268, 279, 280]. The distribution of the

electron spin density is represented in Fig. 7.5 (n=6 model) by means of the Mulliken spin

populations averaged over ith nearest neighbors to the defect atom. The spin populations

show a dumped oscillation behavior as a function of the nearest neighbor index and,

therefore, of the distance to the defect. The magnetization pattern is explained by the

fact that the defect state is distributed over the sites of the sublattice complementary
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Figure 7.4: Spin density projection (in µB/a.u.2) on the graphene plane around (a) the

hydrogen chemisorption defect (△) and (b) the vacancy defect in the α sublattice. Carbon

atoms corresponding to the α sublattice (◦) and to the β sublattice (•) are distinguished.

Simulated STM images of the defects are shown in (c) and (d).

to the one in which the defect was created (i. e. over the odd nearest neighbors),

and shows a power law decay [281]. The major positive contribution to the electron

spin density is defined by the exchange splitting of the defect states. In addition, the

exchange spin-polarization effect (i.e. the response of the fully populated valence bands

to the magnetization of the defect states) results in a negative spin density on the even

nearest neighbor sites (blue in Fig. 7.4) and in the enhancement of a positive spin density

on the odd nearest neighbor sites (red in Fig. 7.4). A similar phenomenon takes place in

the case of the neutral bond length alternation defect states in one-dimensional polyene

chains [293, 294]. The calculated magnitude of the negative spin-polarization is ≈1/3 of

the positive spin populations on the neighbor sites in the vicinity of the defect site. This

is close to the ratio observed for the trans-polyacetylene [293]. The magnitudes of the
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spin populations are lower in the case of the vacancy defect because of the fractional

spin-polarization of the defect band.
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Figure 7.5: Dependence of the spin popula-
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the hydrogen chemisorption defects (•) and

the vacancy defects (◦). The spin popula-
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vacancy defect (0.39) are out of scale due to

the contribution of the localized sp2 dangling

bond state.

According to the Stoner picture, the magnetic ordering is driven by the exchange

energy Ex ∼ −
∑

iM
2
j with Mj being the magnetization of the pz orbital of the jth

carbon atom [292]. Ferromagnetic ordering is the only possibility for the magnetism

originating from quasilocalized states induced by defects in the same sublattice because

of the non-oscillating behavior of both (i) Mj within the same sublattice and (ii) the

indirect (RKKY) coupling due to the semimetallic properties of graphene [286]. On the

contrary, for the case of defect states in different sublattices, Ex is minimized when the

coupling is antiferromagnetic. In this case, the mechanism of the exchange coupling is

defined by the indirect spin-polarization effect. The strength of the coupling between

the defect-induced magnetic moments located in different sublattices depends on the

defect concentration since Ex ∼ −
∑

iM
2
j . The contribution of the magnetic moment

associated with a single defect is
∑

iM
2
j ∼

∑
j |ψd(rj)|4 ∼ log−2(N), where 1/N is the

defect concentration [281]. To further illustrate this point, we calculated the ground state

magnetic configuration of the system with three close hydrogen chemisorption defects

using the DFT approach. We found that in the ground state configuration two defects in

the α sublattice are coupled ferromagnetically with each other and antiferromagnetically

with the third defect in the β sublattice (Fig. 7.6). The resulting magnetic moment of

this system amounts to 1 µB, and the characteristic
√

3×
√

3 superstructure patterns

of the magnetization density associated with individual defects can be recognized. In

nanographite materials with defects present with an equal probability in both sublattices,

the overall correlation of the magnetic moments is expected to be antiferromagnetic. The
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antiferromagnetic ordering was experimentally observed in carbon nanohorns [295, 296].

Figure 7.6: Spin density distribution in the

system with three hydrogen chemisorption de-

fects (two defects in sublattice α (⊲) and one

in sublattice β (◭)).

In conclusion, our calculations reveal the itinerant magnetism triggered by simple

defects in graphene and stable over the wide range of concentrations. It is notable, that

the itinerant magnetism does not require the presence of highly reactive unsaturated

dangling bonds. Both ferromagnetic and antiferromagnetic scenarios of the magnetic

correlation are possible with the second being more probable for truly disordered sys-

tems. The reconstruction of vacancy defects was found to be responsible for the partial

suppression of magnetic moments and for the broadening of defect bands.

7.3 Radiation-induced defect formation

Radiation damage of matter is governed by the displacement of atoms from their equilib-

rium positions due to electronic excitations and direct collisions of high-energy particles

with the nuclei. In metals and narrow band gap semiconductors electronic excitations

quench instantaneously, leaving collisions with nuclei as the sole mechanism responsi-

ble for the creation of defects in graphite and related carbon materials [269]. If the

kinetic energy transferred from a high-energy electron or ion to the nucleus is higher

than the displacement threshold Td, a carbon atom can leave its initial position to form

a metastable defect structure on a sub-picosecond time scale. Such events are called

knock-on displacements. For highly anisotropic layered carbon materials the threshold of

the off-plane displacement is T⊥
d ≈15-20 eV [273], while a creation of defect due to the in-

plane knock-on collision requires higher transferred energies, T
||
d≥30 eV. Possible defects

produced by radiation damage include separated and intimate pairs [297] of interstitial
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atoms and vacancies, and in-plane topological defects involving non-sixmembered rings,

e.g., Stone-Wales defect [298, 299]. The existence of defects in carbon nanostructures has

been confirmed by direct observations [41, 42].

Upon knock-on events a large amount of energy is transferred to only a few degrees

of freedom. The resulting defect structures formed on a picosecond time scale depend

on the magnitude and on the direction of the transferred momentum and determine the

fate of the system at longer time scales. Therefore gaining control over the early stages

of defect formation by tuning the irradiation conditions will make the paradigm of the

defect-assisted engineering feasible. Molecular dynamics (MD) simulations performed

with empirical potentials [300] or tight-binding models [301–303] have been used for the

studies of radiation damage of various carbon materials. Below, we report a systematic

first principles study of the early stages of radiation damage of graphite, a general model

for closely related layered carbon nanostructures.

7.3.1 Simulations

By using ab initio molecular dynamics we simulate the process of defect formation after

the initial transfer of a momentum T to one of the carbon atoms in the system. The

periodic model system consists of a unit cell with 108 carbon atoms, which contains two

graphene sheets with stacking ABAB. The dimension of the unit cell in the direction per-

pendicular to the graphene planes was fixed to 6.7 Å in accordance with the experimental

interlayer distance 3.35 Å [304]. The in-plane distance between two periodic images is

12.7 Å which is large enough to ensure localization of the defect within the unit cell.

A coarse sampling of the irreducible wedge of the space spanned by the magnitude of

transferred energy T and the pair of angles φ∈[0◦; 90◦] and θ∈[0◦; 60◦] (Fig. 7.7, inset)

has been performed. The ab initio MD simulations were carried out using the CPMD [132]

plane wave density functional theory (DFT) code and the Perdew, Burke, and Ernz-

erhof exchange-correlation density functional [153]. A plane wave kinetic energy cutoff

of 60 Ry and norm-conserving pseudopotentials [151] have been used. The simulations

were performed within the spin-unrestricted formulation of DFT starting from an initial

guess asymmetric with respect to the spin components. Such a starting configuration

is required in order to ensure a broken-symmetry path of bond breaking events [305].

The first 100 fs of each MD simulation were performed using the Born-Oppenheimer

scheme. The initial simulation was followed by a Car-Parrinello simulation [131] with
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Nosé-Hoover thermostat [306] (350 K) until a stable defect structure was reached which

typically required less than 1 ps. Finally, the obtained defect structures were relaxed by

slow annealing of both ionic and electronic degrees of freedom. The formation energies

were evaluated using the SIESTA code [287] by relaxing the ionic coordinates and the

in-plane cell dimensions. The same norm-conserving pseudopotentials and density func-

tional as in the plane wave calculations together with an optimized DZP basis set were

used. A 2×2×2 k-point grid was employed in order to obtain accurate defect formation

energies [307].
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φ, and θ. The labels indicate formation of defect structures (Fig. 7.8 and 7.9). Other labels

correspond to: “n” - no defect formation, and “c” - displacement cascade. The outcomes for

α/β carbon atoms are distinguished for off-plane displacements. Color codes correspond to

the magnitudes of transferred kinetic energy. The convention for the direction of knock-on
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7.3.2 Off-plane recoils

The outcomes of our simulations are summarized in Figure 7.7. We first discuss the

simulation results for the off-plane displacements (φ∈{0◦; 30◦; 60◦}) of carbon atoms in

inequivalent positions α and β. The outcomes can be divided into four major classes: (i)
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no defect formation due to insufficient transferred momentum or due to instantaneous re-

combination of the recoil atom with the vacancy (“n”); (ii) separated interstitial-vacancy

pairs (I-V); (iii) intimate interstitial-vacancy pairs (iIV); (iv) displacement cascades (“c”)

in which the recoil atom is able to displace other atoms in the lattice. The later case can

be viewed as a series of elementary events of types (i)–(iii). The simulation of displace-

ment cascades is beyond the scope of this study and would require a larger unit cell than

the one used here.

V I  (14.8 eV)1

iIV (10.5 eV)1

I  (14.3 eV)2

iIV (11.0 eV)2 iIV (11.6 eV)3

iIV (12.1 eV)4 iIV (12.2 eV)5 iIV (13.0 eV)6

Figure 7.8: Perspective views of the atomic structures of the vacancy (top, left), interstitial

(top, right), and intimate Frenkel pair (bottom) defects observed in our simulations. The

formation energies are given in parentheses. The values given for interstitial defects refer to

the formation energies of corresponding Frenkel pairs. For iIV defects the created vacancy is

situated in the upper graphene layer.

The formation of well-separated Frenkel pairs was observed for atoms in both α

and β positions at T≥25 eV. Surprisingly, the interstitial defects were produced only
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in the form of a symmetric “dumbell” structure (I2) [308, 309] where the two carbon

atoms are symmetrically displaced from the graphene plane (Fig. 7.8, top). Despite

the highly distorted coordination sphere of these atoms, the C-C distance of 1.58 Å

is close to the one of a typical σ bond. The core atomic structure is the same as for

the [1.1.1]propellane molecule for which a very similar C-C bond length (1.60±0.02 Å)

has been observed experimentally [310]. No single off-plane recoil led to the “bridge”

structure (I1) [300, 308, 311] with the interstitial atom situated between two graphene

planes. The formation energy of I2 (Ef=14.3 eV, the value refers to the formation energy

of the corresponding I-V pair) is only 0.5 eV lower than the one of I1 (Ef=14.8 eV)

where the “bridge” interstitial defect is bonded only to the neighbor atom in the same

layer. In this case, a steric repulsion with the opposite graphene layer contributes to the

destabilization of the I1 defect. However, bonding to the opposite layer leads to more

stable shared interstitial defect structures [272, 308]. In the ylid (Ef=14.1 eV) and spiro

(Ef=13.1 eV) configurations, the shared interstitial atom is additionally bound to one

and, respectively, to two carbon atoms of the adjacent layer. These structures have not

been observed in our MD simulations. The observed preference for the I2 configuration

in graphite may have the following origin. In the “dumbell” configuration the recoil

atom is able to transfer its excess kinetic energy to the other atoms more efficiently than

in the case of the “bridge” configuration. At the same time, the formation of shared

interstitials requires the improbable collective motion of a number of atoms in the two

adjacent graphene layers in the direction of the recoil atom. This explains the observed

high probability for the formation of the I2 defect structure in the early stages of the

radiation-induced defect formation. For the isolated graphene sheet, I1 is 0.2 eV more

stable than I2 due to the absence of the steric repulsion with the adjacent graphene

layer. In curved graphenic structures, like carbon nanotubes, the “bridge” interstitial

defect undergoes further stabilization. The “dumbell” interstitial can also be viewed as

a stable intermediate of the self-diffusion process in graphite along the c-axis, occurring

via the substitution of a carbon atom in the graphene layer [312]. Our first principles

calculations predict that the transition from the defect structure I2 to the structure I1 in

graphite is characterized by an activation barrier of 0.9 eV.

Formation of intimate interstitial-vacancy pairs (iIV) requires lower transferred ki-

netic energies. At T=20 eV we observed the formation of two low energy iIV pairs, iIV1

(Ef=10.5 eV) and iIV2 (Ef=11.0 eV) (Fig. 7.8, bottom). The displaced atom bridges

the defect vacancy with two, respectively, three neighbor atoms in the opposite layer,
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which undergo rehybridization. A fine scan of the transferred momentum space indicates

a Td value of 18 eV for graphite, in agreement with other reported values [273, 313].

As a consequence, the use of a particle beam energy capable of achieving a maximum

kinetic energy transfer just above Td will selectively create iIV defects. This value for

Td would correspond to the maximum kinetic energy transferred by an electron beam of

90 keV [313]. In the case of carbon nanotubes, Td is expected to be lower due to curva-

ture effects [42]. This proves the crucial role of the iIV defects in the reinforcement of

carbon nanotube bundles [43, 314] produced by 80 keV electron irradiation. Our results

suggest the optimal conditions for the modification of mechanic and electronic properties

of carbon-based layered nanostructures by means of the formation of iIV defects. Such

modifications are nondestructive since iIV defects tend to self-recombine without pro-

ducing extensive damage of the nanostructure [42]. This is also supported by the fact

that the barriers for iIV1 defect recombination [297] and for the transformation of iIV1

into iIV2 (0.9 eV in this study) lie below the formation energies of I-V pairs.

Our computed formation energy for the previously proposed iIV1 structure [297] is

in good agreement with the values reported in other studies [297, 308, 314]. However,

MD simulations on a longer time scale (1 ps) indicate that the asymmetric iIV1 defect

in graphite is not stable against recombination if shear of graphene layers is allowed. By

contrast, the symmetric iIV2 defect is stable throughout our MD simulations. Two other

intimate Frenkel pairs, iIV3 (Ef=11.6 eV) and iIV5 (Ef=12.2 eV) have been obtained

upon off-plane recoils caused by larger transferred momenta. In both structures the

displaced carbon atom is linked to two carbon atoms in its host layer and one atom in

the neighboring layer. It is notable that the formation of iIV defects has been observed

only upon recoil of the β carbon atom.

7.3.3 In-plane recoils

The formation of defects after displacement in the graphene plane (φ=90◦) requires higher

transferred energies T≥30 eV. At T=30 eV (θ=30◦) we observed the formation of a Stone-

Wales (SW) defect [298], which is the lowest energy (Ef=4.8 eV) defect in graphite.

The mechanism of its formation involves the cyclic permutation of three carbon atoms

occurring during the first 100 fs after the knock-on collision (Fig. 7.9, top). A much lower

activation barrier of ≈10 eV is required when the SW defect is formed upon simultaneous

rotation of two neighboring carbon atoms about the axis perpendicular to the graphene
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Figure 7.9: Top: The mechanism of formation of a Stone-Wales defect upon in-plane knock-

on displacement (T=30 eV). The carbon atoms involved in the rearrangement are marked

with letters. Bottom: Atomic structures of 7-5-4-8 and 5-7-7-4-4-9 topological defects. Non-

sixmembered rings are indicated by arabic numbers.

plane [299]. However, this mechanism cannot be realized upon knock-on collisions because

in this case the kinetic energy is transferred to a single atom. Irradiation of graphene-

based materials, using an electron beam of energy just above 150 keV and oriented along

the graphene plane, will result in an increase of yield of SW defects. This can be used

for tuning electronic properties of materials [315]. However, because of the high energy

transfer required for their formation, SW defects will be accompanied by the formation

of Frenkel pairs, which form upon low energy (T<30 eV) off-plane recoils.

For T>30 eV two possible general mechanisms of defect formation have been identi-

fied. The first one involves the formation of strained structures containing non-sixmembe-
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red rings, which have formation energies higher than the formation energy of the SW de-

fect. Two such structures, 7-5-4-8 (Ef=11.3 eV) and 5-7-7-4-4-9 (Ef=12.2 eV) have

been observed in our simulations (Fig. 7.9, bottom). The second mechanism involves

the expulsion of one carbon atom from the graphene plane shortly after the collision. In

this case interstitial-vacancy pairs are formed. We observed formation of the “bridge”

interstitial defect I1 caused by the expulsion of a carbon atom with low kinetic energy.

In addition, two new intimate interstitial-vacancy pairs, iIV4 (Ef=12.1 eV) and iIV6

(Ef=13.0 eV) have been characterized. In the iIV4 structure the defect is localized in

the graphene layer where the collision took place. On the contrary, the displaced carbon

atom in the iIV6 structure bridges three atoms of its host layer with one of the neigh-

boring layers. The formation energies of all six iIV structures found in our simulations

lie within a narrow interval of 2.5 eV, and they are all below the formation energies of

separated I-V pairs.

In conclusion, our ab initio molecular dynamics study reveals a variety of different

defects, including structures which have never been discussed previously, were observed

in our simulations. The produced defects depend strongly upon the direction and magni-

tude of the transferred momentum, resulting in the selective formation of certain defect

structures. We showed the crucial role played by the early stage dynamics, and we iden-

tified the conditions at which selective creation of defects can be achieved. The results

are of practical importance for radiation-assisted manufacturing of carbon materials and

nanostructures with new desired properties and functions.



Chapter 8

Conclusions

8.1 Overview of results

In this work we have studied magnetic properties of paramagnetic aqua ions and carbon

nanostructures. Application of paramagnetic complexes as contrast agents for magnetic

resonance imaging is a mature branch of the industry of medical diagnostics. Systematic

research in the field of MRI contrast media focuses on the development of complexes

with higher efficiency (relaxivity) and new functions. The phenomenon of paramagnetic

relaxation enhancement is a complicated interplay of interactions involving electron and

nuclear spins and molecular dynamics in solution. In our work we assessed some of these

interactions parameters and tried to understand their structure-property relations.

In particular, we determined a complete set of coupling parameters between the nu-

clear spins of an inner coordination sphere water molecule of gadolinium(III) aqua com-

plexes with electron surrounding. The physical interactions behind these parameters are

the hyperfine interactions, magnetic interactions between the spins of nuclei and electrons

in paramagnetic systems, and the quadrupolar interactions, interactions between nuclear

electric quadrupoles (in the case of 17O nucleus) and local electric field gradients. We

found that the hyperfine interactions are due to the spin-polarization of water molecules

by the localized f -electrons of gadolinium. This spin-polarization enables Fermi contact

coupling of proton and 17O nuclear spins to the electron spins of gadolinium. The same

physical mechanism is responsible for the deviation of the dipolar (through space) hy-

perfine interaction from the simple point-dipole model. This deviation can be corrected.

We also found that the 17O quadrupolar interactions on the inner coordination sphere

water molecule are very similar to those of a water molecule in the hydrogen bond net-
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work of neat water. Our finding resolves the long-standing debate about the value of this

parameter. The results of our study can be directly applied within the actual model of

relaxation of nuclear spins enhanced by the presence of gadolinium(III) complexes.

We also performed first principles molecular dynamics simulations of two paramag-

netic metal ions, Cr3+ and Gd3+, in aqueous solutions. The main goal of this study was

the assessment of the hyperfine interactions in the outer coordination sphere of paramag-

netic metal ions. A realistic periodic supercell model was required for reliable simulation

conditions. The outer sphere 17O Fermi contact hyperfine couplings are known experi-

mentally for an aqueous solution of the Cr3+ ion; the values are about 1/10 of the values

for the inner sphere 17O nuclei and have an opposite sign. The results of our calcula-

tions are in remarkable agreement with experimental data. This makes us confident in

density functional theory as a tool for studying spin-polarization in extended system.

In the case of the Gd3+ ion, the spin-polarization of the outer-sphere water molecules

was found to be smaller in magnitude. We attributed this observation to a lower degree

of organization of the second coordination sphere of the gadolinium(III) ion as com-

pared to the chromium(III) ion. In order to enable calculations of hyperfine coupling

constants within the first principles molecular dynamics scheme we developed a novel

computational technique. It takes into account spin-polarization of core electrons which

is missing in pseudopotential electronic structure methods used in the vast majority of

first principles molecular dynamics codes. Our benchmark tests showed that the accuracy

of our approach is close to the accuracy of all-electron calculations which are typically

performed on molecular systems.

The scientific research in the field of carbon nanostructures is more likely a techno-

logical revolution rather than a gradual improvement of existing technologies. Recent

discoveries of novel carbon nanostructures and their extraordinary properties continu-

ously motivate the scientific community to search for applications in all possible fields of

human activity. We were looking for unusual magnetic properties of these materials, in

particular, hyperfine interactions. We predicted from first principles that the isotropic

Knight shift, a hyperfine contribution to the nuclear magnetic resonance chemical shift,

in metallic carbon nanotubes depends on the nanotube diameter. This can be practically

used in nuclear magnetic resonance studies of these nanostructures. The knowledge of

hyperfine interactions has some implications for possible future applications of these ma-

terials in spintronics and quantum computing devices. Using a more general approach

based on accurate calculations of small graphenic fragments, we found that the hyperfine
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interactions can be described in local variables. This approach was also generalized to

hyperfine couplings of nuclear spins of impurities and boundary functional groups. Such

knowledge will permit the design of nanoscale structures with predefined hyperfine fields.

We also found that an itinerant magnetism in graphene is triggered by the presence

of point defects. It originates from the defect-induced quasilocalized states and does

not require the presence of highly reactive unsaturated dangling bonds. The overall

magnetic correlation may have both ferromagnetic and antiferromagnetic character de-

pending on the distribution of the defects over graphene sublattices. We believe that the

defect-induced itinerant magnetism is responsible for experimental observations of ferro-

magnetism in irradiated graphite. Magnetic materials based on light elements like carbon

may find important applications in technology. Finally, we investigated the mechanisms

of the irradiation defect formation in layered carbon nanostructure. Using first principles

molecular dynamics we performed simulations of knock-on displacements in a prototype

model – graphite. We showed the crucial role played by the early stage dynamics, and

we identified the conditions at which selective creation of defects can be achieved. In

particular, we identified an interval of electron beam energies in which only low-energy

intimate Frenkel pair defects bridging adjacent graphene layers are produced. We also

concluded that Stone-Wales defects, characterized by the lowest formation energy, can

not be produced selectively upon irradiation. Our results are of practical importance

for radiation-assisted manufacturing of carbon materials and nanostructures with new

desired properties and functions.

8.2 Perspectives

Scientific research as an area of human activity possess one unusual property: an answer

to a question gives birth to new questions. This property is responsible for an accelerating

technological progress of human society. Below I will provide only a few problems related

to this thesis that will probably be solved in the near future.

We have successfully applied density functional theory to predict the hyperfine and

quadrupolar components of the effective spin-Hamiltonian. There is another important

term, the zero-field splitting - an effective interaction within the S>1/2 electron spin

system, which is responsible for the relaxation of electron spins in MRI contrast agents.

Predicting this property accurately from molecular structure is a challenging (but not

impossible) task.
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Computer power available for scientific community grows continuously. Performing

first principles molecular dynamics simulations on larger systems (MRI contrast agents

in solution) and covering longer time scales (on the order of nanoseconds) will become

possible in several years. This will bring computer aided design of MRI contrast agents

to a new level of accuracy.

Although various mechanisms responsible for magnetism in carbon nanostructures

have been predicted, there is no definitive proof in favor of one of them due to the lack

of experimental observations. A reliable methodology for accurate predictions of Curie

temperatures in such systems is also missing. One can foresee that this gap in knowledge

will be closed in future.

Explaining the high efficiency of Gd-loaded carbon nanotubes as MRI contrast agents

[316] is another priority problem. Both electronic interactions and molecular dynamics

in such systems are unexplored. Understanding the underlying mechanisms of the high

efficiency will initiate a rational search for even more efficient MRI contrast agents in

new classes of chemical compounds and nanostructures.



Appendix A

Si 2p photoelectron spectra at

silicon surfaces and interfaces

In this Appendix, we refer to the subject of X-ray photoelectron spectroscopy probing

core-level electrons, a widely used experimental technique for studying the chemical com-

position of semiconductor surfaces and interfaces. At a glance, this topic seems to be

loosely related to the subject of magnetism and hyperfine interactions. However, probing

hyperfine interactions in “low-energy” magnetic resonance experiments and exciting core

electrons with “high-energy” X-rays share an important property - a property of locality.

As we will see below, due to the extreme degree of localization of core electrons, the

X-ray photoemission spectroscopy provides an information about the vicinal electronic

structure and, thus, about the local covalent neighborhood.

The increasing availability of synchrotron radiation facilities is bearing X-ray photoe-

mission spectra of unprecedented resolution characterizing surfaces and interfaces [317].

The achieved sensitivity is sufficient to distinguish inequivalent subsurface atoms with

identically composed first-neighbor shells (oxidation states). Hence, the interpretation

of such core-level spectra can no longer be achieved with simple electronegativity ar-

guments, but requires the consideration of the interplay between local strain fields and

electronegativity effects of second-nearest neighbors. Thus, the challenges for theory not

only involve the accuracy of computer simulations, but also the search for new paradigms

to analyze the origin of the observed shifts.

These difficulties are strikingly illustrated for the Si(100)2×1 surface, which has been

the object of numerous highly resolved X-ray photoemission investigations [319, 321–323].

While the shifts pertaining to the first-layer dimer atoms have been identified [321, 324],
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(a) (b)

(c) (d)

Figure A.1: Top: atomic structure of the Si(100)-c(4×2) surface (a) and one of the proposed

models of Si(100)-SiO2 interface (b) (O – red, Si – yellow) [318]. Bottom: Experimental XPS

spectra of the Si(100) surface [319] and the Si(100)-SiO2 interface [320]. Assigned signals

corresponding to the surface dimer atoms and interface atoms with intermediate oxidation

states (+1,+2,+3) as well as unassigned signals are shown.

the other lines appearing in highly resolved Si 2p spectra (Fig. A.1c) still lack a consensual

assignment [319], despite the detailed knowledge of the surface reconstruction [325–327].

Even more interesting is the case of the Si(100)-SiO2 interface, where the atomic structure

connecting the crystalline Si with the amorphous oxide remains a debated issue [328–331].

While the partial oxidation states of Si [332] are by now well understood [333], highly

resolved spectra show fine structure in the nonoxidized Si line, with extra components at

lower (Siα) and higher binding energy (Siβ) with respect to the Si bulk line (Fig. A.1d)

[320, 334, 335]. These lines result from substrate Si atoms in the neighborhood of the

interface, but the cause of their appearance has remained obscure. Understanding their

origin might shed light on the bonding pattern at this technologically relevant interface

[320, 330, 331].
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We here investigate the origin of the fine structure in Si 2p photoemission spectra at

silicon surfaces and interfaces. At the Si(100)2×1 surface, our calculated shifts account

for the experimental data and show that at least three Si layers are detected. Our

interpretation highlights a linear relation between shifts and bond lengths. Adopting

a recently generated model structure [328], we calculate Si 2p shifts at the Si(100)-

SiO2 interface and find quantitative agreement with experimental data, for both oxidized

(Si+n, with n=1,..,4) and nonoxidized Si atoms (Siα, Siβ). Having recourse to maximally

localized Wannier functions [336], we clarify the origin of the fine structure, identifying

the respective roles of second-neighbor O atoms and of local strain. The shift associated

to the Siβ line is found to give a direct measure of substrate distortions at the Si(100)-SiO2

interface.

Electronic-structure calculations and structural relaxations were performed within the

local density approximation (LDA) to density functional theory. Only valence electrons

were explicitly described and core-valence interactions were accounted for through pseu-

dopotentials (PPs) [131, 132]. We used a normconserving PP for Si [151] and an ultrasoft

one for O [186]. The electron wave functions were described by plane-wave basis sets

determined by an energy cutoff of 25 Ry. The cutoff was increased to 35 Ry for systems

with O atoms. The Brillouin zone could be sampled at the only Γ point, since all the

investigated systems are of sufficiently large size.

Table A.1: Silicon 2p core-level shifts associated to the central Si atom in SiOn(SiH3)4, as

calculated with pseudopotential (PP) and all-electron (AE) schemes. The shifts (in eV) are

given with respect to the central Si atom in Si(SiH3)4.

n 1 2 3 4

PP 0.83 1.50 2.10 2.85

AE 0.82 1.48 2.08 2.82

To interpret the Si 2p photoelectron spectra at silicon surfaces and interfaces, it

is necessary to evaluate core-level shifts with respect to the Si bulk line. Since these

shifts mainly result from the relaxation of valence electron states, their accurate deter-

mination is possible within a PP scheme, which does not treat core electrons explicitly

[324, 333, 337, 338]. We calculated Si 2p shifts including the effect of core-hole relaxation

by taking total energy differences between two separate self-consistent calculations. First,

the ground-state energy is determined; then the PP of a given Si atom is replaced by
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another PP which simulates the presence of a screened 2p hole in its core [324]. Upon

electron excitation, the atomic positions are not allowed to relax in accordance with

the sudden approximation [324], and a neutralizing background is used to ensure overall

charge neutrality. Test calculations showed that relative Si 2p binding energies are neg-

ligibly affected when considering spin-polarized core holes or using generalized gradient

approximations for the exchange-correlation energy [338]. Hence, all the shifts in this

work were consistently determined in the LDA.

To illustrate the accuracy of our scheme, we focused on model molecules containing

Si in various oxidation states [333], for which all electron (AE) calculations could be

performed (we performed all-electron calculations with the code ADF [89] using the triple-

zeta doubly polarized STO basis set). In our AE calculations, the electronic state in the

presence of a core hole was obtained by enforcing the occupation of the corresponding

core orbital. We found deviations of at most 0.03 eV between PP and AE core-level

shifts, over an energy range extending up to 3 eV (Table A.1). This comparison indicates

that the PP scheme can give impressively accurate shifts for a series of similarly bonded

atoms [338].
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Figure A.2: Correlations for subsurface Si atoms at the Si(001)-c(4×2) surface: (a) average

distance to the Wannier center (WC) vs average distance to the Si-Si bond center (BC); (b) Si

2p shift vs average Si-Si bond length given as deviation (∆) with respect to the bulk (2.34 Å).

The inset gives the adopted labeling. The 4′ atoms can be further separated into inequivalent

up (4′u) and down (4′d) atoms (the projections of 4′u (4′d) atoms on the surface plane lie

between 1d (1u) atoms of different dimer rows).

To understand the behavior of core-level shifts in absence of important electroneg-
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ativity effects, we first modeled the Si(100)-c(4×2) surface. We used a slab geometry

in a periodically repeated simulation cell, consisting of 14 Si layers with a 4×4 repeat

unit in the surface plane. The distance (8 Å) between the slab and its periodic images

was taken sufficiently large to neglect spurious interactions. The eight lowest layers were

kept fixed in bulk positions and their extremities were saturated with H atoms. Through

structural relaxation, we recovered the well-known surface reconstruction consisting of

alternating buckled dimers. The tilt angle in our calculation (19◦) agrees well with both

experimental measurements [326] and previous theoretical work [327]. The notation that

we adopted to distinguish the Si atoms is given in Fig. A.2.

Table A.2: Calculated and measured Si 2p shifts at the Si(001)-c(4×2) surface. The shifts

(in eV) are given with respect the Si bulk line. The theoretical reference is obtained from an

average of deep Si atoms (5th–10th layer).

Theory Experiment

Present Ref. [321] Ref. [322] Ref. [319]

1u -0.49 -0.49 -0.49 -0.50

1d 0.02 0.06 0.06 0.06

2 -0.01

3 -0.14 -0.21 -0.20 -0.21

4 -0.26

3′ 0.24 0.22 0.20 0.23

4′u 0.21

4′d 0.10

In Table A.2 we give calculated binding energies for this surface structure, together

with experimental data from various sources [319, 321, 322]. The calculated shifts for

the dimer atoms agree well with experimental values and confirm previous assignments

[324]. The second-layer atoms are found to yield very small shifts (−0.01 eV), noticeably

smaller than in a previous calculation (0.13 eV) [324]. Third- and fourth-layer atoms

give shifts to both lower (3, 4) and higher binding energies (3′, 4′) with respect to the Si

bulk line. Shifts of deeper layers are negligible.

These results lead us to propose a different interpretation than adopted so far in the

literature (Table A.2). Second-layer atoms with their small shift are indistinguishable

from the bulk. The clear experimental signatures at about 0.2 eV and −0.2 eV [319,
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321, 322] then correspond to the two inequivalent atoms in the third layer, possibly with

a contribution of fourth-layer atoms that behave similarly. The absence of shifts higher

than 0.3 eV in our clean surface model is consistent with the experimental assignment of

the high-binding-energy features to defects or surface loss structures [319, 323].

In order to elucidate the origin of core-level shifts of subsurface atoms, we carried out

an analysis in terms of maximally localized Wannier functions (MLWFs) [336], which

conveniently represent the local electronic structure in a compact form. We focus on the

initial state because core-hole relaxation effects are expected to scale linearly with the full

shift for atoms in similarly bonded environments [333]. For a nonpolar Si-Si bond, the

center of mass of the corresponding MLWF coincides with the center of the bond (Fig.

A.3a). Therefore, a deviation between the positions of these two centers is an indicator

of polarity in the bond. For each subsurface Si atom, we correlate in Fig. A.2(a) the

distances to these to centers and find overall good correspondence. Hence, the polarity

induced by ionic surface dimers is minor in subsurface layers.
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Figure A.3: Relative positions of Wannier

centers (WC) and bond centers (BC) of the

homopolar Si-Si bond (a), the heteropolar Si-

O bond (b) and the Si-Si bond with second

neighbor O atom (c).

The behavior of core-level shifts of subsurface atoms is understood through a simple

correlation with Si-Si bond distances. For a given Si atom, the elongation of its bond

distances leads to a decrease of the local electron density, resulting in a higher binding

energy. This reasoning should also apply to other covalently bonded systems. An opposite

dependence on strain is found for 3d-metal clusters due to hybridization effects [339]. The
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validity of this correlation is demonstrated in Fig. A.2(b), which gives the calculated shifts

vs. the average Si-Si distance to the four neighbor atoms. Therefore, the measured shift

provides a direct indication of the local strain induced by the surface reconstruction.

These considerations are general and also apply to other systems. As/Sb covered Si(100)

surfaces show subsurface strain patterns and core-level shifts qualitatively similar to the

clean surface studied here [340]. From experimental work on strained Si layers deposited

on Ge(100) and SiGe alloys, one derives that the Si 2p binding energy increases with

tensile strain [341, 342], in accord with the present analysis.
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Figure A.4: Calculated Si 2p shifts at the Si(100)-SiO2 interface along an orthogonal direction

to the interface. The Si+n correspond to oxidized Si atoms with n O neighbors (n=1 - H, 2 -

N, 3 - ◮, 4 - ◭) and are color-coded in the atomistic model. Nonoxidized Si atoms (Si0) with

(◦) and without (•) second-neighbor O atoms are distinguished. Inset: simulated spectrum for

Si0 (Gaussian broadened: σ=0.08 eV) and its decomposition in three components.

We now turn to the Si(100)-SiO2 interface where the presence of highly electronegative

O atoms might additionally affect the shifts of nonoxidized Si atoms [334]. As interface

structure, we adopted model C′ from Ref. [328], which incorporates several experimentally

identified features, including a displacement pattern in the substrate consistent with

ion-scattering measurements. Calculated binding energies are given in Fig. A.4 along
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the direction orthogonal to the interface plane. The binding energies of oxidized Si

atoms increase almost linearly with oxidation state [332, 333, 337], and show quantitative

agreement with experimental values (Table A.3). The focus of the present investigation

is on nonoxidized Si atoms, which give shifts with a significant spread near the interface.

The simulated spectrum associated to these Si atoms could be decomposed into three

components (Fig. A.4, inset), yielding shifts for Siα and Siβ in very good agreement with

experimental data (Table A.3).
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Figure A.5: Correlations for nonoxidized Si atoms at the Si(100)-SiO2 interface: (a) average

distance to the Wannier center (WC) vs average distance to the Si-Si bond center (BC); (b) Si

2p shift vs average Si-Si bond length given as deviation (∆) from the bulk value. Closed (open)

symbols indicate Si atoms without (with) second-neighbor O atoms.

Following the same analysis as for the Si(100)2×1 surface, we identify second-neighbor

electronegativity effects at the interface by monitoring deviations between the positions

of bond centers and Wannier centers. For each nonoxidized Si atom, we correlate in Fig.

A.5(a) the distances to these two centers, distinguishing nonoxidized Si atoms with and

without second-neighbor O atoms. In absence of second-neighbor O atoms the Wannier

center almost coincides with the Si-Si bond center, indicating that the electronegativity

of O atoms does not affect third-neighbor bonds. However, for Si∗ atoms with second-

neighbor O atoms, the Wannier center systematically moves closer to the Si∗ atom. This

behavior is understood by considering that the central Si atom in a Si∗-Si-O unit requires

a contribution from its 4s atomic orbital in order to accomodate the polarity in its Si-O

bond, which in turn displaces the Wannier center of the Si∗-Si bond towards Si∗ (Fig.
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Table A.3: Calculated and measured Si 2p shifts (in eV) at the Si(100)-SiO2 interface. The

Si bulk line is taken as reference.

Theory Experiment

Present Ref. [335] Ref. [320]

α -0.21 -0.25 -0.22

β 0.32 0.20 0.34

+1 0.78 1.00 0.95

+2 1.40 1.82 1.78

+3 2.37 2.62 2.60

+4 3.64 3.67 3.72

A.3c). In an equivalent way, this effect can be explained within the back-donation picture

[343].

The displacement of the electron density towards the Si atom causes a decrease of its

binding energy as can clearly be seen in Fig. A.4, where all the Si atoms with second-

neighbor O atoms show negative shifts. Hence, a highly electronegative atom in the

second-neighbor shell causes an opposite effect on the shift as compared to such an atom

in the first-neighbor shell [333, 337]. Consequently, Si atoms with second-neighbor O

atoms contribute to the Siα line on the low binding energy side of the Si bulk line.

We now focus on nonoxidized Si atoms without second-neighbor O atoms. Figure

A.5(b) shows that for these atoms a linear relation holds between their core-level shift

and their average Si-Si bond distance, in a similar way as for the Si(100)2×1 surface. We

deduce that these shifts are the result of bond length variations induced in the substrate

by the disordered oxide. Contracted bonds give negative shifts and contribute to the Siα

component, in addition to second-neighbor electronegativity effects. On the contrary,

bond elongations cause shifts towards higher binding energies, being at the origin of the

Siβ component. From the experimental shift of about 0.3 eV, we infer the occurrence of

Si atoms with an average bond length elongation of ∼ 0.05 Å.

Our analysis suggests that Si atoms contributing to the Siα line should on average be

closer to the oxide than those contributing to Siβ, at variance with a recent photodiffrac-

tion measurement favoring the opposite ordering [320]. However, the different sources of

the Siα line together with the nonabrupt nature of the interface might lead to intermixing

of Siα and Siβ atoms, resulting in depth profiles at the limit of experimental resolution.
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In conclusion, we revealed the mechanisms underlying the fine structure in Si 2p

photoelectron spectra at silicon surfaces and interfaces. A key result of our work is that

photoelectron spectroscopy when combined with first-principles calculations can provide

an atomic-scale probe of structural strain, resulting in a new functionality in addition to

the detection of chemical composition.
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