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Abstract 

___________________________________________________________________________ 

 

 

 Effective encapsulation of small, volatile, weakly water-soluble molecules such as 

flavors and fragrances is necessary to protect them from degradation, to increase their 

lifetime, and to improve their water dispersion and fixation depending on the substrate of 

interest. The aim of this project has been to improve encapsulation and release in order to 

optimize the performance of fragrance molecules in water-based household (detergents, 

softeners, etc.) and body care applications (shampoos, lotions, etc.), and fine perfumery 

applications. More specifically, the aim has been to investigate the effectiveness of 

“unimolecular micelles” based on amphiphilic multi-arm star-block copolymers with a 

hyperbranched core with more than 26 functional groups, a hydrophobic inner and a 

hydrophilic outer shell. These have been prepared from a commercial hyperbranched 

polyester macroinitiator (HBP) by ring-opening polymerization of ε-caprolactone, followed 

by the atom transfer radical polymerization (ATRP) of tert-butyl acrylate (tBuA). Hydrolysis 

of the tert-butyl groups has then been used to convert the poly(tBuA) blocks to poly(acrylic 

acid) (PAA), resulting in HBP-(PCL)p-(PAA)q pH-dependent amphiphilic star-block 

copolymers with good control of the molecular weight distribution. These were shown to 

form stable nanocapsules with a well defined core-shell architecture, as confirmed by thermal 

and microstructural characterization.  

 

 The necessity of the core-shell architecture for the effective encapsulation of fragrance 

molecules in aqueous dispersion has been demonstrated by NMR (nuclear magnetic 

resonance). The extent of encapsulation reflects the dynamic equilibrium between the free 

molecules and the fragrance/polymer complex and is dependent on the octanol/water partition 

coefficient (logP) of the fragrance compounds, as demonstrated with a similar non ionic core-

shell architecture HBP-(PBMA)37-(PPEGMA)39 composed of a hydrophobic poly(butyl 

methacrylate) (PBMA) core and a hydrophilic poly(polyethylene glycol) methyl ether 

methacrylate (PPEGMA) shell (provided by the Polymer Laboratory of the EPFL). The 



fragrance loadings in the polymer (HBP-(PCL)p-(PAA)q and HBP-(PBMA)37-(PPEGMA)39), 

which reached up to 30 wt% depending on the type of the fragrance molecule, were argued to 

be linked to their solubility in the hydrophobic core of the star-block copolymer. Moreover, 

under conditions representative of real applications (fine perfumery and softener applications) 

the star-block copolymers significantly extended the time over which the concentration of 

certain volatiles remained above the human olfactory threshold. Effective encapsulation and 

delayed release of small hydrophobic molecules was hence demonstrated to be possible with 

the present systems. The straightforward synthesis, tailorable chemistry and globular 

architecture of the star-block copolymers investigated here therefore offer promise for the 

development of relatively cheap encapsulants with affinities for specific components in 

fragrance packages, and release triggered by selected substrates according to their surface 

chemistry.     

 

 

Keywords: Star-block copolymer, amphiphilic nanocapsules, core-shell architecture, 

hyperbranched polymer, ring-opening polymerization, atom transfer polymerization, delivery 

systems, encapsulation, fragrances 



 

 

 

Version abrégée 

___________________________________________________________________________ 

 

 

 Les médicaments, colorants, arômes et molécules odorantes sont généralement de 

petites molécules actives peu solubles dans l’eau. Afin de les protéger contre d’éventuelles 

dégradations (hydrolyse ou oxydation) ainsi que pour contrôler leur relargage et optimiser 

leurs performances en fonction de l’application, il est nécessaire de les encapsuler de façon 

efficace. Dans l’industrie des arômes et des parfums, les odeurs sont rapidement évaporées du 

fait de la grande volatilité des molécules olfactives. L’objectif de ce travail était d’améliorer 

l’encapsulation et le relargage des molécules olfactives pour optimiser leur perception dans 

des compositions à base d’eau telles que les produits ménagés (les détergents, les 

adoucissants,…) et les produits pour le corps (shampoing, lotion …), ainsi que pour la 

parfumerie. Le but était plus spécialement d’étudier l’efficacité de nouveaux copolymères à 

blocs amphiphiles étoilés, tels des micelles unimoléculaires, comprenant un corps 

hyperbranché, une couche interne hydrophobe et une écorce externe hydrophile. Ces 

copolymères ont été préparés à partir d’un polyester hyperbranché commercial (HBP), par une 

polymérisation par ouverture de cycle (ROP) d’ε-caprolactone suivi d’une polymérisation par 

transfert d’atome (ATRP) de l’acrylate de tert-butyle (tBuA). Après hydrolyse des 

groupements tert-butyle du poly(acrylate de tert-butyle) (PtBuA) en acide acrylique (PAA), 

un copolymère à blocs amphiphile et sensible au pH (HBP-(PCL)p-(PAA)q) est obtenu avec 

un bon contrôle des masses molaires. Selon les mesures des propriétés thermiques et 

l’observation de la microstructure, les copolymères amphiphiles à blocs étoilés obtenus se 

présentent sous la forme de nanocapsules stables avec une architecture cœur-écorce. 

 

L’utilité de la structure cœur-écorce pour l’encapsulation de molécules olfactives en milieu 

aqueux a été démontrée par spectroscopie RMN. Le processus d’encapsulation consiste en un 

équilibre dynamique du polymère et des molécules olfactives entre leur forme libre et 

encapsulée. Cet équilibre est dépendant du coefficient de partition octanol/eau (logP) des 

molécules olfactives tel que démontré avec un copolymère à blocs étoilé amphiphile non 



ionique de même architecture HBP-(PBMA)37-(PPEGMA)39 composé d’un cœur hydrophobe 

de poly(n-butyle méthacrylate) (PBMA) et d’une écorce hydrophile de poly(méthacrylate de 

poly(éthylène glycol)) (PPEGMA) (fournit par le laboratoire des polymères (LP) de l’EPFL). 

La proportion de molécules olfactives dans les polymères (HBP-(PCL)p-(PAA)q et HBP-

(PBMA)37-(PPEGMA)39) peut atteindre jusqu’à 30 % en poids (selon les molécules 

olfactives), et est liée à la solubilité des fragrances dans le cœur hydrophobe du copolymère à 

blocs étoilé. De plus, dans des conditions semblables à celles rencontrées lors des applications 

(parfumerie fine et adoucissants) le copolymère à blocs étoilé prolonge de façon significative 

la durée pendant laquelle la concentration des volatiles est supérieure au seuil de perception 

humain. 

 

 La possibilité d’encapsuler efficacement et de prolonger le relargage de petites 

molécules hydrophobes a ainsi été démontrée avec ce système. La structure globulaire et la 

possibilité de contrôler chimiquement les groupements terminaux des copolymères à blocs 

étoilés développés au cours de ce travail, leur confèrent une grande flexibilité permettant 

d’optimiser leur affinité avec les fragrances et de cibler le relargage en accord avec les 

fonctions chimiques présentes sur les surfaces sélectionnées.  

 

 

Mots-clé: copolymère à blocs étoilé, nanocapsules amphiphiles, architecture cœur-écorce, 

polymère hyperbranché, polymérisation par ouverture de cycle, polymérisation radicalaire par 

transfert d’atome, système de délivrance, encapsulation, fragrance 
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Chapter I. General introduction 

 
___________________________________________________________________________ 

 

 

 

 The delivery of functional agents, molecules, ingredients, or compositions such as 

drugs, dyes, flavors, fragrances, pharmaceuticals and agrochemicals is an important issue in 

applied science. Without the stabilization of a concentrated, easily transportable and 

processible form of the functional agent, delivery becomes unreliable and the agent will only 

rarely exhibit its beneficial properties at a predetermined time and place. In the particular case 

of the fragrance industry, many perfumes are very volatile and after application are perceived 

over only a relatively short period of time. Due to the demand for improved performance and 

added value of consumer products, it is increasingly important to extend the perception of the 

fragrance compounds in bodycare and household applications, such as shampoos, fabric 

softeners or detergent powders. Effective encapsulation is therefore required in order to 

protect the fragrance compounds from degradation and to control their release and hence 

optimize their performance according to the requirements of the application. The importance 

of this issue is born out by an increase in industrial demand from 2,000 tons in 2000 to 10,000 

tons in 2003 of encapsulated fragrances.[1]  
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 A particular group of encapsulation systems, micro- or nanocapsules, is based on 

particles that contain hydrophobic functional agents, including fragrances or flavors, but 

which are dispersible or soluble in an aqueous environment, such as the aqueous phase of an 

emulsion (for example a shampoo, lotion or shower-gel). The encapsulation technologies that 

have been developed to date are largely based on linear, branched or cross-linked natural or 

synthetic biodegradable polymers.[2-7] Amphiphilic block copolymers are also often used for 

the encapsulation of hydrophobic molecules. Encapsulation in this case takes place after self-

assembly of the amphiphilic block copolymers into micelles.[8-13] However, such micelles do 

not constitute an ideal delivery system because release of the guest molecules is generally 

dependent on the dynamics of the micellar structure, which are in turn sensitive to the 

polymer concentration, temperature and pH.  

 

 A more versatile approach to the encapsulation and controlled release of guest 

molecules that has attracted considerable recent interest is the use of dendritic 

macromolecules.[14-16] Given their inherently amphiphilic character, suitably functionalized 

dendrimers may be considered to constitute stable “unimolecular” micelles.[12, 13, 17-24] 

Properties associated with dendritic macromolecules, such as regular shape, solubility, 

adaptable surface functionality and internal cavities make them adaptable hosts for the 

retention of small molecules. Moreover, tailoring of their numerous end groups offers 

considerable scope for fine-tuning of their solubility and host-guest affinity.[21, 25-31] On the 

other hand, the loading capacity of dendrimers may be restricted, limiting the amount of guest 

molecules that can be delivered[32] and their cost may be prohibitive in many applications. 

Our interest has therefore been directed toward the design of unimolecular micelles based on 

hyperbranched polymers (HBPs),[33, 34] which have been largely studied in our laboratory,[35-

40] and whose synthesis is less complex and time consuming than that of perfect dendrimers 

but leads to comparable globular architectures and chain end densities.[41-45] In order to 

increase the effective molecular sizes and hence the loading capacity of the resulting micelles, 

commercial hyperbranched polymers have been used as multifunctional initiators for the 

synthesis of high molar mass amphiphilic star-block copolymers which are composed of a 

lipophilic core designed to encapsulate guest molecules and a hydrophilic shell that provides 

water-solubility and prevents aggregation. Due to their covalent nature, the star-block 
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copolymer micelles do not suffer the disadvantages of their non-covalent analogues referred 

to above.  

 

 In what follows, we detail the synthesis of a new range of highly functional 

amphiphilic multi-arm star-block copolymers, which is based on commercial hyperbranched 

polyester polyols referred to here as H30 and H40 (these differ in the number of functional 

groups per molecule). HBP was first used as a macroinitiator for the ring-opening 

polymerization (ROP) of ε-caprolactone to form a polycaprolactone (PCL) layer. A second 

hydrophilic shell was subsequently synthesized by atom transfer radical polymerization 

(ATRP) of a tert-butyl acrylate monomer. The hydrolysis of tert-butyl groups of the HBP-

(PCL)p-(PtBuA)q provides a pH-responsive star-block copolymer with a poly(acrylic acid) 

(PAA) outer shell, HBP-(PCL)p-(PAA)q.
[46, 47] In order to investigate the effect of the number 

of arms, the block lengths, the presence of the hydrophobic layer and the influence of its 

chemical nature on the encapsulation of active molecules, a series of different structures has 

been prepared. These have also been compared with non-ionic H40-(PBMA)p-(PPEGMA)q 

star-block copolymers, prepared in parallel by G. Kreutzer et al. by consecutive ATRP of n-

butyl methacrylate (BMA) and poly(ethylene glycol) methyl ether methacrylate (PEGMA).[48] 

 

 The capacity of these core-shell structures to encapsulate fragrance molecules has 

been tested in an aqueous medium by studying the evolution of the diffusion coefficient of the 

fragrance compounds in water in the presence and absence of the star-block copolymers, and 

by determining the fragrance molecule loading in an aqueous dispersion of the polymer. Four 

fragrance molecules, representative of compounds frequently encountered in practice, were 

chosen to provide a range of polarity, chemical structure and function. Finally, the release of 

the fragrance molecules in the presence of the amphiphilic star-block copolymers was studied 

under conditions similar to those in real applications, namely a fine perfumery application and 

a fabric softener application. The encapsulation and release studies were carried out in 

collaboration with the “Analysis, Physical Chemistry and Human Bioresponses” departement, 

Division Recherche et Développement at Firmenich SA (Geneva). The fast evaporation of 

fragrance molecule leads rapidly to ambient concentration of fragrance below the human 

olfactory threshold. The encapsulants are used to prolong the duration of human perception by 

slowing down the evaporation process as shown schematically in Figure I.1. This may be 
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assessed using analytical techniques such as headspace analysis, but, ultimately, human 

perception is subjective, and brief reference is therefore also made to the conclusions of an 

“olfactory panel”. 

 

 

Figure I.1 Ambient concentration as a function of time of a fragrance molecule (-⋅-⋅-) and of a fragrance 

molecule in the presence of an encapsulant (__)  
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Chapter II. State of the art on delivery systems: From 

classical polymers to dendritic structures  

 
___________________________________________________________________________ 

 

 

 

 Delivery systems which include encapsulation and release technologies are currently 

of great interest in the field of perfumes, pharmaceutics and foods industries, which explains 

their large development during the last years. In the field of controlled release systems, two 

main strategies have been adopted. In the first strategy, the polymer acts as a carrier for the 

active substance (guest) (Figure II.1, a) and the entrapment is based on non-specific or 

specific interactions. The release usually occurs by diffusion of the active substance or by 

degradation of the carrier by various mechanisms. The second strategy consists of covalently 

binding the active substance to the polymer, to give polymer-“guest” conjugates. Release 

then occurs on bond cleavage (Figure II.1, c and d). This chapter focuses on non-specific and 

specific interactions in carrier based systems which are the subject of this thesis, and 

polymer-guest conjugates (polymer prodrugs, etc) will not be discussed in detail, in spite of 

their considerable interest in a wider context.[6, 7, 49, 50]  
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Figure II.1 Illustration of a carrier and a polymer-guest conjugate based on dendritic macromolecules.[51] 

Physical entrapment: (a) encapsulation of guest molecules within the macromolecules or (b) 

macromolecular assembly. Polymer-guest conjugate: (c) labile bond and (d) covalent bond between the 

active substance and the polymer. 

 

 

 Until the developement of dendritic structures (see section II)[52, 53] in the 1980’s, 

polymer science focused on the properties of linear (I), grafted (II and III) and network (IV) 

macromolecules (Figure II.2). Network polymers are also named cross-linked architectures. 

The encapsulation technologies frequently encountered until now essentially use linear and 

cross-linked polymers and depend on non-specific interactions between the carrier polymer 

and the guest molecule. These technologies are described in the first section of this chapter. 

The new polymer architectures recently developed as carrier molecules, such as micelles 

(obtained from block copolymers) and dendritic structures are then addressed. In the present 

work, the dendritic architecture is the basic building block. Details of the synthesis and 

properties of such macromolecules are therefore given in the second section of this chapter. 

Their advantages as host molecules, capable of interacting with guest molecules by non-

specific and specific interactions are discussed in the final section  
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 I          II   III          IV       V 

 
 
Figure II.2 Schematic of the four main type of polymer architecture. Linear (I), grafted (II and III), 

network (IV) and (hyper)branched (V) polymers. 

 

 

I. Encapsulation and release technologies  

 

 In what follows traditional techniques are first described for the preparation of 

encapsulants based on linear polymers for perfumes, foods and pharmaceutic applications. 

Recent more sophisticated architectures, based on self assemblies of block copolymers that 

can directly incorporate guest molecules, are then discussed. The mechanisms of release of 

the guest molecules from the different capsule types are also described, as well as the effect of 

polymer properties on release. 

 

 

I.1. Traditional polymer architectures in delivery systems  

 

 Controlled release systems have been initially developed in the food industry[3, 54-56] in 

order to produce flavors in a dry form and to provide protection. Microencapsulation of 

flavors, fragrances and inks has also been widely described in the cosmetic and paper 

industries.[2, 4, 57-59] Since 1950’s delivery systems based on polymers have been implemented 

in pharmaceutics and medicine.[60-63] In recent years, increasingly sophisticated materials and 

techniques have been considered in these main field of applications, medicine[64] cosmetics[5] 

and food industries.[5, 65] 
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 The entities obtained after encapsulation of guest molecules by macromolecules are 

referred to as “microcapsules” or “microspheres”. Here, and in the rest of this manuscript, 

“microcapsule” refers to any particle in the size range of about 5 μm to 2000 μm that contains 

active agents. The prefix nano- is used to refer to any particle in the size range below 1 μm.  

 

I.1.1 Encapsulation in foods and cosmetics  

 

 In the food industry, the protection of ingredients from the surrounding environment 

(water, acid, oxygen) and from other ingredients is of particular importance. However, in 

addition to protecting specific compounds, encapsulation methods have been developed to 

allow the controlled release of compounds or simply change the state of the ingredient from a 

liquid to a solid to permit its use in dry applications. Encapsulation can also be used to mask 

odors or tastes. In the cosmetics industry, encapsulation protects volatile components from the 

environment, improves long term stability and efficiency and sustains their release over long 

periods. 

 

(1) Encapsulation technologies 

 

 Various techniques have been described in the literature, e.g. by Brannon-Peppas and 

Risch[2, 66] and are similar in the food and cosmetic industries. They include atomization 

procedure (spray drying, chilling, cooling and fluidized bed coating), emulsion (simple or 

double), coacervation, extrusion, liposome entrapment and molecular inclusion.[2-4, 66-68] Some 

of these are briefly described in Appendix 1. Liposome and molecular inclusion systems, even 

if they are not based on polymers assembly, are considered further here because they resemble 

the system considered in the present project in that the “host” pre-exists and is not produced 

by a particular technique, e.g. atomization or coacervation.  

 

 Liposomes,[69] which are used in foods and cosmetics, are composed of natural 

phospholipids and sphingolipids. These amphiphilic macromolecules are self assembled in 

solution to form vesicles or membranes made up of one or two layers. Such structures are able 

to entrap hydrophobic or hydrophilic active molecules, and because they are lipophilic, they 
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penetrate the skin easily. Their size varies between 50 nm and a few microns. However, 

delivery is not controlled with these structures owing to their sensitivity toward temperature, 

salt concentration, extreme pH values and surfactants.[59] 

 

 Molecular inclusion refers to the entrapment of the active molecules (fragrances, 

flavors or volatiles) by a pre-existing system analogous to a cage. Cyclodextrins are well 

known in this context. They are obtained by enzymatic degradation of starch and 

reassociation of the chain ends to form closed circular molecules with glucose monomers in 

the cavity and the hydroxyl functions at the periphery. Cyclodextrins thus combine a 

hydrophobic cavity with water solubility, making complexation with hydrophobic guest 

molecules possible.[70-72] The use of cyclodextrins for the design of new architectures is 

currently under investigation,[25, 67, 73-75] an example being the use of cyclodextrin as a 

hydrogel.[76] 

 

(2) Carrier materials 

 

 Microencapsulation in the food and cosmetic industries has been widely based on 

natural polymers. Carbohydrates such as starches (and modified starches), dextrins, 

maltodextrin, cyclodextrin, cellulose and gums are known for their exceptional capacity to 

encapsulate hydrophobic compounds[77] and account for the majority of the food market. 

These are all hydrophilic amorphous substances capable of forming a glass on removal of 

water. Alginates, proteins, lipids (liposomes)[69] and gelatin are also often used.[2-5, 59, 68] 

Recently, Park and Arshady[5] have published a compilation of patents on perfume 

microencapsulation, comprising a description of perfume materials and their properties also 

outlining the use of synthetic organic polymers in perfumes and cosmetics.[5, 78] 

 

I.1.2 Delivery systems in pharmaceutics and health care 

 

 Pharmaceutical technologies, drug-delivery systems are chosen depending on how and 

where they will be degraded in human body. Some drugs need to be solubilized in the body 

before they can act on their target receptor. Other delivery systems consist of an implant of 
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the drug delivery system directly at the site. A drug that is to be released in the stomach will 

require controlled release very different from that of a drug that is to be released in the blood. 

For this reason delivery systems are classified as a function of the mechanisms of erosion of 

the drug. Biodegradable materials are preferable because the metabolism and excretion of the 

polymer results in its complete removal. Thus, the polymer materials most often employed in 

this field possess anhydride, ester or amide bonds, although nonbiodegradable backbones 

based on C-C bonds are also used in drug delivery.[79]  

 

 The major families of natural and synthetic polymers (e.g. polyester: poly(lactic acid) 

(PLA), poly(glycolic acid) (PGA), poly(caprolactone) (PCL); polyanhydride; polyamide: 

poly(amino acid), poly(urethane); polysaccharides….) used in this field have been widely 

studied and reviewed[79-81] with details being provided on formulation techniques and erosion 

mechanisms. Encapsulation technologies are similar to those employed in food and cosmetics 

applications. Oil in water emulsion or double emulsion, freeze drying, salting out and dialysis 

are used for the encapsulation of DNA (desoxyribo nucleique acid), calcein, coumarin and 

bovine serum albumin (BSA) for example.[12, 82-85] Liposomes and biopolymers (chitin, 

cellulose, gelatine…) are also often used in drug delivery.[80] 

 

 

I.2. More sophisticated architectures for the controlled release of guest 

molecules: block copolymer micelles 

 

 The overview in section I.1 illustrates that the microencapsulation techniques 

developed to date are largely based on linear, branched or cross-linked natural or synthetic 

polymers, and need to be formulated to serve as carriers. Although physicochemical 

limitations are imposed by the use of natural polymers in pharmaceutics, biopolymers remain 

strongly represented.  

 

 There has nevertheless been recent interest in the use of micelles as nanocarriers for 

hydrophobic drugs.[8, 9, 12, 86, 87] Amphiphilic block copolymers with hydrophobic and 

hydrophilic blocks can self assemble under suitable conditions of pH, concentration, 

temperature and solvent. Thus, water-soluble polymeric micelles self-assemble by association 
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of the hydrophobic blocks to form an inner core, which is protected by hydrophilic segments. 

The driving force for micellization is hydrophobic interactions, but may involve additional 

forces, for example electrostatic interactions. PLA, PGA, poly(propylene oxide) (PPO), PCL 

are among the most frequent hydrophobic blocks and poly(acrylic acid) (PAA), poly(ethylene 

oxyde) (PEO), poly(vinyl pyrrolidone) (PVP) are typically used as hydrophilic blocks.[12] 

However, as is well known for liposomes, the instability of such assemblies to concentration, 

salt, pH, may cause problems in delivery systems. Recent research has shown that cross-

linking of the external shell may improve stability.[87] The structure of such an assembly is 

discussed in section I.3 in terms of release mechanisms. 

 

 

I.3. Release mechanisms of physically entrapped guest molecules from polymer 

carriers 

 

I.3.1 Mechanisms of release from polymer carriers  

 

 Depending on the technology used for encapsulation and the resulting guest molecule 

interactions, different release mechanisms may occur. As pointed out in section I.1.1(1), 

atomization procedure (spray drying, chilling, cooling and fluidized bed coating), emulsion 

(simple or double), coacervation, extrusion, liposome entrapment, molecular inclusion and 

self assembly of block copolymers are the usual technologies for the entrapment of drugs and 

volatiles in a polymer carrier. These encapsulation technologies generally involve release by 

the solvent effect and diffusion. Other release mechanisms include degradation and particle 

fracture.  

 

 Release by the solvent effect occurs on swelling of the particle by a solvent (generally 

water) followed by a sudden release of the active molecules due to bursting, or by continuous 

delivery, controlled by modification of the solvent, salt concentration or pH modification. In 

the case of micellar structures, release by the bursting effect is observed below the critical 

micellar concentration (cmc).  
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 Release by diffusion is dependent on the rate at which the active molecules are able to 

pass through the particles. It is thus governed by the chemical and physical properties of the 

polymer and particles (pore size, matrix structure) and by the physicochemical properties of 

the guest molecules.[79] 

 

 Release of the active substances by degradation may be induced by melting, 

hydrolysis (erosion) or enzymatic degradation of the matrix.[79] Release by particle fracture 

may result from pressure, shear or differences in osmotic pressure or vapor pressure.  

 

I.3.2 Factors that govern the release of guest molecules from polymer 

carriers  

 

(1) Influence of the polymer properties in a micellar structure 

 

 It has been demonstrated, mainly on the basis of self-assembled amphiphilic block 

copolymer micelles, that various parameters influence the rate of diffusion of the active 

molecules. The thermal properties of polymers play an important role in the evaporation of 

volatiles.[88] As reported by Stern,[89] release from glassy polymers consists of diffusion 

through pores in the matrix, and depends on how the volatiles are introduced into the pores. 

Molecular motions are restricted and diffusion is slow in the glassy state, and loss of volatiles 

depends principally on the rate at which they migrate to the matrix surface (proportional to 

the molecular diffusion coefficient and the water concentration: at high relative humidity, the 

molecular mobility and diffusion coefficients increase, resulting in accelerated loss of 

volatiles[90]), rather than the relative volatilities of the active molecules.[91] Rubbery polymers 

generally have very short relaxation times and a greater free volume, so they respond 

relatively rapidly to variables such as temperature or moisture.  

 

 The crystalline properties of the matrix may also be important. Above Tg, 

macromolecular chains may have enough mobility to associate and form crystalline structures 

inducing a decrease in mobility and reducing the diffusion of active molecules. Moreover, 

crystallization limits the free volume between polymer chains, forcing the active molecules to 
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be released by expulsion.[92] In the case of micellar structures, crystallization of the internal 

block stabilizes the structure and can cause a decrease in guest molecule mobility.[12] 

 

 The polymer block length can also influence the rate of diffusion of the active 

molecules. An increase in the hydrophobic block length favors self-association of the 

copolymers and increases the size of the core, resulting in a longer diffusion path and a 

decrease in the release rate.[93]  

 

(2) Case of shell cross-linked micelles 

 

 Cross-linked micelles have been developed by Wooley and coworkers[94] and 

subsequently by other groups.[87, 95-98] The stability of micelles with cross-linked shells is 

enhanced, making them interesting for controlled release applications. Moreover, preparation 

of hollow nanosized particles (nanocages) is possible after removal of the core, as illustrated 

in Figure II.3.[95, 98, 99] Nanocages are interesting for controlled release applications owing to 

their higher loading capacities, compared with the micellar precursors. Moreover, they may be 

suitable for hydrophilic guest molecules that cannot be encapsulated in a hydrophobic core. 

Their feasibility as delivery agents is currently under investigation and the first experiments 

suggest that the release rate of active molecules can be controlled by appropriate tailoring of 

the nanocages.[95, 100, 101] As expected, active molecules present in the core-shell interface or in 

the shell diffuse faster than those located in the core.[91] 

 

 

 

Figure II.3 Synthetic approach for the preparation of shell cross-linked nanocages. Preparation of the 

micelle (a, b), cross-linking (c), cleavage of the core-shell bonds (d) and solubilization of the hydrophobic 

core fragment in adequate solvent (e, f)[101] 
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(3) Importance of the polymer-guest affinity and of the guest properties 

 

 The release of guest molecules is also governed by the polymer-guest molecule 

affinity and by the properties of the guest molecule. In general, the stronger the interaction, 

the slower the release. The physical state and molecular volume of the guest molecule also 

have an influence. The larger the molecular volume, the lower the diffusion coefficient and 

the diffusion rate. It has also been observed with certain drugs that the higher the loading, the 

lower the diffusion rate, owing to crystallization of the active molecules.[93] 

 

 

II. Dendritic macromolecules  

 

 Before discussing recent developments in host-guest systems based on dendritic 

macromolecules in section III, a presentation of the dendritic structures (synthesis and 

physico-chemical properties) is given which also serves to provide background for the 

synthesis and characterization work (Chapter V). 

 

 

II.1. What is a dendritic structure? 

 

 Dendritic macromolecules are characterized by their globular structure which derives 

from a tree-like branched architecture. They are composed of a central core and of 

ramification points which correspond to monomer units. Because of their compact 

conformations they do not entangle in spite of their large molecular masses. The term 

“dendritic macromolecules”, includes dendrimers, dendrons, dendrigrafts and hyperbranched 

polymers (HBPs). It is usual to divide these into three subclasses according to the degree of 

structural perfection attained. Dendrimers and dendrons ((c) and (d)) are the most controlled 

structures, followed by dendrigrafts (b), which are semi-controlled, and hyperbranched 

polymers (a), which are poorly controlled (Figure II.4). In what follows, we focus essentially 

on dendrimers and hyperbranched macromolecules. In the present work, the term “dendritic 

macromolecules” is used to refer both to dendrimers and hyperbranched structures.  
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Figure II.4 Tomalia’s representation of the three subclasses of dendritic macromolecules[102] 

 

 

 Dendrimers were envisaged for the first time by Flory in 1941.[103] However the first 

reports of dendritic structures did not appear before 1978 with the work of Vögtle and 

coworkers.[104] Since two decades, Newkome and Tomalia focused on the synthesis and 

chemical and physical properties of these particular architecture.[52, 53] It is only in the past 

decade that researchers have begun to explore the potential of dendritic polymers in different 

fields of application, such as medicine, coatings, additives, nanotechnologies and 

supramolecular sciences, based on their rheological, conformational, electronic and magnetic 

properties.  

 

 

II.2. Synthesis of dendrimers and hyperbranched polymers 

 

II.2.1 Dendrimer synthesis  

 

 The first dendrimers were prepared by “divergent” synthesis during the 1980s, [52, 53] in 

which the dendrimer built up from a polyfunctional core by successive addition of generations 

of branch units. This type of synthesis is a multi step process, requiring protection, 

deprotection and purification on addition of each generation. Another approach, called 

“convergent” synthesis, has lead to an increase in the range of dendrimers with controlled 
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structure and extreme purity. In convergent synthesis, (which was developed in the 1990s by 

Hawker and Fréchet[105]) dendritic arms are first synthesized, then grafted to a core. A scheme 

of these two approaches is given in Scheme II.1. 

 

 

 

Scheme II.1 Two approaches to dendrimer synthesis: “divergent” and “convergent” strategies[106] 

 

 

 Since the development of convergent synthesis, the main innovations, adaptations and 

improvements have been aimed at decreasing the number of reaction steps and increasing the 

efficiency of the synthesis, e.g. the two stage convergent approach of Wooley et al.,[107] the 

double exponential growth strategies of Moore and coworkers[108] and the orthogonal 

monomer systems first described by Spindler and Fréchet[109] but also demonstrated by Zeng 

and Zimmerman.[110]  

 

II.2.2 Hyperbranched polymer synthesis 

 
 The concept of hyperbranched polymer (HBP) synthesis first appeared in 1952, with 

the theoretical approach of Flory to the preparation of hyperbranched macromolecules from 

polyfunctional monomers in a statistical growth process.[111] The preparation of well defined 

dendritic polymers is often time consuming and expensive. In the case of hyperbranched 

polymers, the time and the cost of the synthesis is typically reduced and “one pot” synthesis 
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may be envisaged for large-scale production. Polydisperse highly branched dendritic 

molecules, with defects between segments, were first obtained in 1990 by Kim and Webster, 

who adopted the term “hyperbranched polymers”[112] (HBPs) The synthesis and physico-

chemical properties of hyperbranched polymers, which are intermediate between those of 

linear and dendritic polymers, have since been widely investigated.[14, 15, 33, 34, 113-115] 

 

 There are now three major methods used for the preparation of hyperbranched 

polymers: step-growth polycondensation, self-condensing vinyl polymerization and multi-

branch ring-opening polymerization. The HBP used in this project, has been prepared from 

the step-growth polycondensation procedure. This procedure is developed in what follows. 

The other two strategies are described in Appendix 2. 

 

 The step-growth strategy was initially used for the synthesis of a wide range of HBPs 

from ABx monomers (Scheme II.2). AB2 type monomers are often used as starting materials 

because of their relative ease of preparation. The synthesis of aliphatic hyperbranched 

polyesters has been studied extensively. A well known example is that of Malmström et al. 

(Scheme II.3), which makes use of 2-(hydroxymethyl)-1,3-propanediol (TMP) as a core and 

2,2-bis (hydroxymethyl)propionic acid (bis-MPA) as the AB2 monomer.[41] The esterification 

was carried out in the bulk using an acid catalyst. The hyperbranched polyesters obtained 

possess high molecular weights (Mw = 1880-10765 g mol-1), high degrees of branching (96-83 

%) and relatively low polydispersities (Mw/Mn = 1.36-1.92). In 1996, Malmström described 

the synthesis of hyperbranched polymers based on a bis-MPA monomer and different By 

functional polyol cores[116] by polycondensation. This work was carried out in collaboration 

with Perstorp AB, a Swedish company. The importance of the presence of a core molecule for 

the polydispersity of the sample was demonstrated. The core molecule was shown to be 

crucial for the synthesis of hyperbranched polymers with structures comparable to those of 

dendrimers. Poly(phenylene), poly(amide), poly(carbonate), poly(urethane) and poly(ether) 

hyperbranched polymers have also been obtained by step-growth polycondensation.  
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Scheme II.2 Schematic of step-growth polycondensation of an AB2 type monomer[33] 

 

 

 

 

Scheme II.3 Synthesis of hyperbranched aliphatic polyester from bis-MPA as the AB2 monomer and TMP 

as the core molecule[41] 

 

 

 Owing to the statistical nature of the synthesis, steric hindrance of the growing chains 

and the reactivity of functional groups, HBP structures are less well controlled than for 

perfect dendrimers and defects are present (linear units, Scheme II.4). Reactive groups are not 

located in regular positions. Thus the degree of branching of dendrimers and HBPs may be 

very different, resulting in differences in their physico-chemical properties. 
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II.3. Degree of branching in hyperbranched polymers 

 

 As shown in Scheme II.4, HBPs consist of dendritic units (D) (all the reactive groups 

of the AB2 monomer have reacted), linear units (L) (one B group has not reacted) and 

terminal units (T) (the two B groups have not reacted). Linear units are generally considered 

to be defects. To compare the structure of HBPs with that of perfect dendrimers, Fréchet and 

coworkers introduced the “degree of branching” (DB) defined by comparing the sum of 

dendritic and terminal units to the total number of units in the macromolecule (Equation 

II.1).[42] 

 

LTD

TD
DB

++
+=  Equation II.1 

 

 In 1997, Frey and coworkers proposed another expression for the degree of branching, 

by considering the degree of polymerization (Equation II.2).[117] 
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Here N is the number of molecules. Equations II.1 and II.2 give the same value of DB for 

hyperbranched polymers with high molecular weights, as N becomes negligible compared 

with the other quantities.  
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Scheme II.4 Representation of the three repeat units present in HBP architectures  

 

 

 The DB of a perfect dendrimer is hence 1, whereas for linear polymers DB is equal to 

0. Frey suggested that DB for HBPs produced by a one pot synthesis of AB2 monomers 

should be close to 0.5.[117] One of the most important challenges in hyperbranched polymer 

synthesis is to produce HBPs with narrow molecular weight distributions and with DB close 

to 1 using a one pot polymerization of ABx monomers. Frey and coworkers have described 

various attempts to increase the DB of HBPs.[33, 118, 119] A limiting value of 0.66 was obtained 

using the technique of slow monomer addition at high degrees of conversion[119] whereas 

Malmström et al. determined a value of 0.80 for hyperbranched polyester obtained by pseudo 

one pot synthesis.[41] 
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II.4. Physico-chemical properties of dendritic macromolecules 

 

 Because of their compact globular shape, their high degrees of branching and large 

number of end groups, dendritic macromolecules show markedly different properties to their 

linear analogues. The high functionality of these macromolecules induces higher solubility in 

various solvents and the chemical reactivity offers the possibility of adapting their properties 

to different applications. For example, dendritic macromolecules with hydrophobic interiors 

can be made water soluble by introducing hydrophilic groups to their surface.[112]  

 

 The viscosity of dendritic macromolecules in solution and in the melt is lower than for 

their linear analogs.[120-123] Due to their globular shape, dendritic macromolecules have little 

or no entanglement. Fréchet[123] studied the evolution of the intrinsic viscosity as a function of 

the molecular weight for linear polymers, dendrimers and HBPs. Figure II.5 shows the 

differences induced by variations in the backbone architecture. The bell-shaped curve 

obtained for dendrimers reflects the decrease in the viscosity of dendrimers at high 

generations due to their regular globular shape. For lower generations, dendrimers adopt a 

more extended structure. This curve illustrates that the Mark-Houwink-Sakurada equation 

(Equation II.3) is not obeyed with dendrimers.  

 

[η] = K [M]α     Equation II.3 

 

The viscosity of HBPs, on the other hand, does not usually show a maximum. The Mark-

Houwink-Sakurada relation is obeyed, even though the viscosity is lower than that of their 

linear analogs.[120-122] For linear polymers α lies between 0.5 and 1, but is less than 0.5 for 

HBPs, again reflecting their globular shape. A factor that also influences the viscosity of 

hyperbranched macromolecules is the degree of branching.  
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Figure II.5 Schematic of the evolution of the intrinsic viscosity log[η] as a function of the molecular weight 

of dendrimers and hyperbranched polymers and comparison with linear polymers[33] 

 

 

 Thermal properties are also drastically different in dendritic macromolecules. The 

large number of end groups present in dendritic macromolecules decreases the glass transition 

(Tg) of dendrimers, but Tg increases with increased numbers of branched units and polarity of 

the end groups.[124, 125] The impact of terminal groups (nature and length) on the thermal 

properties of HBPs has been studied by various authors.[126-130] Malmström et al. studied in 

detail the behavior of hyperbranched polyesters based on bis-MPA and observed that short 

alkyl chain terminal groups decreased the Tg of the HBP from Tg ≈ 30 °C to Tg < 0°C, but that 

long alkyl chains induced crystallization.[131] A few years later, they demonstrated that the 

degree of branching of hyperbranched polyethers influences their thermal properties. At high 

DB the polyether is amorphous with no entanglement (Tg = 40 °C) whereas a low DB results 

either in more entanglement or in a semi crystalline structure, (melting temperature (Tm) 

between 100 and 130 °C) increasing the viscosity.[131]  
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III. Host-guest affinities in dendritic macromolecules 

 

 A presentation of the concept of unimolecular micelles based on dendritic 

macromolecules is given in the first part of section III. The entrapment of guest molecules in 

this tailorable architecture is described in the second part. Guest molecules may also bind to 

the dendrimer at complementary binding sites. This has been the subject of intense recent 

study and understanding the interaction mechanisms remains of great interest.[25, 29, 30, 132-134] 

Thus, an overview of molecular recognition between dendrimers and guest molecules is given 

in the last part of this section. Because dendrimers show three different structural regions, a 

distinction is made between interactions that occur in the core, the branches and the 

dendrimer surface. 

 

III.1. Presentation of the concept 

 

 The high functionality of the dendritic structure allows grafting of different molecules 

to its surface (Figure II.6). These sites may be used to graft active and/or target molecules for 

example. By recognition between the target molecule with its complementary molecule 

present at the site of action, the dendritic structure acts as a macromolecular vector and guest 

molecules can hence be delivered exactly where necessary. Instead of being grafted at the 

periphery, the active molecules may also be entrapped in the internal voids created by the 

branch units (Figure II.6).[106, 114, 135, 136]  

 

 

Figure II.6 Three representations of a dendrimer with the three main domains: the core, the branch units 

and the end groups[137] 
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 In 1982, Maciejewski first discussed the use of highly branched macromolecules as 

containers, underlining the challenges inherent in controlling host-guest interactions.[138] 

Since then, the use of dendritic macromolecules for biological applications has developed 

considerably.[17, 21, 25, 31, 34, 106, 132, 134-136, 139-144] 

 

 The analogy between dendritic macromolecules and micelles derives from the 

pioneering studies of Newkome et al.[18] and Tomalia et al..[145] Newkome et al. described the 

encapsulation of hydrophobic guests within the hydrophobic branches of a water soluble 

dendrimer. The polar functions present at the chain ends provide water-solubility.[18] They 

introduced the term “unimolecular micelle,” which underlines the singularity of such 

covalently bound amphiphilic structures with the presence of branches and voids capable of 

guest inclusions. A few years later, Hawker et al. prepared a dendritic polyether capable of 

solubilizing polycyclic compounds in water as a result of π-π interactions, illustrating the 

relationship between encapsulation power and the electronic density.[19] Unimolecular 

micelles were also investigated by Fréchet et al.,[19, 146] using various guest molecules and 

dendrimer structures. The great advantage of these unimolecular micelles is the stability of the 

structure, regardless of concentration and temperature, unlike conventional micelles, which 

may become thermodynamically unstable. Moreover dendritic macromolecules have external 

functionalizable groups, which make them highly versatile.  

 

 

III.2. Unimolecular systems  

 

 In the context of delivery systems, the aim of dendrimer functionalization is to 

improve the solubility of guest molecules in a given solvent, to prolong their effectiveness 

and protect them against the environment.[19, 21, 31, 136, 142, 147, 148]  
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III.2.1 The dendritic box  

 

 The dendritic box is a selective delivery system based on a dense and rigid shell and a 

flexible core capable of entrapping molecules. The term “dendritic box” comes from the idea 

of physically “locked” guest molecules inside a dendritic container. The concept was 

developed by Jansen and Meijer, with the synthesis of a five generation poly(propylene 

imine) dendrimer as a core[17, 25, 149, 150] and a tert-butyloxycarbonyl (t-BOC)-protected amino 

acid as an external shell (an amino acid which carboxylic groups are protected with tert-

butyloxycarbonyl functions) (Figure II.7). They demonstrated that it is possible to entrap 

different guests in the internal cavities of the dendrimer during synthesis. It was observed that 

the number of guest molecules entrapped in the dendritic box is governed by the shape of the 

guest and the cavities. Up to ten small molecules (p-nitrophenol, Mw = 139 g mol-1) but only 

one large molecule (rose bengal, Mw = 962 g mol-1) could be entrapped by a single molecule. 

The dense surface shell prevents diffusion out of the dendrimers, even after prolonged heat or 

solvent extraction. Selective liberation of entrapped guest from dendritic box was also 

described. Small molecules could be released by hydrolysis of the t-BOC groups, but it was 

necessary to hydrolyze the amide functions of the outer shell to liberate larger molecules. 

 

 
Figure II.7 Chemical structure of Meijer’s dendritic box[150] 
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III.2.2 Inverse unimolecular micelles 

 

 A few years after the introduction of the dendritic box, Meijer and coworkers reported 

an inverted unimolecular micelle, obtained by modifying the end groups of the 

poly(propylene imine) dendrimer with alkyl chains, thus creating a hydrophilic interior and a 

hydrophobic shell. These compounds are able to encapsulate molecules such as rose bengal in 

organic media.[151] Based on this result, other inverted unimolecular micelles were 

investigated for the solubilization of fluorescent hydrophilic molecules in non polar 

media.[152-154] Frey and coworkers described the preparation of a partially esterified 

hyperbranched polyglycerol by ring-opening multi-branching polymerization (ROMBP) of 

glycidol, followed by a partial esterification of the hydroxyl groups with fatty acid.[155] It was 

shown that the encapsulation of hydrophilic molecules is dependent on the molecular weight 

of the hyperbranched polyglycerol, the number of remaining hydroxyl groups and the alkyl 

chain length. Release of the guest molecules is achieved by hydrolysis of the ester functions. 

By comparing linear and hyperbranched esterified polyglycerol they also provided evidence 

for the formation of hydrophilic compartments in amphiphilic hyperbranched core-shell 

molecules in apolar media, which does not occur with linear polymers. These cavities are 

favorable for the encapsulation of guest molecules.[156]  

 

 Recently a novel biodegradable inverted unimolecular micelle composed of a 

poly(lactic acid) (PLA) shell and a hyperbranched polysaccharide core has been developed. 

This new architecture is also able to entrap hydrophilic molecules and to release them slowly 

from the core. The release rate can be accelerated by enzymatic cleavage of the PLA shell.[157] 

 

III.2.3 PEGylated dendrimers 

 

 When it is necessary to increase the water solubility of dendrimers, poly(ethylene 

glycol) (PEG) is typically grafted on the surface of dendrimer, providing a hydrophilic shell 

around a hydrophobic core.[135, 158, 159] PEG is well known for its water solubility, its 

biocompatibility and its ability to modify the distribution of drugs, and is widely used in 

pharmaceutical applications.[160-162] PEGylated dendrimers can act as unimolecular dendritic 
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micelles.[20] Different research groups have shown that PEGylated dendrimers are able to 

entrap guest molecules in their hydrophobic cores and to increase the water solubility of 

hydrophobic pyrene,[26, 163, 164] dyes[165] or drugs.[166, 167] Kojima et al. demonstrated with 

PEGylated poly(amido amine) that higher generation dendrimers can encapsulate drugs more 

efficiently. It was also demonstrated that the PEG chain length has an influence on the 

solubility and the stability of the hydrophobic molecules, and that longer chains induce better 

water solubility.[163, 164, 167] A poly(propylene imine) modified with 3,4,5-

tris(tetraethyleneoxy)benzoyl units was prepared by Baars et al. (Figure II.8). They 

demonstrated that in aqueous solution, dye molecules are preferentially localized in the 

dendrimer interior.[165] 

 

 

 

Figure II.8 Poly(propylene imine) dendrimer modified with 3,4,5-tris(tetraethyleneoxy)benzoyl units[165] 
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III.2.4 pH-sensitive dendrimers 

 

 The entrapment of guest molecules in dendrimers may be a “physical” entrapment (see 

the dendritic box) or can be based on “specific”interaction (electrostatic, H-bonding, apolar 

interactions, …). In what follows, examples are given which underline the effect of pH on the 

controlled release of the guest molecules.  

 

 With PAMAM dendrimer Tomalia and coworkers have demonstrated that specific 

interaction such as electrostatic attraction could be used to entrap deprotonated hydrophobic 

guest molecules in a protonated PAMAM dendrimer with the spin-lattice relaxation time of 

the guest molecule.[168] They also underlined the influence of generation number and length of 

diamino alkyl core on the hydrophobicity of the PAMAM dendrimer and the entrapment of 

guest molecules.[169] In biological applications they reported that protonated PAMAM 

dendrimers can interact with anionic guest molecules such as desoxyribo nucleic acid (DNA). 

This association is of interest for cellular biology, making it possible to transfer genetic 

material into cells.[170] Thus dendrimers function as artificial gene-transfection reagents, 

similar to viruses and liposomes. Moreover, it has been observed that imperfect dendrimers 

are more efficient as gene-transfection vectors.[170, 171] 

 

 Paleos et al. also demonstrated the promise of poly(propylene imine) dendrimer as a 

pH-sensitive controlled release system.[172, 173] They reported the pH-controlled inclusion of 

pyrene in amine modified poly(propylene imine). At high pH, the dendrimer acts as an apolar 

hydrophobic internal host with deprotonated amine groups, whereas at low pH, the 

environment became polar enough to expulse pyrene owing to protonation of the internal 

amine. Inclusion has been demonstrated by NMR and fluorescence measurements.[172] 
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III.3. Complementary binding sites: “Dendritic receptors” 

 

 In this section the capacity of such dendritic macromolecules to act as a “dendritic 

receptors” is illustrated by a number of examples. There has recently been paticular interest in 

the development of dendritically buried recognition sites as mimics for biological systems, 

but this approach may find application in fields as diverse as molecular electronics, 

luminescent devices and energy transduction.[29, 30, 174] Although complementary binding sites 

will not be considered explicitly in the remainder of this thesis, this section is included for 

completness, since ultimately it would be of interest to apply similar principle to the systems 

developed here for the encapsulation of fragrance molecules. 

 

III.3.1 Interactions within the dendrimer core 

 

 The most highly developed dendritic receptor is the dendrophane macromolecule 

(Figure II.9) described by Diederich and coworkers in 1995. The cyclophane dendrimer 

contains one apolar binding site in the core which allow inclusion of aromatic guest molecules 

in water.[175] The use of dendrophane with large cavities enables entrapment of larger guest 

molecules such as steroids. The larger core implies less dense packing of the dendrimer 

branches, inducing faster host-guest exchange kinetics at the NMR time scale.[176] The same 

group also used a poly(ether amide) synthesized by Newkome et al., to demonstrate that 

binding occurred with 1:1 host/guest stoichiometry. The perturbation of the nuclear magnetic 

resonances of the dendrophane units validated the concept of molecular recognition by the 

dendritic core.[177, 178] 
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Figure II.9 Dendrophane with expanded cyclophane cavities for the entrapment of steroids[29] 

 

 

 It is well known that β-cyclodextrin is able to entrap hydrophobic molecules (section 

I.1.1). Dendritic β-cyclodextrin (β-CD) was developed by Newkome et al. for the recognition 

of phenolphthalein (indicator) and adamantane. The absence of the coloration after 

introducing β-cyclodextrin into a basic aqueous solution illustrate the hydrophobic association 

between the phenolphthalein and β-cyclodextrin. They used adamantyl (known to bind very 

strongly to β-CD) to displace the phenolphthalein from the β-CD cavities to the aqueous 

solution. The color regeneration in the aqueous solution demonstrated the localization of 

phenolphthalein in the β-CD cavity and not in the dendrimer branches.[179]  

 

 Because it is well known that ferrocene is another excellent guest molecule for β-CD, 

Kaifer and coworkers studied in detail ferrocene-based dendrimers as redox agents, using 

Newkome-type dendrimers with a single ferrocene unit at the focal point (Figure II.10). They 
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observed that the redox potential is significantly affected by the presence of the dendrimer 

and its complexation with β-CD.[180, 181] 

 

 

 

Figure II.10 Newkome-type dendrimer with a ferrocene unit and its complexation with β-cyclodextrin[30] 

 

 

 The ability of modified Fréchet-type poly(aryl ether) dendrimers to bind C60 fullerene 

was reported by Nierengarten et al.[182] and Shinkai and coworkers[183] They observed that the 

strength of binding increases with increases in the number of dendritic generations (Figure 

II.11). 
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Figure II.11 Poly(aryl ether) modified for the recognition of C60 fullerene[29] 

 

 

 Hydrogen bonding is of primary importance in biology. The secondary structure of 

enzymes is based on these interactions and they also have a major role in catalysis and 

recognition. Newkome et al. reported H-bonding interactions with a dendritic receptor which 

contained four diamidopyridine units and barbituric acid as a guest molecule (Figure II.12). 

The solubility of barbituric acid was enhanced in an apolar solvent. An increase in the 

dendrimer size induced a decrease in barbituric acid association, probably because of 

increased self association and competing dendritic binding sites.[184]  
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Figure II.12 Dendrimer receptor based on H-bonding association between diamidopyridine localized in 

the dendritic core and barbituric acid[132] 

 

 

 Smith and Diederich reported chiral dendrimer receptors referred to as “dendroclefts”, 

based on H-bonding recognition of monosaccharides. The dendrimer branches altered the 

selectivity of this new receptor. They observed that the [G-0] core (without dendritic 

branching) showed enantioselectivity towards octyl α-D-glucoside over α-L-glucoside 

whereas the corresponding [G-1] and [G-2] dendrimers did not. Conversely, the [G-0] core 

exhibited little diastereoselectivity for octyl β-D-glucoside over octyl α-D-glucoside, whereas 

[G-1] and [G-2] dendrimers showed clear diastereoselectivity, which increased with 

generation number.[185] 
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III.3.2 Recognition within polymer branches 

 

 Owing to the difficulty of synthesizing dendrimers with particular groups in their 

branches and to characterize recognition of guest molecules, few examples have so far been 

reported. Shinkai and coworkers[186] described a dendrimer receptor with crown ether sites 

(Figure II.13). This receptor was developed for metal ion recognition and potassium 

extraction. They also observed that myoglobin is made soluble in organic solvents in the 

presence of the [G-1] receptor owing to interactions between the crown ether and protonated 

amines present at the myoglobin surface, but remains insoluble in the presence of higher 

generation dendrimers because of steric hindrance in the branches. 

 

 Sanders and coworkers[187] reported similar cooperativity effects when binding rigid 

diamine guest molecules with branched metalloporphyrin, suggesting that such recognition 

can affect dendrimer properties. 

 

 

Figure II.13 Crown ether dendrimer for the recognition of metal ions[29] 
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III.3.3 Use of surface functions for molecular recognition 

 

 The variety of functionality present at the dendrimer surface makes it particularly 

interesting for molecular recognition. Reinhoudt and coworkers[188] modified poly(propylene 

imine) dendrimer surfaces with adamantyl group. Such dendrimers, which are insoluble in 

water, became water-soluble after complexation with β-CD. Kaifer and coworkers[189] 

reported the functionalization of the poly(propylene imine) surface with ferrocene units. With 

both types of functionalization, the solubility decreases with increasing dendrimer generation 

since steric hindrance induces a decrease in complexation. On the other hand, by 

functionalizing peripherical end groups of the dendrimer with amido-ferrocene units, Astruc 

and coworkers produced a supramolecular redox sensor for the recognition of inorganic 

anions (Figure II.14). They also reported that interactions between dendrimers and anions are 

a function of the dendrimer generation number.[190] 

 

 

 

Figure II.14 Dendritic anion receptor with peripherical amido-ferrocene units[29] 
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 In the field of biological applications, e.g. cell recognition, cell adhesion or infections, 

proteins-carbohydrate interactions are predominant. Cell membranes are composed of 

glycoproteins and glycolipids and present α-sialinic acid groups at their surfaces. These α-

sialinic acid groups bind viruses. With the use of multiple sialinic acid functions it is possible 

to enhance binding and thus to inhibit the interaction between viruses and the host cell. Thus, 

dendrimers with sialinic acid are of particular interest.[191] 

 

 Dendritic receptors for monosaccharide guest molecules were developed by Shinkai et 

al.. They functionalized PAMAM dendrimer with boronic acid. In aqueous solution, boronic 

acid is able to form a cyclic boronate ester with the vicinal hydroxyl groups of the 

saccharides. The proximity of boronic acid groups localized at the dendritic surface increases 

cooperativity, enhancing the binding strength.[192] 
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IV. Conclusions 

 

 In the field of cosmetics, food and pharmaceutics, the main ways of obtaining capsules 

for the entrapment of guest molecules (for protection, prolonged delivery, …) involve ad hoc 

processing routes and relatively simple macromolecules. A variety of functions is employed 

(ester, anhydride, acid…) and biodegradable natural polymers such as polysaccharides and 

phospholipids are well represented. More recently, most sophisticated architectures based on 

block copolymers have also been used. Their supramolecular association to form micelles and 

the concept of shell cross-linked micelles opens the door to a new approach in which the 

capsule is pre-formed and may directly accommodate guest molecules in its interior. In order 

to increase the stability of such structures, the idea of covalently bound macromolecular 

micelles has been introduced and the use of dendritic structures for this purpose has attracted 

particular attention, owing to their compact globular shape and high number of end groups. 

The use of dendritic macromolecules as delivery systems has been described in detail. 

 

 Relatively few results have been published on release kinetics, however whence our 

interest in investigating this aspect of our own system. Polymer property studies have 

nevertheless demonstrated an important link between the state of the polymer (Tg, Tm) and the 

release rate of the guest molecules. Moreover, the block lengths may also influence the 

mobility of the polymer and hence the release rate.  

 

 Finally, although not directly linked to the present project, which is focused on the non 

specific interactions between guest molecules and dendritic structures, the capacity of 

dendritic structures to create supramolecular assemblies for the recognition of specific guest 

molecules has also been discussed, since it illustrates well the vast potential of such 

macromolecules.  
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Chapter III. Polymer synthesis: generalities  

 

___________________________________________________________________________ 

 

 

 

 The major part of this work has been the chemical modification of hyperbranched 

polymers for the synthesis of an amphiphilic unimolecular micelle. To achieve this we used 

ring-opening polymerization (ROP) and atom transfer radical polymerization (ATRP). In this 

chapter, some generalities are given on polymer synthesis and these two techniques in 

particular, as well as an overview of the previous use of ROP and ATRP with multi-arm 

macroinitiators.  
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I. Classification of polymerization techniques 

 

 

 Two main types of classification of polymer synthesis are currently employed and 

distinctions between them must be made carefully to avoid confusion. The first classification 

was proposed by Carothers in 1929[193] and takes into consideration the polymer structure. 

Condensation polymerization is used to describe polymers obtained from polyfunctional 

monomers, with elimination of a small molecule. The polymer contains functional groups and 

its composition differs from that of the monomers. Addition polymerization is used to 

describe polymers that have repeat units that correspond to the monomer composition. No 

elimination of small molecules occurs. The second classification was proposed by Flory in 

1953[194] and is based on the polymerization mechanism. He distinguished between step and 

chain polymerization. In step polymerization, the reaction occurs between the functional 

groups of the monomer, producing dimers, trimers, tetramers and so on. This process is 

characterized by a gradual increase in molar masses with conversion. In chain polymerization, 

an initiator is used to produce an initiator species and the process is composed of three stages, 

initiation, propagation and termination. High molecular weights are obtained rapidly in this 

case. The two types of classification, together with their characteristics, are summarized in 

Table III.1. 
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Table III.1 Summary of the two main types of classification for polymers and polymerization processes 

 

Based on polymer structure Based on polymerization technique 

Condensation 

• Requires polyfunctional monomers 

• Elimination of small molecules 

• Elemental composition of polymer differs from the 

monomers 

 

e.g.: polyamide 

 

R NH2H2N R' COOHHOOC+

H NH R NHCO R' CO OH
n

+ nH2O
 

Step 

• Reaction occurs between the different sized species 

present in the system 

• Monomer forms dimer, trimer, and so on 

• Molecular weight increases slowly with conversion 

• High molecular weight polymer is obtained at the end 

of the reaction 

• Long reaction times necessary to obtain high 

conversion and high molecular weights 

Addition 

• No elimination of small molecules 

• Repeat units of the polymer have the same 

composition as the monomer 

 

e.g.: polyethylene 

 

H2C CH2 CH2 CH2* *n
n  

Chain 

• Three major stages: Initiation, propagation, 

termination (transfer reaction)  

• Initiator may be a free radical, cation or anion 

• Monomer only reacts with the reactive center 

• High molecular weight polymer immediately 

• Chain growth is very rapid 

• Molecular weight of the polymer is substantially 

independent of monomer conversion  

 

 

 It is not possible simply to assimilate condensation and step polymerization, and 

addition and chain polymerization. Step polymerization not only covers polycondensation, but 

also polymerizations that do not induce elimination of small molecules. The ring-opening 

technique (which will be described in section III) illustrates that both structure and 

mechanism are usually needed to clearly classify a polymerization reaction. Indeed, ring-

opening polymerization is structurally classified as condensation polymerization (functional 

groups in the polymer chain) but the mechanism corresponds to a chain polymerization, with 

initiation, propagation and termination stages.  
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II. Chain polymerization 

 

II.1. Conventional chain polymerization 

 

 The initiation stage of chain polymerization consists of the creation of reactive species 

(R*) from an initiator (I). R* may be a free radical, an anion or a cation. R* adds to the 

monomer by cleaving the double bond, creating a new reactive center R-M* (Scheme III.1). 

Monomer molecules are successively added to the propagating reactive center. Termination 

occurs by destruction of the reactive center by recombination or dismutation (Scheme III.2). 

 

 

Initiation

Propagation

Transfer

Termination

I 2 R*

R* + M R M*

R M* + M R M*n+1

R M* + X-Y R Mn X + Y*

R M*n + R M*p

R Mn+p R

R Mn + R Mp H  

 

Scheme III.1 Stages of chain polymerization 
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R CH2 CH22 R CH2 CH3 R CH CH2

R RR R

Dismutation

Recombination

 

 

Scheme III.2 Termination mechanism in chain polymerization. Example of a radical polymerization 

 

 

 It has been observed in many polymerizations that the polymer molecular weight is 

lower than predicted. This phenomenon is due to premature termination of the growing chain 

by a transfer reaction. The monomer, initiator, solvent or polymer or a transfer agent may 

cause transfer reactions, which result in chain scission and hence a decrease in the molecular 

weight. 

 

 The differences between anionic, cationic and radical polymerization are linked to the 

types of reactive centers formed by the monomer. Odian has classified the different types of 

chain polymerization in terms of the initiation type.[195] Most monomers undergo 

polymerization with a radical initiator but show high selectivity toward ionic initiators. The 

great advantage of radical polymerization is that vinylic monomers may be polymerized by 

this technique. Moreover, it is easier to implement than ionic polymerization. Radical 

polymerization is currently the most widely used process, representing more than 50 % of 

polymer production. Propagating radicals are insensitive toward impurities such as water or 

organic protic solvents so that the reaction may take place in mass, solvent, emulsion or 

suspension at temperatures between 40 and 150 °C. However it is better to avoid 

contamination by molecular oxygen which may induce transfer and inhibition of the reaction. 

 

 

II.2. “Living” and “controlled” polymerization 

 

 In certain types of chain polymerization, neither transfer nor termination occur, 

resulting in a “living” polymer. Living polymerization was introduced in 1950 with the work 

of Szwarc,[196] who determined optimum conditions for the controlled polymerization with 
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reactive anionic species. Initiation is rapid relative to the propagation stage. The concept of 

dormant states (inactivation of the polymer chain) was introduced to minimize bimolecular 

termination and prolong the lifetime of polymerization reaction initiated by radical species 

(Scheme III.3). In the mid-1990’s, such “controlled” radical polymerization (CRP) was 

intensively studied because of its commercial potential for synthesis and the relative 

abundance of monomers that can undergo radical polymerization.  

 

 

C-Y C + Y

dormant active

polymerpolymer

Fast reversible

Activation 
(Physical, chemical)

 

 

Scheme III.3 Principle of polymer chain inactivation in a CRP process 

 

 

 There has been considerable debate about the terminology for “living” and 

“controlled” radical polymerization. To simplify it is proposed in the present manuscript to 

use the same terminology as Fontanille and Gnanou.[197] “Living” polymerization is used 

when neither termination nor transfer occur and when the initiation rate is variable, whereas 

“controlled” polymerization is used when termination and transfer are minimized and when 

the initiation stage is very fast in comparison with propagation stage. According to this 

terminology, a “living” polymerization is not always a “controlled” polymerization. 
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II.3. Controlled radical polymerization (CRP) 

 

II.3.1 Principle 

 

 Controlled radical polymerization allows synthesis of polymers with well defined 

compositions offering substantial advantages for building nanostructures with a variety of 

architectures (block and graft copolymers, stars…).[195] All the methods are based on the same 

strategy. For good control, a dynamic equilibrium has to be established between a small 

quantity of the active radical species and a large quantity of the covalent dormant species.[198] 

Typically, large amounts of radical species are generated in a short time (each chain starts to 

propagate at the same time) but the instantaneous radical concentration remains as low as 

possible (radical concentration ≈ 10-8 to 10-9 mol L-1). The frequent interconversion between 

the active and the dormant species not only decreases the probability of bimolecular radical 

termination, but also gives a uniform chain length. The rate of termination is directly 

proportional to the square of the radical concentration (Rt = kt [M•]2). A decrease in the 

radical concentration induces a significant decrease in termination.  

 

A controlled radical polymerization fulfils the following conditions: 

• Minimal termination 

• Exchange between dormant and active species remains fast with respect to 

propagation, to maintain low polydispersity 

It is then possible to control the molar mass of the polymer by adjusting the monomer versus 

the initiator ([M]/[I]) ratio. Polymer chains are in the dormant state at the end of the reaction 

and composition and topology are well defined. 

 

II.3.2 Different types of CRP 

 

 Three methods of CRP have been established over the last decade. All are based on 

minimizing termination and transfer by the establishment of a dynamic equilibrium between a 

growth-active radical species and a dormant species as described above. Reversible 
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termination techniques such as stable free radical polymerization (SFRP) and atom transfer 

radical polymerization (ATRP), or reversible chain transfer processes such as reversible 

addition-fragmentation transfer (RAFT) have been developed. The dormant chain differs 

according to the specific method of radical polymerization.[198] 

 

 SFRP uses various mediating or persistant radicals such as nitroxyde, triazolinyl, trityl 

and dithiocarbamate. Due to the greater efficiency of nitroxydes, SFRP has very often been 

called nitroxyde mediated polymerization (NMP). Radical polymerization mediated by 

nitroxyde was described for the first time by Solomon and Rizzardo in 1982.[199] It has been 

used for the polymerization of styrene, acrylic (alkyl acrylate, acrylic acid), diene and 

acrylamide monomers. 

 

 ATRP was developed in the mid of 1990’s by Sawamoto[200] with the use of a 

ruthenium complex, and Matyjaszewski[201] who proposed copper as the catalytic system. 

Details of the mechanisms, kinetics, effects of constituants (initator, solvent, ligand, metal…) 

are reviewed elsewhere.[202, 203] In the case of ATRP, the dormant species are alkyl halides, 

which undergo a reversible redox process catalyzed by the transition metal compound. The 

majority of the vinyl monomers have been polymerized by this method, with the exception of 

vinyl acetate, diene and acrylic acid. 

 

 RAFT, the most recent method of CRP, was developed by Rizzardo and 

coworkers.[204] A chain transfer agent such as cumyldithiobenzoate reversibly transfers a 

labile end group (dithioester end group) to a propagating chain.  

 

 Scheme III.4 illustrates the three processes SFRP (NMP), ATRP and RAFT with the 

activation and deactivation stages. kact corresponds to the rate constant from the dormant to 

the active species and kdeact to the rate constant from the active to the dormant species. kp and 

kt correspond respectively to the rate constants of propagation and termination. In NMP, the 

growing polymer chain (Pn
•) is associated with nitroxyde groups (X) to form an alcoxyamine 

dormant species. In the case of ATRP, a ligand (Y) is also present to complex the 

organometallic transfer agent (X). In RAFT polymerization, a dithioester (X) is introduced, 
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and is successively transfered from one growing chain (-Pm
•) (to form a dormant chain (X-

Pm)) to another (-Pn
•) (to form another dormant chain (X-Pn)) with a kexch rate constant.  
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Scheme III.4 Three types of controlled radical polymerization 

 

 

 In the present work ATRP was used for the synthesis of the hydrophilic shell of the 

container. It is therefore proposed to describe the ATRP process in more detail. The emphasis 

will be on acrylate and methacrylate monomers.  
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II.3.3 Atom transfer radical polymerization (ATRP) 

 

 Many publications attest to the potential of ATRP for controlled radical 

polymerization and the generation of very well defined polymers. A wide range of monomer, 

transitions metals and ligands have been used for this purpose.  

 

 The name ATRP was proposed by Matyjaszewski and derives from the atom transfer 

step, which is responsible for the uniform growth of the polymer chain. This process 

originates from ATRA, which consists of the addition of alkyl halides and alkenes catalyzed 

by transition metal complexes.[205] ATRP was developed by designing a suitable catalyst 

(transition metal and ligand), using an initiator with the appropriate structure and adjusting the 

polymerization conditions.[201-203, 206-210] Active species are generated from the catalyst 

complex metal/ligand (Scheme III.5). 

 

Mt
n-Y/Ligand X-Mt

n+1-Y/Ligand

kact

kdeact

R-X R+ +

 
 

Scheme III.5 Activation of the ATRP from a metal/ligand complex with R-X: halogenated initiator, Mtn: 

metal, Y: halogenated group, kact:, activation rate constant, kdeact: deactivation rate constant 

 

 

 The ligand is necessary to solubilize the metal and increase the metal oxydability. It 

has a donor character. These conditions allow control over the chain topology (star, 

branched), the composition (block, gradient, alternating, statistical) and the end functionality 

for a large range of monomers such as acrylate and methacrylate. With these monomers, 

copper works well as the metal catalyst. Ligands composed of multidentate nitrogen are very 

often used with copper. Bidentate (2,2’-bipyridyl and N-propyl-2-pyridylmethanimine) 

tridentate (pentamethyl diethylene triamine (PMDETA)) and tetradentate ligands (hexamethyl 

triethylene tetramine (HMTETA) and tris-2-dimethyl aminoethyl amine (Me6TREN)) are 

found to be most effective owing to electronic and steric effects[202, 206, 211] (chemical formula 
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in appendix 3). Scheme III.6 gives an example of complexation between a metal (copper, Cu) 

and a ligand (2,2’-bipyridyl). 
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Scheme III.6 Representation of the complexation between metal (Cu) and ligand (2,2’-Bipyridyl) during 

ATRP polymerization 

 

 

 The initiator must also be well chosen for ATRP to be effective. For the synthesis of a 

well defined polymer, it is essential to prepare an initiator that can efficiently trigger the 

polymerization of the chosen monomer. It has been shown that alkyl halides containing 

activating substituents (such as carbonyl groups) at the α-carbon position can initiate the 

polymerization of tert-butyl acrylate[212] and methyl methacrylate.[213] A well defined polymer 

may be prepared by using a functional group that has a structure similar to that of the growing 

polymer chain end in its dormant form. The rate of the ATRP is then moderated and the 

polymerization better controlled. The choice of the monomer induces the chemical nature of 

the other components present in the reaction medium as well as the initiator. 

 

 First order kinetics have been verified in many ATRP conditions[206, 214, 215] including 

multi-arm macroinitiators.[216, 217] Scheme III.7 shows the propagation step of an ATRP 

polymerization. 
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R Br + CuBr(L) R + CuBr2(L)

+ M

kdeact

kact

R-Mn

CuBr2(L)

RMn-Br + CuBr(L)  

 

Scheme III.7 Propagation step in ATRP polymerization 

 

 

 In ATRP polymerization, the initiation consists of the production of free radicals. The 

addition of one monomer to the radical follows with a rate constant K. The propagation 

consists of the growth of the propagating radical by the successive addition of a large number 

of monomer molecules. The propagation rate (Rp) is given in Equation III.1 by considering 

the propagation step shown in Scheme III.7 with the initiator [I] = R-Br, the initiation rate 

constant K=kact/kdeact (kact, the rate constant for activation and kdeact, the rate constant for 

deactivation) and kp, the rate constant for propagation. 
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Equation III.4 shows that by following the evolution of 
][

][ 0

M

M
Ln  as a function of the time it is 

possible to obtain to the rate constant of the reaction. Linearity of 
][

][ 0

M

M
Ln  over time 

confirms that the concentration of propagating radicals is constant throughout the 

polymerization.  

 

II.3.4 ATRP from multi-arm macroinitiators  

 

 ATRP of multi-arm macroinitiators such as dendrimers and hyperbranched 

structures,[218-223] calix[n]arenes with 4, 6, or 8 external functions,[224-226] stars with 4 to 12 

arms,[227-230] or cyclodextrin with 21 branches[231] has been investigated with styrene, acrylate 

and methacrylate as the monomer. Alkyl halides containing carbonyl groups, such as 2-

bromoisobutyryl bromide, were used for the initiation of the polymerization of acrylate and 

methacrylate monomers. Polymerization was carried out with a catalyst complex containing 

copper bromide (CuBr) with different ligands such as dibromobis(triphenylphosphine)nickel 

(II) (NiBr2(PPh3)2),
[218-220, 227] 2,2’-bipyridyl[224, 225] or N-propyl-2-pyridylmethanimine.[231, 232] 

 

 Haddleton et al. prepared glycopolymers using sugars as the macroinitiator. They 

polymerized hydrophobic (styrene and methyl methacrylate (MMA)) and hydrophilic 2-(N,N-

dimethylamino)ethyl methacrylate (DMAEMA) and poly(ethylene glycol) methacrylate 

(PEGMA)) monomers by ATRP from glucose, galactose and maltose modified with 2-

bromoisobutyryl bromide.[233, 234] They demonstrated the possibility of synthesizing 

amphiphilic block copolymers from such carbohydrates.[234] They also used polysaccharides, 

such as cyclodextrin with 21 arms, to initiate polymerization of hydrophilic monomers 

(PEGMA and DMAEMA).[231] CuBr and N-propyl-2-pyridylmethanimine were used as the 

catalyst/ligand complex. They obtained hydrophilic star glycopolymers with good control 

over the molecular weight. Such structures, with the hydrophobic cavity present in the 

cyclodextrin, can be used as an inclusion complex for small organic molecules, as discussed 

in Chapter II.III.3. 
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III. Ring-opening polymerization (ROP) 

 

III.1. General considerations 

 
 Ring-opening polymerization is of importance for the polymerization of cyclic 

monomers. With regard to the process, ROP is a chain polymerization with a sequence of 

initiation, propagation and termination. Monomers are added to the growing chain after 

initiation by a cationic or anionic initiator, by a mechanism called the “insertion process”. 

This mechanism is different from anionic and cationic initiation. With regard to the kinetics, 

the propagation rate constants are closer to those of a step process than to those of a chain 

process with carbon-carbon double bond monomers. Thus the buildup of polymer molecular 

weight is slower for ROP than for chain polymerization of carbon-carbon double bond 

monomers. Many ROPs proceed as “living” polymerizations. The polymer molecular weight 

increases linearly with conversion and with the [M]/[I] ratio, and narrow molecular weight 

distributions are obtained.[195]  

 

 Here we are interested in the polymerization of a cyclic ester (lactone) by ROP. 

Polyesters are usually synthesized from polycondensation of a diol and a diacid. ROP is an 

alternative process for their synthesis and gives higher molar masses. Cyclic ether, lactam, 

nitrogen heterocycles, sulfur heterocycles and cycloalkenes are other monomers which may 

be polymerized by a ROP process. Their polymerization has been described in detail by 

Odian.[195] 

 

 A variety of initiators have been used for the ROP of lactones. In the case of anionic 

ROP, anionic covalent initiators such as alkylmetal alkoxides and metal alkoxides, e.g. 

R2AlOR’ and Al(OR3), or metal carboxylates e.g. tin(II)-ethylhexanoate [Sn(Oct)2] may be 

used.[235-237] For almost all lactones, the reaction proceeds by acyl-oxygen cleavage. With a 

coordination initiator, the metal coordinates with the oxygen of the carbonyl group of the 

monomer and oxygen of the propagating chain (Scheme III.8).  
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Scheme III.8 Insertion mechanism in ROP of ε-caprolactone initiated by an alcohol in the presence of a 

metal carboxylate [Sn(Oct)2]. 

 

 

 In the case of cationic ROP, a variety of cationic initiators are used which generate a 

tertiary oxonium ion-propagating species. Propagation follows with alkyl oxygen cleavage. 

An example of the initiation and propagation stages is given in Scheme III.9.  
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Scheme III.9 Mechanism of ROP of lactone initiated by methylene carbocation 

 

 Few details are given in the literature on the cationic ROP of lactone. The cationic 

route is limited by intramolecular transesterification (cyclisation) and other chain transfer 

reactions. Anionic polymerization is useful for the synthesis of high molecular weight 

poly(ester)s. Although transfer reactions (including transesterification) have also been 

observed in anionic polymerization, limiting the molecular weight and inducing relatively 

broad molecular weight distributions, it has been shown that transfer may be reduced by the 

use of less active initiators such as alkoxides of Al instead of Na, Mg and Zn.[238] A wide 
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variety of catalysts have been tested. [239, 240] Transesterification is dependent on the initiation 

rate, which is faster than propagation, and on the metal catalyst.[238] It was observed that low 

temperature helps to avoid transesterification.[240-242] Kricheldorf et al. described poly(lactide) 

polymerization with tin(II)-ethylhexanoate at T < 120 °C. Polymers with high molecular 

weight and low polydispersity were obtained.[241] 

 

 ε-Caprolactone is usually synthesized by anionic ROP. The nucleophile may be water, 

acid, alcohol[240, 242], amine[243] or thiol. The nature of the catalyst[240, 242, 244, 245] and the 

temperature influence the conversion and the control of the polymerization. One of the most 

widely used catalysts is tin(II)-ethylhexanoate [Sn(Oct)2]. In the presence of this catalyst, it is 

possible to limit transesterification. The reaction rate is relatively high for reaction 

temperatures between 110 and 120° C.[240, 241, 246, 247] The amount of catalyst is also important 

for controlled polymerization. When the amount of [Sn(Oct)2] matches the number of initiator 

groups, two molar mass populations are formed, whereas when the quantity of catalyst is 

reduced, only one population is obtained. Thus, when less catalyst is used, the reaction time is 

longer, but transesterification is reduced (the number of active species decreases and the 

polymerization constant increases).[236, 248-250] It has also been shown that it is not necessary to 

prolong the reaction time beyond 20 hours under these conditions.[249] 

 

 

III.2. Multi-arm macroinitiators  

 
 Hedrick et al. and Hult et al. have worked on the ROP of ε-caprolactone from multi-

arm initiators. They considered stars, dendrimers and hyperbranched polymers.[218, 248, 251, 252] 

Recently, other groups have reported ROP from stars with 4 to 12 arms[228-230, 253] and 

hyperbranched polymers.[222, 223] By transposition of the reaction conditions, polysaccharides 

have also been used as macroinitiators for ROP of lactide.[249]  

 

 Hult et al. compared hyperbranched polymers and dendrimers.[252, 254] They 

demonstrated that the polydispersity of the copolymer is higher with a hyperbranched 

molecule core than with a dendrimer due to the presence of significant number of 

monohydroxylated groups (linear units) in the HBP, which causes heterogeneity in the sample 
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and increased polydispersity. With the dendritic structure, on the other hand, initiation is 

limited to di-substituted groups (terminal units) leading to more uniform macromolecules.  

 

 Hedrick et al. studied another metal catalyst, tin(II) trifluoromethane sulfonate 

[Sn(OTf)2], and compared it with tin(II)-ethylhexanoate [Sn(Oct)2].
[240, 242] They showed that 

triflate-substituted catalysts [Sn(OTf)2] were more active and allowed lower polymerization 

temperatures. The polymerization was better controlled and the polydispersity narrower, even 

for monoalcohols. According to this result, and to their previous work,[251, 255] where they 

showed that ROP of lactone was well controlled by using [Sn(Oct)2] with multi-arm branched 

macroinitiators, Hedrick et al. demonstrated that it was preferable to carry out the 

polymerization from monofunctional alcohols using [Sn(OTf)2] and from multifunctional 

alcohols using [Sn(Oct)2].
[256] 

 

 

IV. Conclusion 

 

 This second literature chapter has described the theoretical background for the 

polymer synthesis and has particularly focused on ATRP and ROP procedures. Radical 

polymerization is widely used in polymer synthesis because of its easy implementation in 

comparison with ionic procedures. Since the introduction of dormant and active species 

during the 1990’s there has been enormous interest in CRP processes and three main 

techniques of CRP have emerged NMP, ATRP and RAFT. The use of ATRP and ROP with 

multi-arm macroinitiators has also been widely investigated, providing a firm basis for their 

use in the present case of hyperbranched macroinitiators. 
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Chapter IV. Experimental methods 

 

___________________________________________________________________________ 

 

 

 

 This chapter concerns the synthetic procedures used in this project. Two approaches 

were used for the design of the amphiphilic multi-arm star-block copolymers. The first 

strategy consisted of using Boltorn® H40 HBP (Perstorp, Sweden) (H40) as the initiator for 

the ring-opening polymerization of ε-caprolactone. Along with the H40 itself, the resulting 

poly(ε-caprolactone) (PCL) blocks provide the hydrophobic interior of the final multi-arm 

star-block copolymer (H40-(PCL)p). In order to graft hydrophilic blocks to the precursor, 

functional groups serving as initiators for ATRP, such as 2-bromoisobutyryl bromide, were 

introduced to the ends of the PCL arms to give a H40-(PCL)p-Br macroinitiator. Subsequent 

polymerization of tert-butyl acrylate (tert-BuA) monomer gave poly(tert-butyl acrylate) 

(PtBuA). The resulting H40-(PCL)p-(PtBuA)q star-block copolymer is not sufficiently 

hydrophilic to be dispersed in water. Removal of the tert-butyl ester protective groups was 

therefore used to convert the PtBuA to the corresponding poly(acrylic acid) (PAA), rendering 

the macromolecule water-soluble (H40-(PCL)p-(PAA)q)).  
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I. Materials 

 

 H40 was obtained from Perstorp Chemicals and was washed in acetone and 

precipitated in diethyl ether before use. Tin(II) ethylhexanoate [Sn-(Oct)2] (Aldrich) was used 

as received. ε-Caprolactone (99 % Aldrich) was dried over calcium hydride (CaH2), distilled 

and stored under N2 prior to use. Triethylamine (96 %, Aldrich) was distilled and stored under 

N2 prior to use. 2-Bromoisobutyryl bromide (98 %, Aldrich), ethylene carbonate (98 % 

Aldrich), 2, 2’-bipyridyl (99 + % Acros), hexamethyl triethylene tetramine (HMTETA, 

Aldrich), pentamethyl diethylene triamine (PMDETA, Aldrich), trifluoroacetic acid (98 % 

Fluka) and CuBr (> 98 % Fluka) were used without further purification. N-Propyl-2-

pyridylmethanimine was synthesized from n-propylamine and pyridine-2-carboxaldehyde 

according to literature.[257] Triethylamine (Fluka) was distilled before use. Tert-butyl acrylate 

tBuA and tert-butyl methacrylate (tBuMA) (98 % Aldrich), 2-(N,N-dimethylamino)ethyl 

methacrylate (DMAEMA, 98 % Aldrich), diethylene glycol methyl ether methacrylate 

(DEGMA) and poly(ethylene glycol) methyl ether methacrylate (PEGMA Mn ~ 475 g/mol) 

were passed through a column of basic alumina to remove the stabilizer. n-Butyl methacrylate 

(BMA) was freshly distilled prior to use. Commercially available solvents were used without 

further purification. Reactions were carried out in standard glassware under inert atmosphere. 

Benzyl acetate, geraniol (trans-3,7-dimethyl-2,6-octadien-1-ol), decanal, Vertenex® (4-tert-

butylcyclohexyl acetate, dorisyl), pipol ((Z)-3-hexenol), 3,5,5-trimethylhexanal, dimetol (2,6-

dimethyl-2-heptanol), acetophenone, ethyl (E)-2,4-dimethyl-2-pentenoate  jasmonitrile, 

benzylacetone (4-phenyl-2-butanone), 2-pentylcyclopentanol, 4-cyclohexyl-2-methyl-2-

butanol, 10-undecenal, allyl 3-cyclohexylpropanoate were received from Firmenich SA. 
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II. Synthesis of the amphiphilic star-block copolymer 

 

II.1. ROP of ε-caprolactone  

 

Synthesis of H40-(PCL)40 

After precipitation from acetone into diethyl ether, H40 was dried under vacuum for 2 days. A 

250 mL three-neck flask was charged with H40 (850.0 mg, 6.7 mmol of hydroxyl groups) 

under an inert atmosphere and placed in an oil bath at 107 °C in order to melt it and hence 

facilitate mixing with ε-caprolactone. ε-Caprolactone (22.8 g, 21.2 mL, 200.0 mmol) was 

slowly introduced and a catalytic amount ([catalyst]/[macroinitiator] = 1/400) of Sn-(Oct)2 

added. The polymerization reaction mixture was stirred for 14 h, diluted with THF, and 

precipitated into cold n-heptane to give 22.3 g (71.5 %) of a white crystalline powder.  

 

The degree of polymerization DPp, i.e. the average number of PCL repeat units of per arm, 

was determined from 1H-NMR spectroscopy according to the following equation:  

OHCH

OCOCH
p I

I
DP

2

2=  

where ICH2OH is the integral of peak corresponding to the methyl groups adjacent to the chain 

ends and ICH2OCO is the integral of the peak corresponding to the methyl groups associated 

with the ester linkages. The average structure of the compound was in this case determined to 

be H40-(PCL)40.  

 
1H NMR (400 MHz, CDCl3): 4.05 (t, -(CO-CH2-CH2-CH2-CH2-CH2-O)-, 80 H); 3.65 (t, -CO-

CH2-CH2-CH2-CH2-CH2-OH, 2 H); 2.31 (t, -(CO-CH2-CH2-CH2-CH2-CH2-O)-, 80 H); 1.70-

1.60 (m, -(CO-CH2-CH2-CH2-CH2-CH2-O)-, 172.8 H); 1.45-1.32 (m, -(CO-CH2-CH2-CH2-

CH2-CH2-O)- 84.8 H).  
13C NMR (100.6 MHz, CDCl3): 173.55 (s, -(CO-CH2-CH2-CH2-CH2-CH2-O)-); 64.16 (t, -

(CO-CH2-CH2-CH2-CH2-CH2-O)-); 34.13 (t, -(CO-CH2-CH2-CH2-CH2-CH2-O)-); 28.37 (t, -

(CO-CH2-CH2-CH2-CH2-CH2-O)-); 25.55 (t, -(CO-CH2-CH2-CH2-CH2-CH2-O)-); 24.59 (t, -

(CO-CH2-CH2-CH2-CH2-CH2-O)-).  

GPC (DMF): Mn ~ 158900 g/mol, Mw/Mn = 2.07.  
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Synthesis of H40-(PCL)10 

As described above with 2.0 g of Boltorn® H40 HBP and 17.4 mL of ε-caprolactone for 16 h 

to give 19.6 g (95%) of a white crystalline powder.  

 
1H-NMR (500 MHz, CDCl3): 4.05 (t, 18 H); 3.65 (t, 1.69 H); 2.31 (t, 19.06 H); 1.70-1.60 (m, 

40.6 H); 1.45-1.32 (m, 20 H).  
13C-NMR (125.8 MHz, CDCl3): 173.74(s); 64.15 (t); 34.13 (t); 28.36 (t); 25.54 (t) 24.59 (t). 

IR: 3540 w, 3436 w, 2943 m, 2865 w, 1721 s, 1470 w, 1418 w, 1396 w, 1366 m, 1293 m, 

1240 m, 1186 m, 1162 m, 1107 m, 1045 m, 961 m, 933 w, 840 w, 731 m, 706 w.  

GPC (DMF): Mn ~ 65380 g/mol, Mw/Mn = 2.03.  

 

A degree of polymerization DPp = 10 corresponding to the number of repeated units of 

caprolactone per arm was determined, and the average structure of the compound was 

therefore assigned as H40-(PCL)10.  

 

Synthesis of H40-(PCL)17 

As described above with 2.50 g of Boltorn® H40 HBP and 43.2 mL of ε-caprolactone for 21 

h to give 45.5 g (93%) of a white crystalline powder.  
 

1H-NMR (500 MHz, CDCl3): 4.05 (t, 32 H); 3.65 (t, 1.88 H); 2.31 (t, 33 H); 1.70-1.60 (m, 

66.2 H); 1.45-1.32 (m, 33 H).  
13C-NMR (125.8 MHz, CDCl3): 173.55 (s); 64.16 (t); 34.13 (t); 28.37 (t); 25.55 (t); 24.59 (t). 

IR: 3534 w, 3443 w, 2940 m, 2863 m, 2643 w, 2319 w, 1720 s, 1470 m, 1416 m, 1396 m, 

1364 m, 1292 m, 1237 s, 1167 s, 1107 s, 1064 m, 1045 s, 960 m, 933 m, 840 m, 731 m, 709 

m.  

GPC (DMF): Mn ~ 89890 g/mol, Mw/Mn = 1.99  

 

A degree of polymerization DPp = 17 corresponding to the number of repeated units of 

caprolactone per arm was determined, and the average structure of the compound was 

therefore assigned as H40-(PCL)17.  
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Synthesis of H40-(PCL)24 

As described above with 0.30 g of Boltorn® H40 HBP and 5.79 mL of ε-caprolactone for 5.5 

h to give 5.65 g (79%) of a white crystalline powder.  
 

1H-NMR (400 MHz, CDCl3): 4.05 (t, 47.5 H); 3.65 (t, 1.96 H); 2.31 (t, 48 H); 1.70-1.60 (m, 

101.7 H); 1.45-1.32 (m, 49.7 H).  
13C-NMR (125.8 MHz, CDCl3): 173.53 (s); 64.14 (t); 34.12 (t); 28.36 (t); 25.54 (t); 24.58 (t). 

GPC (DMF): Mn ~ 94300 g/mol, Mw/Mn = 2.46  

 

A degree of polymerization DPp = 24 corresponding to the number of repeated units of 

caprolactone per arm was determined, and the average structure of the compound was 

therefore assigned as H40-(PCL)24.  

 

Synthesis of H40-(PCL)50 

As described above with 0.40 g of Boltorn® H40 HBP and 19.09 mL of ε-caprolactone for 14 

h to give 19.8 g (94.6%) of a white crystalline powder.  

 
1H-NMR (400 MHz, CDCl3): 4.05 (t, 100 H); 3.65 (t, 1.9 H); 2.31 (t, 100 H); 1.70-1.60 (m, 

200.9 H); 1.45-1.32 (m, 101.8 H).  
13C-NMR (100.6 MHz, CDCl3): 173.53(s); 64.14 (t); 34.12 (t); 28.36 (t); 25.54 (t) 24.58 (t). 

IR: 3440 w, 2944 m, 2867 w, 1722 s, 1471 m, 1417 m, 1396 w, 1364 m, 1293 m, 1238 m, 

1166 m, 1107 m, 1065 m, 1047 m, 960 m, 933 w, 839 w, 773 w, 731 m, 709 w. 

GPC (DMF): Mn ~ 184640 g/mol, Mw/Mn = 2.57. 

 

A degree of polymerization DPp = 50 corresponding to the number of repeated units of 

caprolactone per arm was determined, and the average structure of the compound was 

therefore assigned as H40-(PCL)50.  

 

Synthesis of H30-(PCL)12 

As described above with 0.17 g (1.56 mmol of hydroxyl groups) of Boltorn® H30 HBP and 

2.0 mL of ε-caprolactone for 22 h to give 2.15 g (96.2%) of a white crystalline powder.  
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1H-NMR (400 MHz, CDCl3): 4.05 (t, 22.7 H); 3.65 (t, 1.84 H); 2.31 (t, 24 H); 1.70-1.60 (m, 

52.1 H); 1.45-1.32 (m, 25.17 H).  
13C-NMR (100.6 MHz, CDCl3): 172.96 (s); 63.58 (t); 33.56 (t); 27.8 (t); 24.97 (t) 24.02 (t) 

GPC (DMF): Mn ~ 41800 g/mol, Mw/Mn = 1.95.  

 

A degree of polymerization DPp = 12 corresponding to the number of repeated units of 

caprolactone per arm was determined, and the average structure of the compound was 

therefore assigned as H30-(PCL)12.  

 

 

II.2. Synthesis of a multifunctional macroinitiator for ATRP 

 

Functionalization of H40-(PCL)40 to give H40-(PCL)40-Br 

H40-(PCL)40 (20.0 g, 4.3 mmol of hydroxyl functions) was dried under vacuum for 15 

minutes. Dry THF (130.0 mL) was added, followed by 2-bromoisobutyryl bromide (9.8 g, 5.3 

mL, 42.7 mmol), introduced dropwise from a syringe, and finally triethylamine (2.6 g, 3.6 

mL, 25.6 mmol). The reaction was carried out at ambient temperature and terminated after 65 

h. The reaction mixture was precipitated from THF into cold water and after drying under 

vacuum for 2 h, the polymer was again precipitated into cold water and then into n-heptane. 

After drying for one night under vacuum at 50 °C, 19.9 g (61.4 %) of H40-(PCL)40-Br was 

obtained as a white crystalline powder.  

 
1H NMR (400 MHz, CDCl3): 4.17 (t, -(CO-CH2-CH2-CH2-CH2-CH2-O)-CO-C(CH3)2-Br, 

6.04 H); 4.05 (t, -(CO-CH2-CH2-CH2-CH2-CH2-O)-,80.23 H); 2.31 (t, -(CO-CH2-CH2-CH2-

CH2-CH2-O)-, 80 H); 1.93 (s, -(CO-CH2-CH2-CH2-CH2-CH2-O)-CO-C(CH3)2-Br, 6.68 H); 

1.70-1.57 (m, -(CO-CH2-CH2-CH2-CH2-CH2-O)-, 171.9 H); 1.43-1.38 (m, -(CO-CH2-CH2-

CH2-CH2-CH2-O)-, 88.0 H).  
13C NMR (100.6 MHz, CDCl3): 173.54 (s, -(CO-CH2-CH2-CH2-CH2-CH2-O)-); 171.68 (s, -

(CO-CH2-CH2-CH2-CH2-CH2-O)-CO-C(CH3)2-Br); 64.15 (t, -(CO-CH2-CH2-CH2-CH2-CH2-

O)-); 55.93 (s, -(CO-CH2-CH2-CH2-CH2-CH2-O)-CO-C(CH3)2-Br); 34.13 (t, -(CO-CH2-CH2-

CH2-CH2-CH2-O)-); 30.77 (q, -(CO-CH2-CH2-CH2-CH2-CH2-O)-CO-C(CH3)2-Br); 28.07 (t, -
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(CO-CH2-CH2-CH2-CH2-CH2-O)-); 25.54 (t, -(CO-CH2-CH2-CH2-CH2-CH2-O)-); 24.59 (t, -

(CO-CH2-CH2-CH2-CH2-CH2-O)-).  

GPC (DMF): Mn ~ 177600 g/mol, Mw/Mn= 2.06 

 

Synthesis of H40-(PCL)10-Br 

As described above with 15 g of H40-(PCL)10, 2.95 mL of 2-bromoisobutyryl bromide 

(2.37·10-2 mol) and 3.30 mL of triethylamine (2.37 10-2 mol) for 48 h to give 9.50 g (56.6 %) 

of H40-(PCL)10-Br as a crystalline powder.  
 

1H-NMR (400 MHz, CDCl3): 4.17 (t, 3.5 H); 4.05 (t, 18.7 H); 2.31 (t, 20 H); 1.93 (s, 5.2 H); 

1.70-1.57 (m, 42.9 H); 1.43-1.33 (m, 22.1 H).  
13C-NMR (100.6 MHz, CDCl3): 173.53 (s); 64.14 (t); 55.93 (s); 34.12 (t); 30.77 (q); 28.36 (t); 

28.07 (t); 25.54 (t); 24.59 (t).  

IR: 2939 m, 2866 m, 2675 w, 2490 w, 1722 s, 1470 m, 1433 m, 1419 w, 1396 m, 1365 m, 

1293 m, 1240 m, 1163 m, 1107 s, 1066 m, 1036 m, 961 m, 932 w, 840 w, 804 w, 731 m, 709 

w.  

GPC (DMF): Mn ~ 54300 g/mol, Mw/Mn= 2.27. 

 

Synthesis of H40-(PCL)17-Br 

As described above with 43 g (5.79·10-4 mol) of H40-(PCL)17, 5.2 mL of 2-bromoisobutyryl 

bromide (4.17·10-2 mol) and 5.8 mL of triethylamine (4.17·10-2 mol) for 65 h to give 43.3 g 

(93 %) of H40-(PCL)17-Br as a white crystalline powder.  
 

1H-NMR (500 MHz, CDCl3): 4.17 (t, 2.2 H); 4.05 (t, 32.7 H); 2.31 (t, 34 H); 1.93 (s, 4.39 H); 

1.70-1.57 (m, 69.6 H); 1.43-1.33 (m, 34.9 H).  
13C-NMR (125.8 MHz, CDCl3): 173.54 (s); 171.68 (s); 64.15 (t); 55.93 (s); 34.13 (t); 30.77 

(q); 28.07 (t); 25.54 (t); 24.59 (t).  

IR: 3533 w, 3443 w, 2941 m, 2863 m, 2653 w, 2319 w, 1719 s, 1469 m, 1418 m, 1396 m, 

1365 m, 1292 m, 1238 s, 1160 s, 1106 s, 1064 m, 1044 s, 960 m, 933 m, 840 m, 731 m, 709 

m.  

GPC (DMF): Mn ~ 106000 g/mol, Mw/Mn= 1.79. 
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Synthesis of H40-(PCL)24-Br 

As described above with 5 g (4.76·10-5 mol) of H40-(PCL)24, 2.1 mL of 2-bromoisobutyryl 

bromide (1.71·10-2 mol) and 1.4 mL of triethylamine (1.03·10-2 mol) for 65 h to give 4.26 g 

(81 %) of H40-(PCL)24-Br as a crystalline powder.  
 

1H-NMR (400 MHz, CDCl3): 4.17 (t, 3.6 H); 4.05 (t, 46.7 H); 2.31 (t, 48 H); 1.93 (s, 6.1 H); 

1.70-1.57 (m, 102.5 H); 1.43-1.33 (m, 52.3 H).  
13C-NMR (100.6 MHz, CDCl3): 172.94 (s); 65.21 (t); 63.56 (s); 33.55 (t); 30.21 (q); 27.8 (t); 

24.97 (t); 24.02 (t).  

GPC (DMF): Mn ~ 111100 g/mol, Mw/Mn= 2.79. 

 

Synthesis of H40-(PCL)50-Br 

As described above with 15 g of H40-(PCL)50, 3.13 mL of 2-bromoisobutyryl bromide 

(2.53·10-2 mol) and 2.10 mL of triethylamine (1.51·10-2 mol) for 63 h to give 14.10 g (93.4 %) 

of H40-(PCL)50-Br as a crystalline powder.  

 
1H-NMR (400 MHz, CDCl3): 4.17 (t, 3 H); 4.05 (t, 100.3 H); 2.31 (t, 100 H); 1.93 (s, 4.9 H); 

1.70-1.57 (m, 213.7 H); 1.43-1.33 (m, 106.9 H).  
13C-NMR (100.6 MHz, CDCl3): 173.51 (s); 64.13 (t); 55.93 (s); 34.12 (t); 30.77 (q); 28.36 (t); 

28.07 (t); 25.54 (t); 24.58 (t).  

IR: 2943 m, 2866 w, 1721 m, 1470 w, 1418 w, 1396 w, 1364 m, 1293 m, 1238 m, 1164 m, 

1107 s, 1062 m, 1045 m, 960 m, 933 w, 840 w, 772 w, 731 m, 706 w.  

GPC (DMF): Mn ~ 125700 g/mol, Mw/Mn= 2.38.  

 

Synthesis of H30-(PCL)12-Br 

As described above with 1.65 g of H30-(PCL)12, 1.63 mL of 2-bromoisobutyryl bromide 

(1.31·10-2 mol) and 1.10 mL of triethylamine (7.9 10-3 mol) for 65 h to give 1.26 g (68.4 %) 

of H30-(PCL)12-Br as a crystalline powder.  
 

1H-NMR (400 MHz, CDCl3): 4.17 (t, 2.9 H); 4.05 (t, 22.9 H); 2.31 (t, 24 H); 1.93 (s, 4.3 H); 

1.70-1.57 (m, 52.1 H); 1.43-1.33 (m, 26 H).  
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13C-NMR (125.7 MHz, CDCl3): 173.56 (s); 64.16 (t); 34.13 (t); 30.78 (q); 28.36 (t); 25.54 (t); 

24.59 (t).  

GPC (DMF): Mn ~ 42170 g/mol, Mw/Mn= 2.13. 

 

Synthesis of H40-Br 

A solution of vacuum-dried Boltorn® H40 (2.80 g, corresponding to 25.0 mmol of hydroxyl 

groups) in dry THF (80.0 mL) was added to a solution of 4-(dimethylamino)pyridine (4.79 g, 

39.3 mmol) and triethylamine (2.53 g, 3.48 mL, 25.0 mmol) in dry THF (20 mL) under an 

inert atmosphere. Then, 2-bromoisobutyryl bromide (17.24 g, 9.27 mL, 75.0 mmol) was 

added dropwise at room temperature. After 48 h, precipitated salts were filtered off and the 

solvent partially evaporated. The residual solution was precipitated into methanol. The 

precipitate was dried under vacuum to give 3.55 g (54 %) of a pure product. 
 

1H-NMR (400 MHz, CDCl3): 4.40-4.10 (m, 3.86 H); 1.85 (s, 6 H); 1.35-1.05 (m, 3.03 H).  
13C-NMR (100.6 MHz, CDCl3): 171.6 (s); 171.4 (s); 170.8 (s); 66.0 (m); 55.4 (s); 46.7 (s); 

30.6 (q); 17.8 (q).  

GPC (DMF): Mn ~12300 g/mol, Mw/Mn = 1.72 

 

 

II.3. Polymerization of tert-BuA by ATRP using H40-(PCL)p-Br as the 

macroinitiator 

 

Synthesis of H40-(PCL)40-(PtBuA)100 

A three-necked flask was charged with the multifunctional macroinitiator (H40-(PCL)40-Br) 

(10.0 g, 2.1 mmol of initiator functional groups), ethylene carbonate (5.0 g, 10% wt. 

monomer) and 2,2’-bipyridyl (718.4 mg, 4.6 mmol) and the contents dried under vacuum for 

1 h 30. Tert-BuA (44.2 g, 50.0 mL, 345.0 mmol) was added after purification (to remove any 

inhibitor) and the resulting mixture was subjected to three freeze-vacuum-thaw cycles. 

Addition of CuBr (329.9 mg, 2.3 mmol) was followed by one further freeze-vacuum-thaw 

cycle. The flask was then placed in a thermostatically controlled oil bath at 90 °C. After 20 h, 

the reaction was terminated by placing the flask in an ice bath. After stirring, the polymer was 

diluted in THF and the contents were passed through a column of neutral alumina to remove 
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copper salts. The THF was evaporated and the polymer precipitated in a mixture of 

methanol/water (90/10 v/v), filtered and dried under vacuum for several hours.  

 

A degree of polymerization DPq = 100, i.e. the average number of tert-BuA repeat units per 

arm was determined from 1H-NMR spectroscopy according to the following equation: 

 

p

CH

CHppmbrm

q

DP

I

II
DP

PCL

PCL

2
9 )(2

)(2)28.160.1;,( −
=

−
 

 

where )28.160.1;,( ppmbrmI − - 
)(2 PCLCHI  is given by the integral of the peak corresponding to the tert-

butyl groups of tert-BuA and 
)(2 PCLCHI  is the integral of the peak corresponding to the PCL 

methyl groups at 4.06 ppm. The average structure of the compound was therefore designated 

H40-(PCL)40-(PtBuA)100.  

 
1H NMR (400 MHz, CDCl3): 3.99 (t, -(CO-CH2-CH2-CH2-CH2-CH2-O)-CO-C(CH3)2(CH2-

CH(COO-C(CH3)3)-, 78 H); 2.24 (t, -(CO-CH2-CH2-CH2-CH2-CH2-O)-CO-C(CH3)2(CH2-

CH(COO-C(CH3)3, 78 H); 2.34-2.01 (m, br., -(CO-CH2-CH2-CH2-CH2-CH2-O)-CO-

C(CH3)2(CH2-CH(COO-C(CH3)3)-, 159.1 H); 1.87-1.65 (m, -(CO-CH2-CH2-CH2-CH2-CH2-

O)-CO-C(CH3)2(CH2-CH(COO-C(CH3)3)- + -(CO-CH2-CH2-CH2-CH2-CH2-O)-CO-

C(CH3)2(CH2-CH(COO-C(CH3)3)-, 51.9 H); 1.64-1.52 (m, -(CO-CH2-CH2-CH2-CH2-CH2-O)-

CO-C(CH3)2(CH2-CH(COO-C(CH3)3)- + -(CO-CH2-CH2-CH2-CH2-CH2-O)-CO-

C(CH3)2(CH2-CH(COO-C(CH3)3)-, 166.9 H); 1.51-1.10 (m, -(CO-CH2-CH2-CH2-CH2-CH2-

O)-CO-C(CH3)2(CH2-CH(COO-C(CH3)3)- + (t, -(CO-CH2-CH2-CH2-CH2-CH2-O)-CO-

C(CH3)2(CH2-CH(COO-C(CH3)3)-; 950.9 H).  
13C NMR (100.6 MHz, CDCl3): 174.45 (s, -(CO-CH2-CH2-CH2-CH2-CH2-O)-CO-

C(CH3)2(CH2-CH(COO-C(CH3)3)-); 173.82 (s, -(CO-CH2-CH2-CH2-CH2-CH2-O)-CO-

C(CH3)2(CH2-CH(COO-C(CH3)3)-)); 80.60 (s, -(CO-CH2-CH2-CH2-CH2-CH2-O)-CO-

C(CH3)2(CH2-CH(COO-C(CH3)3)-)); 64.43 (t, -(CO-CH2-CH2-CH2-CH2-CH2-O)-CO-

C(CH3)2(CH2-CH(COO-C(CH3)3)-)); 42.67 & 42.18 (d, -(CO-CH2-CH2-CH2-CH2-CH2-O)-

CO-C(CH3)2(CH2-CH(COO-C(CH3)3)-)); 34.40 (t, -(CO-CH2-CH2-CH2-CH2-CH2-O)-CO-
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C(CH3)2(CH2-CH(COO-C(CH3)3)-)); 28.64 (t, -(CO-CH2-CH2-CH2-CH2-CH2-O)-CO-

C(CH3)2(CH2-CH(COO-C(CH3)3)-)); 28.39 (q, -(CO-CH2-CH2-CH2-CH2-CH2-O)-CO-

C(CH3)2(CH2-CH(COO-C(CH3)3)-)); 25.82 (t, -(CO-CH2-CH2-CH2-CH2-CH2-O)-CO-

C(CH3)2(CH2-CH(COO-C(CH3)3)-)); 24.87 (t, -(CO-CH2-CH2-CH2-CH2-CH2-O)-CO-

C(CH3)2(CH2-CH(COO-C(CH3)3)-)).  

GPC (DMF): Mn ~ 452350 g/mol, Mw/Mn= 2.33. 

 

Synthesis of H40-(PCL)10-(PtBuA)68 

As described above with 1 g of H40-(PCL)10-Br, 1.3 g of ethylene carbonate, 222 mg 

(1.41·10-3 mol) of 2,2’-bipyridyl, 10.3 mL of tBuA (7.08·10-2 mol) and 101.6 mg (7.08·10-4 

mol) of CuBr for 21 h at 90 °C to give 4.38 g of pure product.  
1H-NMR (400 MHz, CDCl3): 4.04 (t, 20 H); 2.28 (t, 20 H); 2.44-2.02 (m, 68.9 H); 1.93-1.73 

(m, 15.8 H) 1.73-1.57 (m, 45.2 H); 1.56-1.28 (m, 612.2 H).  
13C-NMR (100.8 MHz, CDCl3): 173.62 (s) and 173.42 (s); 172.96 (s); 79.75 (s); 63.58 (t); 

41.83 and 41.4 (d); 33.55 (t); 27.8 (q); 27.54 (t); 24.97 (t); 24.01 (t).  

IR: 2977 m, 2933 m, 2871 m, 1788 w, 1722 s, 1474 m, 1450 m, 1392 m, 1366 s, 1253 s, 1141 

s, 1035 m, 960 m, 908 m, 844 s, 751 m. 

GPC (DMF): Mn ~ 488520 g/mol, Mw/Mn= 2.44.  

 

A degree of polymerisation DPq = 68 corresponding to the number of repeated units of tBuA 

per arm was determined, and the average structure of the compound was therefore assigned as 

H40-(PCL)10-(PtBuA)68.  

 

Synthesis of H40-(PCL)10-(PtBuA)70 

As described above with 1 g of H40-(PCL)10-Br, 2.05 g of ethylene carbonate, 222 mg 

(1.41·10-3 mol) of 2,2’-bipyridyl, 20.6 mL of tBuA (1.41·10-1 mol) and 101.6 mg (7.08·10-4 

mol) of CuBr for 21 h at 90 °C to give 4.28 g of of pure product.   
1H-NMR (500 MHz, CDCl3): 4.06 (t, 20 H); 2.30 (t, 20 H); 2.39-2.06 (m, 78.5 H); 1.94-1.71 

(m, 17.8 H) 1.70-1.57 (m, 46.5 H); 1.57-1.28 (m, 742.4 H).  
13C-NMR (125.8 MHz, CDCl3): 174.19 (s); 173.53 (s); 80.34 (s); 64.14 (t); 42.39 and 41.9 

(d); 34.13 (t); 28.37 (q); 28.09 (t); 25.54 (t); 24.59 (t).  
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IR: 2977 m, 2933 m, 2871 m, 1788 w, 1722 s, 1474 m, 1450 m, 1392 m, 1366 s, 1253 s, 1141 

s, 1035 m, 960 m, 908 m, 844 s, 751 m. 

GPC (DMF): Mn ~ 459740 g/mol, Mw/Mn= 1.84.  

 

A degree of polymerisation DPq = 70 corresponding to the number of repeated units of tBuA 

per arm was determined, and the average structure of the compound was therefore assigned as 

H40-(PCL)10-(PtBuA)70.  

 

Synthesis of H40-(PCL)10-(PtBuA)115 

As described above with 1 g of H40-(PCL)10-Br, 2.05 g of ethylene carbonate, 222 mg 

(1.41·10-3 mol) of 2,2’-bipyridyl, 20.6 mL of tBuA (1.41·10-1 mol) and 101.6 mg (7.08·10-4 

mol) of CuBr for 48 h at 90 °C to give 6.35 g of of pure product. 
1H-NMR (500 MHz, CDCl3): 4.06 (t, 20 H); 2.30 (t, 20 H); 2.39-2.06 (m, 128.4 H); 1.94-1.71 

(m, 49.5 H) 1.70-1.57 (m, 66.8 H); 1.57-1.28 (m, 1239 H).  
13C-NMR (125.8 MHz, CDCl3): 174.19 (s); 173.53 (s); 80.33 (s); 67.98 (t); 64.14 (t) 42.38 

and 41.9 (d); 34.13 (t); 28.37 (t); 28.03 (q); 25.55 (t); 24.59 (t).  

IR: 2977 m, 2933 m, 2869 m, 1790 w, 1722 s, 1478 m, 1449 m, 1392 m, 1366 s, 1253 s, 1141 

s, 1036 m, 1036 m, 906 m, 844 s, 751 m. 

GPC (DMF): Mn ~ 549000 g/mol, Mw/Mn= 2.06.  

 

A degree of polymerisation DPq = 115 corresponding to the number of repeated units of tBuA 

per arm was determined, and the average structure of the compound was therefore assigned as 

H40-(PCL)10-(PtBuA)115.  

 

Synthesis of H40-(PCL)17-(PtBuA)18 

As described above with 0.5 g (6.25·10-6 mol) of H40-(PCL)17-Br, 288 mg of ethylene 

carbonate, 70.27 mg (4.5·10-4 mol) of 2,2’-bipyridyl, 3.27 mL of tBuA (2.88 g, 2.25 10-2 mol) 

and 32.3 mg (2.25·10-4 mol) of CuBr for 17 h at 100 °C to give 812.5 g of of pure product. 
1H-NMR (500 MHz, CDCl3): 4.06 (t, 34 H); 2.31 (t, 34 H); 2.36-2.15 (m, br., 60.1 H); 1.71-

1.60 (m, 69.8 H); 1.59-1.28 (m, 245 H).  
13C-NMR (125.8 MHz, CDCl3): 174.20 and 173.97 (s); 173.54 (s); 80.34 (s); 64.15 (t); 42.37 

and 41.9 (d); 34.13 (t); 30.33 (q); 28.03 (q); 28.37 (t); 25.55 (t); 24.59 (t).  
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IR: 2974 m, 2932 m, 2866 m, 1790 w, 1721 s, 1477 m, 1448 m, 1391 m, 1365 s, 1252 s, 1141 

s, 1037 m, 961 m, 910 m, 844 s, 750 m. 

GPC (DMF): Mn ~ 205000 g/mol, Mw/Mn= 1.80. 

 

A degree of polymerisation DPq = 18 corresponding to the number of repeated units of tBuA 

per arm was determined from 1H-NMR spectroscopy according to the following equation: 

The average structure of the compound was therefore assigned as H40-(PCL)17-(PtBuA)18.  

 

Synthesis of H40-(PCL)17-(PtBuA)50 

As described above with 7 g (8.76·10-5 mol) of H40-(PCL)17-Br, 4.04 g of ethylene carbonate, 

984.80 mg (6.31·10-3 mol) of 2,2’-bipyridyl, 45.76 mL of tBuA (40.41 g, 0.31 mol) and 452 

mg (3.15·10-3 mol) of CuBr for 17 h at 100 °C to give 17.48 g of pure product. The degree of 

conversion was determined by NMR and confirmed with GPC.  
1H-NMR (500 MHz, CDCl3): 4.06 (t, 34 H); 2.31 (t, 38 H); 2.36-2.28 (m, br., 80.1 H); 1.71-

1.60 (m, 79 H); 1.59-1.28 (m, 585 H).  
13C-NMR (125.8 MHz, CDCl3): 174.20 and 173.97 (s); 173.54 (s); 80.34 (s); 64.15 (t); 42.37 

and 41.9 (d); 34.13 (t); 30.33 (q); 28.03 (q); 28.37 (t); 25.55 (t); 24.59 (t).  

IR: 2974 m, 2932 m, 2866 m, 1790 w, 1721 s, 1477 m, 1448 m, 1391 m, 1365 s, 1252 s, 1141 

s, 1037 m, 961 m, 910 m, 844 s, 750 m. 

GPC (DMF): Mn ~ 274930 g/mol, Mw/Mn= 1.95. 

 

A degree of polymerisation DPq = 50 corresponding to the number of repeated units of tBuA 

per arm was determined from 1H-NMR spectroscopy according to the following equation: 

The average structure of the compound was therefore assigned as H40-(PCL)17-(PtBuA)50.  

 

Synthesis of H40-(PCL)24-(PtBuA)82 

As described above with 2 g of H40-(PCL)24-Br, 1.11 g of ethylene carbonate, 226.1 mg 

(1.30·10-3 mol) of 2,2’-bipyridyl, 12.6 mL of tBuA (8.47·10-2 mol) and 103.8 mg (6.51·10-4 

mol) of CuBr for 6 h at 90 °C to give 6.33 g of pure product. 
1H-NMR (400 MHz, CDCl3): 4.05 (t, 48 H); 2.29 (t, 48 H); 2.38-2.10 (m, 114.7 H); 1.89-1.73 

(m, 26 H) 1.71-1.58 (m, 115 H); 1.58-1.30 (m, 767.3 H).  
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13C-NMR (100.6 MHz, CDCl3): 173.62 and 173.38 (s); 172.94 (s); 79.8 (s); 63.58 (t); 41.81 

and 41.4 (d); 33.56 (t); 27.8 (q); 27.53 (q); 27.45 (t); 24.97 (t); 24.04 (t).  

GPC (DMF): Mn ~ 357700 g/mol, Mw/Mn= 3.17.  

 

A degree of polymerisation DPq = 82 corresponding to the number of repeated units of tBuA 

per arm was determined, and the average structure of the compound was therefore assigned as 

H40-(PCL)24-(PtBuA)82.  

 

Synthesis of H40-(PCL)50-(PtBuA)44 

As described above with 2 g of H40-(PCL)50-Br, 972 mg of ethylene carbonate, 104.6 mg (6.7 

10-4 mol) of 2,2’-bipyridyl, 9.72 mL of tBuA (6.69·10-2 mol) and 48 mg (3.3·10-4 mol) of 

CuBr for 7 h 20 at 90 °C to give 3.36 g of pure product. 
1H-NMR (500 MHz, CDCl3): 4.06 (t, 100 H); 2.30 (t, 100 H); 2.40-2.14 (m, 130 H); 1.75-

1.60 (m, 203.3 H); 1.59-1.28 (m, 511.6 H).  
13C-NMR (125.8 MHz, CDCl3): 174.20 and 173.97 (s); 173.53 (s); 80.34 (s); 64.15 (t); 42.37 

and 41.9 (d); 34.13 (t); 28.37 (t); 28.03 (q); 25.55 (t); 24.59 (t).  

IR: 2937 m, 2867 m, 1721 s, 1458 m, 1419 m; 1392 m, 1365 s, 1293 m, 1239 s, 1145 s, 1108 

m, 1065 m; 1045 m, 961 m, 935 m, 844 s, 732 m. 

GPC (DMF): Mn ~ 376280 g/mol, Mw/Mn= 2.27.  

 

A degree of polymerisation DPq = 44 corresponding to the number of repeated units of tBuA 

per arm was determined, and the average structure of the compound was therefore assigned as 

H40-(PCL)50- (PtBuA)44.  

 

Synthesis of H40-(PCL)50-(PtBuA)54 

As described above with 2 g of H40-(PCL)50-Br, 972 mg of ethylene carbonate, 104.6 mg (6.7 

10-4 mol) of 2,2’-bipyridyl, 9.72 mL of tBuA (6.69·10-2 mol) and 48 mg (3.3·10-4 mol) of 

CuBr for 20 h at 90 °C to give 3.31 g of pure product. 
1H-NMR (500 MHz, CDCl3): 4.06 (t, 100 H); 2.30 (t, 100 H); 2.40-2.14 (m, 136.6 H); 1.75-

1.60 (m, 209.1 H); 1.59-1.28 (m, 532.8 H).  
13C-NMR (125.8 MHz, CDCl3): 174.20 and 173.97 (s); 173.53 (s); 80.34 (s); 64.15 (t); 42.37 

and 41.9 (d); 34.13 (t); 28.37 (t); 28.03 (q); 25.55 (t); 24.59 (t).  
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IR: 2937 m, 2867 m, 1721 s, 1458 m, 1419 m; 1392 m, 1365 s, 1293 m, 1239 s, 1145 s, 1108 

m, 1065 m; 1045 m, 961 m, 935 m, 844 s, 732 m. 

GPC (DMF): Mn ~ 376280 g/mol, Mw/Mn= 2.27.  

 

A degree of polymerisation DPq = 54 corresponding to the number of repeated units of tBuA 

per arm was determined, and the average structure of the compound was therefore assigned as 

H40-(PCL)50- (PtBuA)54.  

 

Synthesis of H40-(PCL)50-(PtBuA)56 

As described above with 2 g of H40-(PCL)50-Br, 972 mg of ethylene carbonate, 104.6 mg (6.7 

10-4 mol) of 2,2’-bipyridyl, 9.72 mL of tBuA (6.69·10-2 mol) and 48 mg (3.3·10-4 mol) of 

CuBr for 14 h 30 at 90 °C to give 3.55 g of pure product.  
1H-NMR (500 MHz, CDCl3): 4.06 (t, 100 H); 2.30 (t, 100 H); 2.40-2.14 (m, 160 H); 1.75-

1.60 (m, 211.4 H); 1.59-1.28 (m, 622.3 H).  
13C-NMR (125.8 MHz, CDCl3): 174.20 and 173.97 (s); 173.53 (s); 80.34 (s); 64.15 (t); 42.37 

and 41.9 (d); 34.13 (t); 28.37 (t); 28.03 (q); 25.55 (t); 24.59 (t).  

IR: 2937 m, 2867 m, 1721 s, 1458 m, 1419 m; 1392 m, 1365 s, 1293 m, 1239 s, 1145 s, 1108 

m, 1065 m; 1045 m, 961 m, 935 m, 844 s, 732 m. 

GPC (DMF): Mn ~ 536860 g/mol, Mw/Mn= 2.19.  

 

A degree of polymerisation DPq = 56 corresponding to the number of repeated units of tBuA 

per arm was determined, and the average structure of the compound was therefore assigned as 

H40-(PCL)50- (PtBuA)56.  

 

Synthesis of H40-(PCL)50-(PtBuA)64 

As described above with 1.5 g of H40-(PCL)50-Br, 805 mg of ethylene carbonate, 78.47 mg 

(5.0 10-4 mol) of 2,2’-bipyridyl, 9.12 mL of tBuA (6.28·10-2 mol) and 36.04 mg (2.5·10-4 mol) 

of CuBr for 48 h at 90 °C to give 5.86 g of pure product.  
1H-NMR (400 MHz, CDCl3): 4.04 (t, 100 H); 2.36-2.09 (m, 159.3 H); 2.29 (t, 100 H); 1.94-

1.56 (m, 334.9 H); 1.48-1.28 (m, 657.5 H).  
13C-NMR (100.6 MHz, CDCl3): 174.20 and 173.97 (s); 173.53 (s); 80.34 (s); 64.15 (t); 42.37 

and 41.9 (d); 34.13 (t); 28.37 (t); 28.03 (q); 25.55 (t); 24.59 (t).  
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IR: 2976 m, 2934 m, 2867 m, 1722 s, 1455 m, 1419 m, 1392 m, 1366 s, 1293 m, 1240 s, 1144 

s, 1108 m, 1045 m, 961 m, 935 m, 845 s, 733 m. 

GPC (DMF): Mn ~ 732760 g/mol, Mw/Mn= 3.37.  

 

A degree of polymerisation DPq = 64 corresponding to the number of repeated units of tBuA 

per arm was determined, and the average structure of the compound was therefore assigned as 

H40-(PCL)50- (PtBuA)64.  

 

Synthesis of H30-(PCL)12-(PtBuA)60 

As described above with 1 g of H30-(PCL)12-Br, 693 mg of ethylene carbonate, 211.1 mg 

(1.35·10-3 mol) of 2,2’-bipyridyl, 7.85 mL of tBuA (5.41·10-2 mol) and 96.9 mg (6.76·10-4 

mol) of CuBr for 6 h at 90 °C to give 3.88 g of pure product. 
1H-NMR (400 MHz, CDCl3): 4.04 (t, 24 H); 2.29 (t, 24 H); 2.36-2.10 (m, 73.5 H); 1.91-1.70 

(m, 33.6 H) 1.69-1.58 (m, 57.8 H); 1.57-1.27 (m, 581.1 H).  
13C-NMR (100.6 MHz, CDCl3): 174.19 and 173.95 (s); 173.54 (s); 80.33 (s); 64.14 (t); 42.36 

and 41.89 (d); 34.12 (t); 28.36 (t); 28.09 (q); 25.53 (t); 24.58 (t).  

GPC (DMF): Mn ~ 204000 g/mol, Mw/Mn= 2.40.  

 

A degree of polymerisation DPq = 60 corresponding to the number of repeated units of tBuA 

per arm was determined, and the average structure of the compound was therefore assigned as 

H30-(PCL)12-(PtBuA)60.  

 

Synthesis of H40-(PtBuA)36 

As described above with 0.2 g of H40-Br, 640 mg of ethylene carbonate, 195 mg (1.25·10-3 

mol) of 2,2’-bipyridyl, 7.26 mL of tBuA (5.0·10-2 mol) and 89.5 mg (6.24·10-4 mol) of CuBr 

for 5 h 30 at 90 °C to give 1.82 g of pure product.  
1H-NMR (400 MHz, CDCl3): 2.37-2.08 (m, 26.8 H); 1.91-1.68 (m, 6.64 H) 1.62-1.49 (m, 

25.7 H); 1.48-1.19 (m, 324 H).  
13C-NMR (100.6 MHz, CDCl3): 173.62 (s); 79.77 (s); 27.53 (q) 

GPC (DMF): Mn ~ 199500 g/mol, Mw/Mn= 2.06.  
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A degree of polymerization DPq = 36 corresponding to the number of repeated units of tBuA 

per arm was determined by taking into account the difference of the molar masses (measured 

with GPC) before and after the polymerization. The value was confirmed with the integration 

values determined by NMR. The average structure of the compound was therefore assigned as 

H40-(PtBuA)36.  

 

 

II.4. Hydrolysis of tert-butyl groups 

 

Preparation of H40-(PCL)40-(PAA)100 

The multifunctional star polymer H40-(PCL)40-(PtBuA)100 (26.9 g, 4.26 mmol of tert-BuA) 

was dissolved in dichloromethane (330 mL). Trifluoroacetic acid (120 mL, 1.70 mol) was 

added to the flask. The solution was stirred for 2.5 at room temperature and the solvent then 

removed using a rotary evaporator. The product was redissolved in THF and precipitated in n-

heptane. The resulting product was finally dried 3 days under vacuum at 50 °C to give 18.54 g 

of H40-(PCL)40-(PAA)100 as a white powder. 
1H NMR (400 MHz, DMSO-d6): 12.23 (s, br., -(CO-CH2-CH2-CH2-CH2-CH2-O)-CO-

C(CH3)2(CH2-CH(COOH)) 42.8 H); 3.97 (t, -(CO-CH2-CH2-CH2-CH2-CH2-O)-CO-

C(CH3)2(CH2-CH(COOH)), 80 H); 2.34-2.05 (m, -(CO-CH2-CH2-CH2-CH2-CH2-O)-CO-

C(CH3)2(CH2-CH(COOH)), + -(CO-CH2-CH2-CH2-CH2-CH2-O)-CO-C(CH3)2(CH2-

CH(COOH)), 145.9 H); 1.86-1.41 (m., -(CO-CH2-CH2-CH2-CH2-CH2-O)-CO-C(CH3)2(CH2-

CH(COOH)) + -(CO-CH2-CH2-CH2-CH2-CH2-O)-CO-C(CH3)2(CH2-CH(COOH)), 268.6 H); 

1.40-1.33 (m, -(CO-CH2-CH2-CH2-CH2-CH2-O)-CO-C(CH3)2(CH2-CH(COO-C(CH3)3, 47.7 

H), 1.33-1.18 -(CO-CH2-CH2-CH2-CH2-CH2-O)-CO-C(CH3)2(CH2-CH(COOH)), 89.9 H).  
13C NMR (100.6 MHz, DMSO-d6): 175.69 and 175.53 (s, -(CO-CH2-CH2-CH2-CH2-CH2-O)-

CO-C(CH3)2(CH2-CH(COOH))); 172.58 (s, -(CO-CH2-CH2-CH2-CH2-CH2-O)-CO-

C(CH3)2(CH2-CH(COOH))); 63.29 (t, -(CO-CH2-CH2-CH2-CH2-CH2-O)-CO-C(CH3)2(CH2-

CH(COOH))); 41.13-40.72 (d, br., -(CO-CH2-CH2-CH2-CH2-CH2-O)-CO-C(CH3)2(CH2-

CH(COOH))); 36.50-34.00 (t, br., -(CO-CH2-CH2-CH2-CH2-CH2-O)-CO-C(CH3)2(CH2-

CH(COOH))); 33.13 (t, -(CO-CH2-CH2-CH2-CH2-CH2-O)-CO-C(CH3)2(CH2-CH(COOH))); 

27.60 (t, -(CO-CH2-CH2-CH2-CH2-CH2-O)-CO-C(CH3)2(CH2-CH(COOH))); 24.68 (t, -(CO-

CH2-CH2-CH2-CH2-CH2-O)-CO-C(CH3)2(CH2-CH(COOH))); 27.35 (q, -(CO-CH2-CH2-CH2-
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CH2-CH2-O)-CO-C(CH3)2(CH2-CH(COO(CH3)3))); 23.68 (t, -(CO-CH2-CH2-CH2-CH2-CH2-

O)-CO-C(CH3)2(CH2-CH(COOH))).  

 

Synthesis of H40-(PCL)10-(PAA)68 

As described above with 3.18 g (8.8·10-6 mol) of H40-(PCL)10-(PtBuA)68 in 36.5 mL of 

dichloromethane and 16.5 mL (2.22·10-1 mol) of trifluoroacetic acid to give a product 

redissolved in ethanol (30 mL), precipitated into 300 mL of ether and dried under vacuum for 

3 d. 1.67 g of purified H40-(PCL)10-(PAA)68 was obtained. 
1H NMR (400 MHz, DMSO-d6): 12.23 (s, br., 28.9 H); 3.97 (s, br., 20 H); 2.34-2.05 (m, 70.9 

H); 1.86-1.41 (m., 124.7 H); 1.40-1.33 (m, 16.84 H), 1.33-1.18(m, 29.5 H). 
13C NMR (100.6 MHz, DMSO-d6): 175.91 and 175.61 (s); 172.55 (s); 64.97 (t); 41.24-40.92 

(d, br.); 36.15-34.95 (t, br.); 33.37 (t); 27.84 (t); 24.92 (t); 24.11 (t).  

 

Synthesis of H40-(PCL)10-(PAA)70 

As described above with 3.22 g (8·10-6 mol) of H40-(PCL)10-(PtBuA)70 in 36.5 mL of 

dichloromethane and 16.5 mL (2.22·10-1 mol) of trifluoroacetic acid to give a product 

redissolved in ethanol (30 mL), precipitated into 300 mL of ether and dried under vacuum for 

3 d. 1.75 g of purified H40-(PCL)10-(PAA)70 was ontained. 
1H NMR (400 MHz, DMSO-d6): 12.23 (s, br., 34 H); 3.97 (s, br., 20 H); 2.34-2.05 (m, 63.2 

H); 1.86-1.41 (m., 111.42 H); 1.40-1.33 (m, 14.6 H), 1.33-1.18 (m, 25 H). 
13C-NMR (100.6 MHz, DMSO-d6): 175.75 (s); 64.95 (t); 41.44-40.94 (d, br.); 33.37 (t); 

27.82 (t); 24.92 (t).; 24.11 (t).  

IR: 3100 w, 2935 s, 2590 w, 1701 s, 1452 m, 1415 m, 1360 m, 1237 s. 1161 s, 1107 m, 1064 

w, 910 w, 798 s. 

 

Synthesis of H40-(PCL)10-(PAA)115 

As described above with 4.56 g (7.9·10-6 mol) of H40-(PCL)10-(PtBuA)115 in 52 mL of 

dichloromethane and 24.3 mL (3.27·10-1 mol) of trifluoroacetic acid for 2 h 15 to give a 

product redissolved in ethanol (30 mL), precipitated into 300 mL of ether and dried under 

vacuum for 2 d. 2.28 g of purified H40-(PCL)10-(PAA)115 was obtained.  
1H NMR (400 MHz, DMSO-d6): 12.23 (s, br.); 3.97 (s, br., 20 H); 2.34-2.05 (m, 123.8 H); 

1.86-1.41 (m., 208.4 H); 1.40-1.33 (m, 40.8 H), 1.33-1.18 (m, 30 H). 
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13C NMR (100.6 MHz, DMSO-d6): 175.79 and 175.64 (s); 172.66 (s); 64.82 (t); 40.84-40.33 

(d, br.); 36.05-34.93 (t, br.); 33.26 (t); 27.70 (t); 27.46 (q); 24.79 (t); 23.98 (t).  

IR: 3077 m, 2935 s, 2595 w, 1703 s, 1454 m, 1415 m, 1360 m, 1238 s. 1163 s, 1108 m, 1058 

w, 910 w, 799 s. 

 

Synthesis of H40-(PCL)17-(PAA)50 

As described above with 10 g (3.25·10-5 mol) of H40-(PCL)17-(PtBuA)50 in 100 mL of 

dichloromethane and 43 mL (5.85·10-1 mol) of trifluoroacetic acid to give a product 

redissolved in THF (60 mL), precipitated into 650 mL heptane and dried under vacuum for 3 

d. 4.98 g of purified H40-(PCL)17-Y-(PAA)50 was obtained. 
1H NMR (500 MHz, DMSO-d6): 12.23 (s, br.); 3.99 (t, 34 H); 2.32-2.14 (m, 123.8 H); 1.85-

1.42 (m., 348.8 H); 1.42-1.38 (m, 15 H), 1.38-1.22 (m, 36 H). 
13C-NMR (125.8 MHz, DMSO-d6): 175.78 (s); 175.61 (s); 172.67 (s); 63.39 (t); 41.70-40.50 

(d, br.); 36.50-34.00 (t, br.); 33.27 (t); 27.69 (t); 23.98 (t).  

IR: 3033 m, 2932 s, 2871 m, 2658 m, 2557 m, 1694 s, 1450 s, 1412 s, 1358 m, 1231 s, 1157 s, 

1105 m, 961 m, 910 m, 844 s, 750 m. 

 

Synthesis of H40-(PCL)24-(PAA)82 

As described above with 4 g (8.40·10-6 mol) of H40-(PCL)24-(PtBuA)82 in 90 mL of 

dichloromethane and 30.7 mL (4.13·10-1 mol) of trifluoroacetic acid for 2 h 45 to give a 

product redissolved in THF, precipitated into heptane and dried under vacuum overnight. 2.59 

g of H40-(PCL)24-(PAA)82 brown powder was obtianed. 
1H NMR (400 MHz, DMSO-d6): 12.23 (s, br., 33.7 H); 3.97 (t, 48 H); 2.34-2.05 (m, 94.8 H); 

1.86-1.41 (m., 167.4 H); 1.40-1.33 (m, 24.4 H), 1.33-1.18(m, 53.4 H). 
13C-NMR (100.6 MHz, DMSO-d6): 175.77 (s); 175.61 (s); 172.70 (s); 63.40 (t); 40.82 (d, 

br.); 35.94-34.77 (t, br.); 33.40 (t); 27.69 (t); 27.46 (q); 24.86 (t); 24.08 (t).  

 

Synthesis of H40-(PCL)50-(PAA)54 

As described above with 0.79 g (1.82·10-6 mol) of H40-(PCL)50-(PtBuA)54 in 11.5 mL of 

dichloromethane and 1.95 mL (2.63·10-2 mol) of trifluoroacetic acid for 1 h to give a product 

redissolved in ethanol (20 mL), precipitated into 200 mL of ether and dried under vacuum 
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overnight. 333.5 mg of H40-(PCL)50-(PAA)54 white powder of the partially hydrolyzed 

product (to at least 27%) was obtained. 
1H NMR (400 MHz, DMSO-d6): 12.23 (s, br.); 3.97 (s, br., 100 H); 2.34-2.05 (m, 134.8 H); 

1.86-1.41 (m., 232.6 H); 1.40-1.33 (m, 110.4 H), 1.33-1.18 (m, 115.4 H). 

 

Synthesis of H40-(PCL)50-(PAA)56 

As described above with 0.50 g (1.46·10-6 mol) of H40-(PCL)50-(PtBuA)56 in 7.5 mL of 

dichloromethane and 0.87 mL (1.17 10-2 mol) of trifluoroacetic acid for 1 h to give a product 

redissolved in ethanol, precipitated into ether and dried under vacuum overnight. H40-

(PCL)50-(PAA)56 was obtained as a white powder of the partially hydrolyzed product. 
1H NMR (400 MHz, DMSO-d6): 12.23 (s, br.); 3.97 (s, br., 100 H); 2.34-2.05 (m, 146 H); 

1.86-1.41 (m., 245 H); 1.40-1.33 (m, 205 H), 1.33-1.18 (m, 130 H). 

 

Synthesis of H40-(PCL)50-(PAA)64 

As described above with 1.5 g (2.95·10-6 mol) of H40-(PCL)50-(PtBuA)64 in 20 mL of 

dichloromethane and 4.7 mL (6.38·10-2 mol) of trifluoroacetic acid for 2 h 15 to give a 

product redissolved in ethanol (15 mL), precipitated into ether and dried under vacuum 

overnight. H40-(PCL)50-(PAA)64 was obtained as a white powder of the partially hydrolyzed 

product. 
1H NMR (400 MHz, DMSO-d6): 12.23 (s, br., 31.3 H); 3.97 (s, br., 100 H); 2.34-2.05 (m, 

141.3 H); 1.86-1.41 (m., 243.7 H); 1.40-1.33 (m, 74.5 H), 1.33-1.18 (m, 111 H). 

 

Synthesis of H30-(PCL)12-(PAA)60 

As described above with 3 g (9.7·10-6 mol) of H30-(PCL)12-(PtBuA)60 in 50 mL of 

dichloromethane and 17.2 mL (2.3·10-1 mol) of trifluoroacetic acid for 2 h 40 to give a 

product redissolved in THF, precipitated into heptane and dried under vacuum overnight. 1.73 

g of H30-(PCL)12-(PAA)60 was weighed. 
1H NMR (400 MHz, DMSO-d6): 12.23 (s, br., 29.9 H); 3.97 (t, 24 H); 2.34-2.05 (m, 65.6 H); 

1.86-1.41 (m., 120.3 H); 1.40-1.33 (m, 32.4 H), 1.33-1.18 (m, 36.4 H). 
13C NMR (100.6 MHz, DMSO-d6): 175.76 and 175.61 (s); 172.67 (s); 63.39 (s); 40.74-40.33 

(d, br.); 33.26 (t); 27.69 (t); 27.46 (q); 24.78 (t); 23.98 (t).  
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Synthesis of H40-(PAA)36 

As described above with 1.6 g (9.18·10-6 mol) of H40-(PtBuA)36 in 50 mL of 

dichloromethane and 14.7 mL (1.98·10-1 mol) of trifluoroacetic acid for 2 h 30 to give a 

product redissolved in THF, precipitated into heptane and dried under vacuum overnight. 

797.8 mg of H40-(PAA)36 as a pinky powder was weighed. 
1H NMR (400 MHz, DMSO-d6): 12.23 (s, br., 8.9 H); 2.4-2.02 (m, 66.5 H); 1.93-1.41 (m., 

108 H); 1.41-1.26 (m, 41 H). 
13C NMR (100.6 MHz, DMSO-d6): 175.76 and 175.61 (s); 41.17-40.80 (d, br.); 36.4 and 

34.69 (t, br.); 27.44 (q)  

 

 

II.5. Deprotonation of the acidic functions of the star-block copolymer 

 

Deprotonation of H40-(PCL)24-(PAA)82 

1.913 g of H40-(PCL)24-(PAA)82 was dissolved in water. The appropriate quantity of 

NaHCO3 (0.3 g mol-1) was added until the pH reaches the value of 8. After lyophization of the 

aqueous solution, 6.793 g of a salt H40-(PCL)24-(PAA)82 was obtained as a water soluble 

powder. 

 

Deprotonation of H40-(PCL)40-(PAA)100 

As described above with 2.5 g of H40-(PCL)40-(PAA)100 dissolved in water, NaHCO3 (0.3 g 

mol-1) was added. After mixing, a pH of 8.3 was measured. Lyophilization provided 2.787 g 

of H40-(PCL)40-(PAA)100 as a water soluble powder. 

 

Deprotonation of H30-(PCL)12-(PAA)60 

As described above with 1.647 g of H30-(PCL)12-(PAA)60 dissolved in water, NaHCO3 (0.3 g 

mol-1) was added. After mixing, a pH of 8 was measured. Lyophilization provided 1.7 g of 

H30-(PCL)12-(PAA)60 as a water soluble powder. 
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Deprotonation of H40-(PAA)36 

As described above with 609.1 mg of H40-(PAA)36 dissolved in water, NaHCO3 (0.3 g mol-1) 

was added. After mixing, a pH of 8 was measured. Lyophilization provided 793 mg of H40-

(PAA)36 as a water soluble powder. 

 

 

III. Encapsulation of fragrance compounds 

 

Procedure for encapsulation monitored by 1H NMR  

Star-block copolymers HBP-(PCL)p-(PAA)q and H40-(PBMA)p-(PPEGMA)q
[48]

 

(~10/20/30/40 mg) were precisely weighed and dissolved in 1.4 g of D2O (pure D2O was used 

as a blank sample). After one night the polymer had dispersed and ~50 mg of a olfactory 

molecule (benzyl acetate, (E)-3,7-dimethyl-2,6-octadien-1-ol (geraniol), 4-tert-butyl-1-

cyclohexyl acetate (Vertenex®) or decanal) were respectively added to the solutions. After 

shaking for one day, the samples were centrifuged. Aliquots of the water phase were weighed 

into NMR tubes, and an exact amount of DMSO was added to the samples as a reference for 

quantification. NMR spectra were recorded using the following acquisition conditions: 

preacquisition delay 20 s, acquisition time 5 s, number of data points 64 k, 64 scans. When 

processing the spectra, a line broadening of 0.1 Hz and a zero filling of 1024 k was used. 

Spectra were manually integrated, without additional baseline correction. The following 

signals were used for the quantification of the various fragrance molecules that served as 

examples of hydrophobic guests: benzyl acetate, C6H5-CH2-O(CO)-CH3, s, δ = 7.41 to 7.12 

ppm, depending on the concentration of polymer; geraniol C=CH-CH2-OH, t, δ = 4.10 ppm; 

Vertenex® -C(CH3)3, δ = 0.82 ppm, decanal, -CH2-CHO, pert t, δ = 2.1 ppm in water, 2.31 

ppm in polymer solutions. All signals were well separated from the polymer signals except 

for H40-(PBMA)p-(PPEGMA)q/Vertenex®, which limited the accuracy of the corresponding 

measurements. 
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IV. Release of fragrance molecules 

 

IV.1. Release of olfactory compounds monitored by TGA 

 

 40 mg (2 % (w/w) of either one of the amphiphilic star-block copolymers H40-

(PCL)10-(PAA)70 or H40-(PBMA)37-(PPEGMA)39 were solubilized in 1.70 g (85 % (w/w)) of 

ethanol. After stirring, 160 mg (8 % (w/w)) of pure water were added and 100 mg (5 % 

(w/w)) of either one of the following fragrance molecules: Vertenex®, benzyl acetate, 

geraniol or decanal. This sample was kept under agitation at room temperature for at least 2 d. 

In a similar way, a reference sample was prepared using the Boltorn® H40. A volume of 10 

μL of the sample prepared above was placed in an aluminium oxide crucible and analyzed 

with a Thermogravimetric Analyzer (Mettler Toledo TGA/SDTA 851e) under a constant flow 

of nitrogen gas (20 mL/min). The evaporation of the pure fragrance molecule in this 

composition was measured by using the following method which consists of heating the 

sample from 25 to 50 °C at 5 °C/min followed by an isotherm at 50 °C during 115 minutes, 

then heating from 50 °C to 130 °C at 4 °C/min and finally an isotherm at 130 °C during 15 

minutes. The analyses were repeated twice and compared to those of the pure fragrance 

molecules as well as to the Boltorn® H40 reference.  

 

 

IV.2. Release of olfactory molecules monitored by headspace analysis 

 

IV.2.1 In a fine perfumery application 

 

 A model perfume was obtained by mixing equimolecular quantities (0.2 mol) of 15 

fragrance compounds with different chemical functionalities (aldehydes, ketones, alcohols, 

nitriles and esters). The following compounds were weighed in: (Z)-3-hexenol (pipol, 2.00 g), 

3,5,5-trimethylhexanal (2.84 g), 2,6-dimethyl-2-heptanol (dimetol, 2.88 g), acetophenone 

(2.40 g), ethyl (E)-2,4-dimethyl-2-pentenoate (3.12 g), benzyl acetate (3.00 g), jasmonitrile 

(3.06 g), decanal (3.12g), 4-phenyl-2-butanone (benzylacetone, 2.96 g), 2-
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pentylcyclopentanol (3.12 g), geraniol (3.08 g), 4-cyclohexyl-2-methyl-2-butanol (3.40 g), 

10-undecenal (3.36 g), Vertenex® (3.96 g), allyl 3-cyclohexylpropanoate (3.92 g).  

 

 Amphiphilic star-block copolymer H40-(PCL)10-(PAA)70 40 mg (2% (w/w)) was 

solubilized in 1.70 g (85 % (w/w)) of ethanol. After stirring, 160 mg of water were added and 

100 mg (5 % (w/w)) of the model perfume described above. The sample was kept under 

agitation at room temperature for at least 3 days. A total of 2 μL of the sample was then 

placed in a headspace sampling cell (160 mL) thermostatted at 25 °C and exposed to a 

constant air flow of 200 mL/min, respectively. The air was filtered through active charcoal 

and aspirated through a saturated solution of NaCl. The volatiles were continuously adsorbed 

onto 100 mg Tenax® TA cartridges, which were changed after t = 3.5, 4.5, 6, 8, 10, 13, 16, 

20, 30, 45, and 60 min. The cartridges were desorbed thermally in a Perkin Elmer 

TurboMatrix ATD desorber and the volatiles analyzed with a Carlo Erba MFC 500 gas 

chromatograph equipped with a FID detector. The analyses were carried out using a J&W 

Scientific DB capillary column (30 m x 0.45 mm i.d., film thickness 0.42 μm) from 70 °C to 

130 °C (at 3 °C/min) then to 260 °C at 35 °C/min. The injection temperature was 240 °C and 

the detector temperature was 260 °C. Headspace concentrations (in ng/L) were obtained by 

external standard calibration of the corresponding fragrance molecules using six different 

concentrations in ethanol. 0.2 μL of each calibration solution was injected onto Tenax® TA 

cartridges, which were desorbed under the same conditions as previously. The results are the 

average of two measurements.  

 

 The above experiment was repeated using 100 mg (5 % (w/w)) of the model perfume 

described above solubilized in 1.70 g (85 % (w/w)) of ethanol and 200 mg of water without 

the amphiphilic star-block copolymer. The sample was kept under agitation at room 

temperature for 3 days. 2 μL of the sample was placed in the headspace sampling cell as a 

reference, in order to compare the long-lastingness of the fragrance compound evaporation in 

the presence or absence of the amphiphilic star-block copolymer.  
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IV.2.2 In a fabric softener application 

 

 The use of the amphiphilic star-block copolymers has been investigated for the 

controlled release of fragrance compounds in a fabric softener application. A fabric softener 

base with the following composition has been prepared:  

 

Stepantex® VK90 or VHR90 (origin: Stepan)  16.5 % by weight 

Calcium chloride       0.2 % by weight 

Water        83.3 % by weight 

 

A solution of equimolar amounts (0.45 mmol) of 4-phenyl-2-butanone (benzylacetone, 63.8 

mg), allyl 3-cyclohexylpropanoate (86 mg), 4-cyclohexyl-2-methyl-2-butanol (78.7 mg) and 

benzyl acetate (69.3 mg) in 10 mL of ethanol was prepared. 3.30 mL of this solution were 

added to 40 mg (1.33.10-4 mmol) of amphiphilic star-block copolymer H40-(PCL)10-(PAA)70 

and stirred for one day. A total of 1.80 g of the fabric softener base described above was 

weighed into two small vials. 1 mL of the solution containing the fragrance molecules and the 

polymer was then added to one of the vials, and 1 mL of the solution containing the fragrance 

molecules but no polymer was added to the other. Both vials were closed and left under 

agitation at room temperature for 4 days. The samples were then dispersed in a beaker with 

600 mL of demineralized cold tap water. One cotton towel (EMPA cotton test cloth Nr. 221, 

origin: Eidgenössische Materialprüfanstalt (EMPA), pre-washed with an unperfumed 

detergent powder and cut to ca. 12 x 12 cm sheets) was added to each beaker and agitated 

manually for 3 min, left standing for 2 min, then wrung out by hand and weighed to check for 

a constant quantity of residual water. The two towels (one with the amphiphilic star-block 

copolymer and one without) were analyzed immediately after treatment with the softener. For 

the measurements, one towel was put into an headspace sampling cell (160 mL) thermostatted 

at 25 °C and exposed to a constant air flow of 200 mL/min, respectively. The air was filtered 

through activated carbon and aspirated through a saturated solution of NaCl. The headspace 

system was equilibrated for 75 min, and the volatiles then adsorbed for 5 min on a clean 

Tenax® cartridge. Sampling was repeated 7 times every 50 min. The cartridges were desorbed 

on a Perkin Elmer TurboMatrix ATD desorber as described above. 
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 The above experiment was repeated using the amphiphilic star-block copolymer H40-

(PBMA)37-(PPEGMA)39 instead of H40-(PCL)10-(PAA)70. The headspace system was 

equilibrated for 15 min, and the volatiles were adsorbed for 5 min. Sampling was repeated 

again 7 times every 50 min. 

 

 

V. Instrumentation 

 

V.1. Nuclear magnetic resonance (NMR)  

 

 Nuclear magnetic resonance (NMR) spectra of the polymers were recorded on Brucker 

Avance 400 and AV 500 spectrometers operating at 400 or 500 MHz for 1H and 100.6 or 

125.8 MHz for 13C NMR spectra. CDCl3, DMSO-d6 and D2O were used as the solvents, and 

tetramethyl silane (TMS) was used for calibration. Quantitative 13C NMR spectra for the 

characterization of the H40 were obtained at 300 K using inverse-gated decoupling with a 

relaxation delay of 30 s. The proportions of the different structural units were determined by 

integration of the corresponding peaks in the quaternary carbon region (42-54 ppm). 

 

 Quantitative 1H NMR spectra for the encapsulation measurements were recorded 

under the following conditions: PULPROG (pulse program): zg; TD (time domain data 

points): 64k; AQ (acquisition time): 5 sec; D1 (delay time): 20 sec; SW (sweep width): 13 

ppm. 64 scans were recorded. All integrations were made relative to DMSO, which was 

added as an internal reference.  

 

V.2. Gel permeation chromatography (GPC) 

 

 GPC in DMF was performed on a Waters Alliance GPCV 2000 equipped with 

refractive index, differential viscosimeter and light scattering detection. Separation was 

carried out with two consecutive TSK-Gel Alpha 3,000 + 4,000 or 4,000 + 5,000 columns 

(hydrophilic PMMA-type stationary phase), and eluted at 60 °C with DMF containing 1 g/L 



Chapter IV : Experimental methods 
 

 87 

of LiBr at a flow rate of 0.6 mL/min. The polymer concentration was 4 mg/mL. Molar masses 

were determined using the universal calibration method with narrow polydispersity 

poly(methyl methacrylate) PMMA standards and Empower Pro multi-detection GPC software 

(Ver 5.00).  

 

 GPC measurements in water were performed on a Waters 150cv instrument (modified 

for refractive index measurement and differential viscosimeter) equipped with two 

consecutive Shodex OH-Pak SB-804 + SB 805 columns, and eluted at 25 °C with water 

containing 0.1 M of NaHCO3 at a flow rate of 0.5 mL/min. The polymer concentration was 4 

mg/mL.  

 

V.3. Fourier transform infra red spectroscopy (FT-IR) 

 

 Fourier transform infra-red (FTIR) spectroscopy was carried out using a Perkin Elmer 

Spectrum One FT-IR spectrometer. 

 

V.4. Differential scanning calorimetry (DSC) 

 

 Differential scanning calorimetry (DSC) data were obtained using a TA Instruments 

DSC Q100. Around 10 mg of the specimens were heated from -120 °C to 120 °C (or 200 °C, 

depending on the polymer) at 10 °C/min and then cooling from 120 °C (or 200 °C) to -120 °C 

at 10 °C/min. Before each scan, the temperature was maintained at -120 °C and 120 °C (or 

200 °C) for 1 min. The cycle was repeated and Tg and Tm values determined from the second 

cycle.  

 

V.5. Thermogravimetric analysis (TGA) 

 

 The TGA (Mettler-Toledo) is a very sensitive microbalance (accuracy: 1 μg) equipped 

with an accurate oven with an internal volume of 35 mL. The loss of weight due to 

evaporation is recorded as a function of time. The evaporation of the pure fragrance molecule 
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in the composition was measured by heating the sample from 25 to 50 °C at 5 °C/min to 

rapidly evaporate ethanol. Then the sample is weighed at 50 °C over 115 minutes to follow 

the evaporation of the evaporation of the fragrances. Finally the sample is heated from 50 °C 

to 130 °C at 4 °C/min and maintained at 130 °C for 15 minutes to remove all the fragrance 

compounds from the polymer. 

 

V.6. Dynamic light scattering (DLS) 

 

 The sizes of the amphiphilic star-block copolymers or aggregates in water have been 

measured by dynamic light scattering (DLS) using a Malvern Zetasizer Nanoseries. The light 

source diffuses at 365 nm. Autocorrelation functions for each sample at a concentration of 

0.34 mg mL-1 were collected three times at 25° C. The data were fitted using a cumulant 

method to derive apparent hydrodynamic radii. 

 

V.7. Transmission electron microscopy (TEM) 

 

 Continuous films were cast onto freshly cleaved mica, floated onto distilled water and 

picked up with 400 mesh copper grids covered with a thin film of carbon. The specimens 

were then exposed to RuO4 vapor for a few minutes in order to provide contrast. All TEM 

observations were carried out using a Philips EM430 TEM at 300 kV in bright field mode.  

 

V.8. Atomic force microscopy (AFM) 

 

 Observations were made on specimens cast from dilute solutions (typically between 2 

and 100 mg L-1) in chloroform or THF onto freshly cleaved mica. The images were obtained 

using a Veeco Multimode AFM, with an ultrasharp silicon tip operated in intermittent contact 

mode in air at room temperature and the drive amplitude was varied systematically.  
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Chapter V. Synthesis of amphiphilic star-block 

copolymers from Boltorn® hyperbranched polymer 

 
___________________________________________________________________________ 

 

 

 

 Thanks to their straightforward, relatively low cost synthesis, hyperbranched polymers 

are more promising candidates for many industrial applications than dendrimers. Although 

their synthesis produces ill-defined microstructures with irregular branches, the large number 

of end groups and the globular architecture are maintained. They also show similar properties 

to dendrimers, including lower viscosity than their linear analogues, tailored solubility, 

thermal properties and chemical reactivity.  

 

 The HBP cores (Boltorn®) used in the present work have been commercialized by 

Perstorp (Sweden). A brief description of their synthesis and characterization is given in 

section I. The degree of polymerization and the number of hydroxyl groups per molecule have 

been estimated in the present work using gel permeation chromatography (GPC) and nuclear 

magnetic resonance (NMR) as described in section II. Finally, section III details the chemical 

modification of the hydroxyl groups present at the surface of the HBP and the subsequent 

preparation of the star-block copolymers.  
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I. Boltorn® HBP: Background 

 

I.1. Preparation of Boltorn® HBP 

 

 The family of hyperbranched aliphatic polyesters considered here was first 

investigated by Malmström et al..[41] This work resulted in a commercially available HBP 

polyol named Boltorn® HBP. Three generations of this HBP are marketed under the 

tradenames H40, H30 and H20, which differ in size and consequently in the number of 

hydroxyl groups per molecule. The corresponding perfect dendrimer analogues contain 64, 32 

and 16 hydroxyl groups per molecule respectively according to the Perstorp data sheets.[258] 

Boltorn® HBP is prepared from 2,2-bis (hydroxymethyl)propionic acid (bis-MPA) and a 

tetrafunctional ethoxylated pentaerythritol core (PP50) according to the procedure of 

Malmström et al..[41, 259] The synthesis with PP50 as the core molecule is given in Scheme 

V.1. 
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Scheme V.1 Pseudo-one-step synthesis of the hydroxyl-functional hyperbranched polyester H40 
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I.2. Characterization of hyperbranched polymers based on AB2 type monomers 

 

 GPC and NMR are the most widely used techniques in the literature for the 

characterization of hyperbranched polymers.[41, 260-263] Frey and coworkers investigated HBPs 

based on an AB2 type monomer with a TMP core.[260] The molar masses they obtained from 

NMR and VPO (vapor pressure osmometry) let them to conclude that cyclization occurred 

during the reaction. The differences between the molar masses obtained by NMR and VPO 

and by GPC carried out in DMF at 45 °C with poly(propylene oxide) as the standard, also 

suggested that GPC overestimated the molar mass. However, the values obtained were very 

different from those determined by Hult and coworkers for an HBP with a TMP core.[261] 

 

 Zagar and Zigon[263] have also characterized a fourth generation Boltorn® HBP (H40) 

by 1H and 13C NMR and they found that the number of dendritic units and the degree of 

branching were very low in comparison with the expected values from random 

polymerization (DB = 0.40). They explained this difference on the basis of their NMR 

investigations. They showed that deactivation of carboxylic groups occurs, resulting in self-

condensation of bis-MPA. This reaction explains the presence of macromolecules with no 

PP50 core, which reduces the number average molecular weight (Mn) with respect to the value 

determined by GPC using dimethyl acetamide with LiBr (0.7 %) as the eluant.  

 

 The hydroxyl number for three generations Boltorn® HBP (H20, H30 and H40) have 

also been determined by titration experiments after acetylation in an excess of acetic 

anhydride with pyridine as the solvent. Unreacted acetic anhydride has been hydrolyzed with 

water and the acetic acid formed titrated with NaOH (1 M). The hydroxyl number have been 

calculated from the difference between the sample and a control. Results obtained by 

Garámszegi et al.[43] for H20, H30 and H40 are listed in Table V.1. Their results were in the 

expected range and in good agreement with the values of 430 to 470 mg OH/g of HBP 

provided by Perstorp.[258] 
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Table V.1 End group titration of the HBP 

 
 H20 H30 H40 

mg OH/g 498.64 477.28 472.31 

mmol OH/g 8.87 8.51 8.42 

Mn HBP [g mol-1] 1 320 2 900 4 40 

NOH/HBPa 11.7 24.7 37.2 
a Number of hydroxyl group per HBP molecule from titration  

 

 

 These examples illustrate the difficulties inherent in determining the molar mass and 

hence the absolute number of hydroxyl groups per molecule and point also to inconsistencies 

between the work of different authors.  

 

 

II. Characterization of the HBP cores 

 

 Three generations of HBP were investigated. However, the emphasis here will be on 

H40, which was the largest one and hence showed the highest functionality.  

 

II.1. GPC 

 
 Zagar and Zigon[263] and Garámszegi et al.[43] demonstrated that the absolute molecular 

weight of HBPs is accessible with GPC combined with universal calibration under 

appropriate conditions (polymer/solvent/stationary phase). We therefore first used GPC under 

the same conditions as Garámszegi et al., taking care to avoid secondary separation 

mechanisms such as adsorption, thermodynamic partition, phase separation and ionic effects.  

 

Because of the large number of polar hydroxyl end groups, Boltorn® HBP has a 

strong tendency to associate by intermolecular interactions and hydrogen bonding (e.g. 

between the hydroxyl and carbonyl groups).[263, 264] To disrupt these interactions, the HBP was 

dissolved in dimethyl formamide (DMF) with 1 g L-1 of LiBr.[43] As found previously by 
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Rodlert et al.,[39] the resulting chromatograms were monomodal. Results for all three 

generations are given in Table V.2. The polydispersities (Mw/Mn) were relatively high in each 

case owing to the synthetic procedure.  

 

 The degree of polymerization was determined according to the following equation, 

from which the number of hydroxyl groups may also be inferred: NOH = DPn + 4 

 

BMPA

coren

n M

MM
DP

−
= exp  

 

expnM : average number molecular weight measured with GPC 

Mcore: theoretical molecular weight (molar mass) of the PP50 core (M = 356 g mol-1). 

MBMPA: molar mass of the repeat unit (bis-MPA) (M = 116 g mol-1). 

 

 

Table V.2 GPC data for three generations of HBP after purification 

 

 Mn [g mol-1]a Mw [g mol-1]b Mw/Mn
c DPn NOH (theo)

d NOH (GPC)
e 

H20 1 320 4 740 3.59 8 16 12 

H30 2 900 8 170 2.82 22 32 26 

H40 4 100 11 700 2.86 32 64 36 

 

a average number molecular weight determined by GPC 
b average weight molecular weight determined by GPC 
c molecular weight distribution 
d theoretical number of hydroxyl groups per HBP (based on the stoichiometry) 
e calculated number of hydroxyl groups per HBP  
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II.2. NMR  

 

 

 

 

Figure V.1 Average structure of Boltorn® HBP H40 along with the three repeat units present in the 

structure. 
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 HBP H40 has been studied by quantitative NMR spectroscopy. The proportion of the 

three main types of repeat unit (terminal (T), linear (L) and dendritic (D)) present in Boltorn® 

HBP as defined in Figure V.1 can be calculated from 1H NMR spectroscopy in DMSO by 

integrating the corresponding methyl peaks at 1.11, 1.16 and 1.26 ppm (peaks e, f, g 

respectively in Figure.V.2), values of 25, 56 and 19 % (Figure.V.3) were obtained for T, L 

and D respectively. The number of linear units was hence inferred to be significantly greater 

than the number of dendritic and terminal units.  

 

 From Figure.V.2 the integrations of the protons corresponding to the methyl, the 

methylene and the hydroxyl groups of the HBP were used for the determination of the number 

of protons in the H40 molecule assuming a DPn of 32 (from GPC in DMF). The three repeat 

units L, T, and D present in the H40 molecule (Figure V.1) have been considered. The linear 

repeat unit is composed of 1 -CH2OH, 1 -CH2OR and 1 -OH groups which corresponds to 2 

H, 2 H and 1 H repectively. The terminal repeat unit is composed of 2 -CH2OH and 2 -OH 

groups which corresponds to 4 H, 2 H repectively. The dendritic repeat unit is composed of 2 

-CH2OR groups which corresponds to 4 H. The PP50 core molecule is composed of 14 -

CH2O groups which corresponds to 28 H. Moreover each repeat unit contains a –CH3 group 

so the total number of –CH3 groups (each of which contributes 3 H) is equal to DPn. The 

results are summarized in Table V.3. Considering the methyl and methylene groups 

intensities, results obtained from GPC and NMR are in good agreement. In the case of OH 

group intensities, a poorer agreement is determined (24 H from NMR instead of 36 H from 

GPC). This may be attributed to H-bonding[263] (broad peaks and lower accuracy). Thus, in 

this work, the number of OH groups per HBP molecule were determined by considering the 

methyl and the methylene intensities instead of only considering the OH groups intensities 

and a value of 36 hydroxyl functions are considering from NMR measurements.  
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Figure.V.2 1H NMR spectrum of H40 in DMSO 

 

 

 

 

 

Figure.V.3 Enlarged 1H NMR spectrum of the H40 in DMSO. Region of the methylene groups. 
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Table V.3 Comparison of the numbers of protons expected for H40 for DPn = 32 (GPC) and those 

determined by 1H NMR in DMSO 

 

Corresponding 

peaks 

Theoretical number 

of proton 

Calculated number of 

proton from GPC 

with DPn = 32 

Experimental 

number of proton 

from NMR 

CH3 (e, f, g) DPn x 3H 96 96 

CH2OH (c, h) 

 

4H.DPn.% T = 32 

2H.DPn % L = 35.8 

From PP50 core ≈ 

28H 

95.8 95.8 

CH2OR (d) 

 

2H.DPn % L = 35.8 

4H.DPn % D = 24.3 

60.1 59.4 

OH (a, b) DPn + 4H 36 24.0 

 

 

 Table V.4 summarizes the experimental values for NOH obtained with GPC and NMR 

for three generations of Boltorn® HBP. The titration experiments on H20, H30 and H40 were 

carried out by Garámszegi et al.[43] on the same series of H20, H30 and H40 as analyzed here 

by GPC and NMR. The results are also given in Table V.4 and are consistent in the case of 

H40. In the case of H20 and H30, the good correlation between the GPC and titration results 

is assumed to validate the GPC results, although NMR results were not available in this case. 

An average of 26 OH groups per Boltorn® H30 and of 36 OH groups per Boltorn® H40 

molecule was therefore assumed for the remainder of this study.  

 

 

Table V.4 Comparison of the number of hydroxyl groups determined for Boltorn HBP using three 

techniques 

 
 H20 H30 H40 

GPC 12.3 26 36 

NMR - - 36 

Titration 11.7 24.7 37.2 
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III. Preparation of amphiphilic star-block copolymer based on HBP polyester  

 

III.1. Introduction 

 

 This section describes the preparation of an amphiphilic star-block copolymer 

comprising a hydrophobic and a hydrophilic block. The hydrophobic block has the purpose of 

encapsulating, absorbing or associating hydrophobic volatiles. The hydrophilic block provides 

the necessary polarity for solubilizing the star-block copolymer in an aqueous medium.  

 

 In the fragrance industry, the products (shampoos, lotion, cream,…) are manufactured 

from a base composed essentially of water, surfactant (which stabilize the composition and 

improve the deposition of the perfume), and small amount of perfume. As a function of the 

application, the surfactants used are cationic, anionic or non-ionic. For example, in shampoos, 

lotions and softeners[1, 265-267] cationic surfactants are introduced whereas anionic surfactants 

are used in detergents, and non-ionic surfactants are used in creams and makeup. In order to 

introduce the new amphiphilic star-block copolymers into one of the numerous compositions 

and to study their effect on deposition, cationic, anionic and non-ionic star-block copolymers 

were all initially considered and different (meth)acrylate monomers were therefore 

investigated for ATRP.  

 

 Due to the globular architecture of the HBP core which induces steric hindrance at the 

periphery, and the presence of internal hydroxyl groups (presence of linear units), the 

hydroxyl functions that serve for the modification of the HBP properties are less accessible 

than in linear polymers, precluding the “grafting onto” technique which consists of the 

addition of a pre-existing polymer to the HBP core. Thus, the “grafting from” technique was 

envisaged for the preparation of star-block copolymers, i.e. the use of the hydroxyl functions 

present at the surface of the HBP, which is considered to be a macroinitiator. ROP and ATRP 

are convenient methods for the synthesis of a well-defined polymer as it was discussed in the 

literature review (Chapter III). The possibility of propagating each arm simultaneously is 

highly advantageous as are the wide range of monomers that can be polymerized by ATRP 

and the low number of side reactions. 



Chapter V: Synthesis of amphiphilic star-block copolymers 
__________________________________________________________________________________________ 

 100 

 

 Then the preparation of the hydrophobic internal layer by ROP of ε-caprolactone from 

HBP (H30 and H40) to give a HBP-(PCL)p is described in section III.2. The synthesis of the 

outer hydrophilic shell is considered in section III.3, starting with the esterification of the –

OH groups present at the surface of the HBP-(PCL)p by 2-bromoisobutyryl bromide to give 

an HBP-(PCL)p-Br macroinitiator for ATRP (section III.3.1). The preparation of pH-

responsive star-block copolymer is then described in section III.3.2. After preliminary 

experiments with tert-butyl methacrylate, used of tert-butyl acrylate monomer, to give HBP-

(PCL)p-(PtBuA)q was found to give better results. Hydrolysis of the tert-butyl group provides 

a poly(acrylic acid) (PAA) outer shell HBP-(PCL)p-(PAA)q. Water soluble star-block 

copolymers without the internal hydrophobic core (H40-(PAA)q) were also prepared in order 

to study the importance of the hydrophobic layer for encapsulation of volatiles (Chapter VII). 

Similar conditions were tested for the optimization of cationic (section III.3.3) and non-ionic 

star-block copolymers (section III.3.4). Finally, non-ionic star-block copolymers, based on 

H40 macroinitiator and preparared by G. Kreutzer from the Polymer Laboratory of the EPFL, 

are also briefly described in section III.4 since they will be referred to in the following 

chapters.[48]  
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III.2. The hydrophobic layer: ROP of ε-caprolactone 

 
 The peripheral hydroxyl groups of H30 or H40 were used to initiate the ROP of ε-

caprolactone. The number of OH groups per HBP molecule controls the graft density, while 

the ε-caprolactone concentration and reaction time determine the graft length.  
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Scheme V.2 Synthesis of H40-(PCL)p 

 

 

 The reaction proceeded in the bulk at 107 °C under an inert atmosphere, as shown in 

Scheme V.2, and according to procedure described in the experimental section (Chapter 

IV.II.1). By varying the ratio of the initiating species (H30 and H40) to the ε-caprolactone, a 

series of six copolymers was synthesized and characterized with 1H and 13C NMR in CDCl3 

and GPC in DMF. Table V.5 details the [M]/[I] ratio, molar mass and other parameters 

determined from 1H NMR and GPC. A representative 1H NMR spectrum of H40-(PCL)24 is 

shown in Figure V.4. The degree of polymerization (DPn) was calculated from the triplet at 

3.65 ppm (e), which corresponds to the methylene group adjacent to the hydroxyl at the chain 

end, and the triplet at 4.05 ppm (d), which corresponds to the methylene group adjacent to the 

ester linkage.[254] The average number molar masses of the series HBP-(PCL)p from NMR and 

GPC analysis are compared in Figure V.5. A representative GPC curve of H40-(PCL)24 in 

DMF is given in Figure V.6. 
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Table V.5 [M]/[I] ratio and characterization of the star-block copolymer synthesized from ROP of ε-

caprolactone 

 

 [M]/[I] 
DPn /arm 

Stoichiometry 
DPp /arma 

Mn 

[g mol-1]a 

Mn 

[g mol-1]b 
Mw/Mn

 b α b 

H30 - - - 2 908 2 900 2.82 0.22 

H40 - - - 4 070 4 100 2.86 0.27 

H30-(PCL)12 300 11.5 12 38 470 41 800 1.95 0.07 

H40-(PCL)10 360 10 10 45 140 65 380 2.03 0.07 

H40-(PCL)17 720 20 17 73 870 89 890 1.99 0.07 

H40-(PCL)24 792 22 24 104 650 94 300 2.46 0.001 

H40-(PCL)40 1080 30 40 168 260 158 900 2.07 0.08 

H40-(PCL)50 1980 55 50 209 300 184 640 2.57 - 

 

a 1H NMR in CDCl3  
b GPC in DMF  

 

 

 

 

Figure V.4 1H NMR of the H40-(PCL)24 star-block copolymer 
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Figure V.5 Dependence of Mn and polydispersity on the [M]/[I] ratio for H40-(PCL)p: comparison between 

NMR and GPC results and the target Mn 

 

 

 

 

Figure V.6 GPC chromatogram of H40-(PCL)24 in DMF 
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 The signal from the H40 core was not visible in any of the 1H spectra because of the 

large excess of PCL. The GPC curves for the H30-(PCL)p and H40-(PCL)p were monomodal 

and the molar mass distribution decreased with the polymerization of the ε-caprolactone in 

comparison with H30 and H40 precursor (Table V.5). This is thought to be due to the 

fractionation during the precipitation. Figure V.5 compares the behaviour of the molar mass 

determined by NMR and GPC and the target values, i.e. the molar mass expected from the 

[M]/[I] ratio from Table V.5. As seen from Figure V.5, Mn generally increased linearly with 

increasing target Mn ([M]/[I] ratio). Values from NMR were in good agreement with target 

Mn whereas GPC values for high molar masses polymers were in less good agreement, 

especially for H40-(PCL)50, for which the Mark-Houwink Sakurada coefficient (α) was not 

calculable (see Equation II.3). More generally, the Mark-Houwink Sakurada coefficient 

decreased to close to zero (Table V.5) as the length of the (PCL) arms increased. This 

suggested the polymers to behave as compact spheres. Frey et al.[119, 268, 269] also observed a 

difference between molar masses determined with NMR and GPC in the case of modified 

hyperbranched polymers. They attributed the molar mass differences between the two 

techniques to the compact spherical structure of the HBP. 

 

 It has been widely reported[41, 218, 248, 251, 252, 254] that the quaternary carbon region of the 
13C NMR spectrum gives information on the substitution of the hydroxyl group of the multi-

arm initiator. The quaternary carbon resonances appear at 46.14 ppm when both hydroxyl 

groups react, at 48.14 ppm if one hydroxyl group remains and at 50.15 ppm when both 

hydroxyl did not react, as shown in Figure V.7. Hedrick and coworkers and Hult and 

coworkers[252, 254, 255] thus showed from analysis of the quaternary carbon region of 13C NMR 

spectrum that terminal repeat units are more reactive than the linear repeat units and they 

attributed this observation to steric hindrance and H-binding. In the present case, analysis of 

the 13C NMR spectrum from 46 to 51 ppm, in the region of the quaternary carbon of the H40, 

showed all the hydroxyl functions (linear and terminal units) to have reacted (Figure V.8) 

(spectrum quality can be improve by increasing the number of scan). This indicated 

homogeneous multi-arm star polymers to have been obtained.  
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Figure V.7 13C NMR (DMSO): Quaternary carbon region for poly (bis-MPA) samples[262]  

 

 

 

 

Figure V.8 Enlarged 13C NMR spectrum in CDCl3 for H40-(PCL)10 
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III.3. The hydrophilic shell 

 

III.3.1 Macroinitiator synthesis 

 

 For the synthesis of a well defined star-block copolymer by ATRP, it is essential to 

prepare an initiator that can efficiently trigger the polymerization of the chosen monomer. It 

has been shown that alkyl halides containing activating substituents (such as carbonyl groups) 

at the α-carbon position can initiate the polymerization of tert-butyl acrylate[212] and methyl 

methacrylate.[213] A well defined polymer may be prepared by using a functional group that 

has a structure similar to that of the growing polymer chain end in its dormant form. In the 

present case, the H40-(PCL)p and H30-(PCL)p star-blocks were dissolved in THF and 

modified with 2-bromoisobutyryl bromide in the presence of triethylamine (Scheme V.3).[216, 

270] The efficiency of this alkyl halide initiator for the ATRP of acrylate has been 

demonstrated, although 2-bromobutyryl bromide or 2-bromopropyonyl bromide may also 

represent viable alternatives in our case.  
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Scheme V.3 Synthesis of the hyperbranched macroinitiator: H40-(PCL)p-Br 
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 Following this procedure a series of six macrioinitiators was prepared according to 

Table V.6 and characterized with NMR in CDCl3 (
1H and 13C) and GPC in DMF. Excesses of 

2-bromoisobutyryl bromide and triethylamine were used. The synthesis of H40-Br, for the 

initiation of ATRP directly on the H40 core has been prepared with 4-

(dimethylamino)pyridine and triethylamine as described in the experimental section (Chapter 

IV.II.2). 

 

 

Table V.6 Conditions for the different macroinitiator syntheses 

 

 Origin 
neq./OH 

[bromide] 

neq./OH 

[NEt3] 
Time [h] Yield [%] 

H30-(PCL)12-Br H30-(PCL)12 10 6 65 68.4 

H40-(PCL)10-Br H40-(PCL)10 2 2 48 56.6 

H40-(PCL)17-Br H40-(PCL)17 2 2 65 93.6 

H40-(PCL)24-Br H40-(PCL)24 10 6 65 81.0 

H40-(PCL)40-Br H40-(PCL)40 10 6 65 61.4 

H40-(PCL)50-Br H40-(PCL)50 10 6 63 93.4 

 

 

 The degree of functionalization was determined by 1H NMR. Figure V.9 shows the 1H 

NMR spectrum in CDCl3 for the macroinitiator H40-(PCL)24-Br. In comparison with the 

spectrum of H40-(PCL)24 (Figure V.4) the shift associated with the methyl group adjacent to 

the hydroxyl (e) from 3.65 to 4.26 ppm and the disappearance of the peak at 3.65 ppm 

indicated the reaction to be complete. The additional peak (f) at 1.93 ppm in the 1H NMR 

spectrum and an absorption peak at 30.21 ppm in the 13C NMR spectrum (Figure V.10) were 

attributed to the methyl groups of the 2-bromoisobutyryl bromide. Table V.7 and Figure V.9 

showed the complete conversion of the –OH groups of the PCL, with an integral of 5.6 H 

(instead of 6) being obtained for the methyl groups of the 2-bromoisobutyryl bromide. 
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Figure V.9 1H NMR of the macroinitiator H40-(PCL)24-Br 

 

 

 

Table V.7 Comparison between the expected number of protons per arm (for DPp = 24) and the 1H NMR 

peak integrals. 

 

peak (ppm) 
Integral measured by 

NMR 

Expected number of 

protons/arm 

c [1.23 .. 1.44] 48.42 24 × 2H 48 

b [1.47 .. 1.68] 94.90 24 × 4H 96 

f [1.82 .. 1.90] 5.64 2 × 3H 6 

a [2.14 .. 2.33] 44.43 24 × 2H 48 

d+e [3.90 .. 4.17] 48.00 23 × 2H + 2H 48 
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Figure V.10 Enlarged 13C NMR spectrum (between 20 and 40 ppm) for (a) H40-(PCL)p and (b) H40-

(PCL)p-Br star-block copolymer 

 

 

 Molar masses were calculated from NMR measurements assuming complete 

conversion of the –OH groups of the PCL and from GPC in DMF. The values given in Table 

V.8 are in good agreement. The exception in the case of H40-(PCL)50-Br where the Mn 

measured by GPC is lower than the NMR calculation (but of a similar order of magnitude) is 

attributed to uncertainties inherent in the GPC technique due to the particular polymer 

architectures. Figure V.11 shows GPC traces for H40-(PCL)24 and H40-(PCL)24-Br and 

illustrates the small difference between the precursor and the bromide macroinitiator. The 

completion of the reaction has been shown by NMR however it would have been possible to 

use MALDI-TOF MS measurements (although this technique is not easily adapted to block 
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copolymer and to high Mw/Mn values) to investigate further the evolution of the molar 

masses.[271, 272]  

 

 

Table V.8 Characterization of H40-(PCL)p-Br macroinitiator with GPC in DMF. Comparison with the 

expected values determined from NMR for complete conversion 

 

Sample name 
Mn [g mol-1] 

NMR 

Mn [g mol-1] 

GPC 
Mw/Mn 

H30-(PCL)12-Br 42 340 42 170 2.13 

H40-Br 9 460 12 300 1.72 

H40-(PCL)10-Br 50 500 54 300 2.27 

H40-(PCL)17-Br 79 230 106 000 1.79 

H40-(PCL)24-Br 110 000 111 100 2.79 

H40-(PCL)40-Br 173 600 177 600 2.06 

H40-(PCL)50-Br 214 660 178 900 2.65 

 

 

 

 

 

Figure V.11 GPC trace of H40-(PCL)24-Br  and the precursor H40-(PCL)24 in DMF 
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III.3.2 Preparation of pH-responsive star-block copolymers 

 

 Because of the interactions between the ionic monomers and the catalyst/ligand 

complex the preparation of ionic polymers by ATRP was carried out in two steps.[202] The 

method was to polymerize a monomer containing neutral hydrophobic groups, which could 

then be functionalized to provide ionic water soluble polymers.  

 

 In order to prepare pH-responsive capsules with free carboxylic acid functions, 

(meth)acrylate monomer with tert-butyl groups such as tert-butyl methacrylate (tBuMA) or 

tert-butyl acrylate (tBuA) were considered. The free carboxylic acid were obtained after 

hydrolysis of the tert-butyl groups (Scheme V.4). Hence as a function of the pH, the -COOH 

groups may be deprotonated providing an anionic capsule.[273] In the case of poly(acrylic 

acid), the pKa is around 5.[274] 
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Scheme V.4 Strategy for obtaining a pH-responsive polymer based on tert-butyl methacrylate  

 

 

(1) Optimization of ATRP with tert-butyl methacrylate (tBuMA) 

 

 Following the literature,[275] the ATRP of tBuMA was carried out with CuBr and 

PMDETA as catalyst and ligand respectively. The choice of the solvent was first investigated 

and reaction in THF at 50 °C gave better conversion (30.4 %) than in anisol at 90 °C (22.5 %) 

or in ethyl acetate at 50 °C (0 %). The concentration of the solvent [S] as a function of the 

monomer [M] proportion was then studied and it was shown that [M]/[S] of 30/70 gave better 
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conversion (41 %) than [M]/[S] = 50/50, where gelation appeared immediately after the 

introduction of the monomer. The optimum conditions for the ATRP of tBuMA in the 

presence of PMDETA are given in Scheme V.5. Even if gelation did not appear immediately 

when [M]/[S] = 30/70 was used, it remained a problem during the purification of the product 

and GPC (Figure V.12) confirmed the presence of star-star coupling during ATRP under these 

conditions. 
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Scheme V.5 Procedure followed for the ATRP of tBuMA 

 

 

 As discussed in the literature, a potential problem with the synthesis of star polymers 

using multifunctional initiators is star-star coupling, depending on the catalyst/ligand complex 

and the monomer to be polymerized.[216, 221, 225, 231] The proportion of termination by radical 

coupling can be reduced by using more dilute solutions or limiting monomer conversions.[225] 

However, star-star coupling could also be alleviated by using the appropriate alkyl halide 

initiator and catalyst/ligand complex. Under appropriate conditions control is satisfactory and 

many different star-block copolymers have been successfully prepared.[276] With the 

polymerization of styrene and tBuA initiated by calixarene containing 8 branches, Angot et al. 

demonstrated that it is possible to avoid star-star coupling in ATRP.[224] In the present case, to 

avoid star-star coupling, polymerization of tBuA with H40-(PCL)p-Br as the macroinitiator 

using CuBr and bipyridyl as catalyst and ligand respectively was considered. Under these 

conditions no gelation appeared during the reaction and the purification of the product was 
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simplified. GPC traces of H40-(PCL)17-(PtBuA)q in DMF confirmed the absence of star-star 

coupling (Figure V.12).  

 

 

 

Figure V.12 GPC traces in DMF after the ATRP of tBuMA and tBuA initiated with H40-(PCL)17-Br 

 

 

(2) ATRP of tBuA for the synthesis and characterization of H30-(PCL)p-

(PtBuA)q and H40-(PCL)p-(PtBuA)q  

 

 Due to the absence of a radical stabilizer in the acrylate monomers the polymerization 

of acrylate is better controlled than that of methacrylate. Moreover acrylates are more water 

soluble. A further advantage of the resulting capsules is the possibility of varying the surface 

charge by varying the pH.[273]  

 

 According to the literature, the polymerization of tBuA from a multi-arm 

macroinitiator may be carried out in the bulk with copper bromide and 2,2’-bipyridyl with the 

optimum proportions of macroinitiator (MI), catalyst and ligand (L) of [MI]/[Cu]/[L] = 

1/1/2[224] or PMDETA as ligand.[212, 277] In the present work H40-(PCL)p-(PtBuA)q was 
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prepared by ATRP of tBuA in the bulk at 90 °C, with CuBr/2,2’-bipyridyl as the catalyst 

(Scheme V.6) in the proportions [MI]/[Cu]/[L] = 1/1/2, and in the presence of ethylene 

carbonate (ec). Ethylene carbonate is used to increase the homogeneity of the copper salt and 

was introduced as a function of the monomer weight (10 % w/w monomer).[278] 1H and 13C 

NMR were carried out in CDCl3 and GPC in DMF to characterize the product and to follow 

the ATRP. 
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Scheme V.6 ATRP of tBuA initiated by H40-(PCL)p-Br macroinitiator 

 

 

 A representative 1H NMR spectrum is given in Figure V.13. All the peaks of the PCL 

were clearly visible as well as the additional peak associated with the PtBuA blocks. The 

degree of polymerization of the PtBuA (DPq) was calculated from 1H NMR spectroscopy 

from the multiplets between 1.58 and 1.30 ppm (c + i), and the triplet at 4.06 ppm which 

corresponds to the ester methylene group of the PCL (d). The multiplets between 1.58 and 

1.30 ppm correspond to the methylene group in the middle of the PCL chain (c) and to the 

tert-butyl groups of the PtBuA block (i). The degree of polymerization of the PtBuA (DPq) 

could also have been calculated by taking into account the multiplet between 2.2 and 2.5 ppm 

(a + h), and the triplet at 4.06 ppm (d). The multiplets (a + h) correspond to the methylene 

group of the PCL chain (a) and to the -CH groups of the PtBuA block (h). The appearance of 

tert-butyl groups between 1.58 and 1.30 ppm was easily detectable in the 1H NMR spectrum. 
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 The PCL blocks of the H40-(PCL)p-(PtBuA)q were detectable by 13C NMR with the 

presence of the methylene peaks at 24.55, 25.50, 28.33, 34.08 and 64.11 ppm and the 

carbonyl at 173.50 ppm. The peaks attributed to the PtBuA blocks (174.14, 80.29, 42.28, 

41.87 and 28.08 ppm) were also visible. As a representative example, the 13C NMR spectrum 

of H40-(PCL)40-(PtBuA)100 is given in Figure V.14. 

 

 Figure V.15 shows GPC curves for the star-block copolymers H40-(PCL)40-

(PtBuA)100 along with that of the macroinitiator H40-(PCL)40-Br and of the H40-(PCL)40. The 

shift towards the high molar masses for the star-block copolymer indicated that the reaction 

proceeds. These results confirmed the bromo ester to be an efficient initiator for the ATRP of 

tBuA in the presence of ethylene carbonate and CuBr/2,2’-bipyridyl.  

 

 

 

 

Figure V.13 1H NMR spectrum of H40-(PCL)40-(PtBuA)100 in CDCl3 
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Figure V.14 13C NMR spectrum of H40-(PCL)40-(PtBuA)100 in CDCl3 

 

 

 

Figure V.15 GPC in DMF of H40-(PCL)40, H40-(PCL)40-Br and H40-(PCL)40-(PtBuA)100 
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 By varying the monomer concentration or the reaction time, a series of star-block 

copolymers with different polymer lengths and two generations HBP (H30 or H40) were 

synthesized and characterized with 1H and 13C NMR in CDCl3 and GPC in DMF. Data 

corresponding to the star-block copolymers prepared are summarized in Table V.9. The 

nomenclature refers to the degree of polymerization determined by NMR as described above.  

 

Table V.9 ATRP conditions and analytical results for the polymerization of tBuA initiated by different 

multi-arm star-block copolymers 

 

Sample Entry Macroinitiator 
MI weight 

[g] 

[MI]/[CuBr]/

[L]/[M] 

molar ratio 

Reaction 

time 

[h] 

Mn a  

[g mol-1] 

Mn b  

[g mol-1] 
Mw/Mn 

H30-(PCL)12-(PtBuA)60 H30-PCL12-Br 1 1/1/2/80 6.0 240 380 204 000 2.40 

H40-(PtBuA)36 H40-Br 0.2 1/1/2/88 5.5 174 270 199 490 2.06 

H40-(PCL)10-(PtBuA)68 1 1/1/2/100 21.5 361 310 488 520 2.44 

H40-(PCL)10-(PtBuA)70 1 1/1/2/200 - 370 460 459 740 1.84 

H40-(PCL)10-(PtBuA)115 

H40-PCL10-Br 

1 1/1/2/200 21.0 576 200 549 000 2.06 

H40-(PCL)17-(PtBuA)18 0.5 1/1/2/100 17.0 161 140 205 000 1.80 

H40-(PCL)17-(PtBuA)20 7 1/1/2/100 17.0 170 590 262 675 3.43 

H40-(PCL)17-(PtBuA)50 

H40-PCL17-Br 

2 1/1/2/130 6.0 307 750 274 930 1.95 

H40-(PCL)24-(PtBuA)82 H40-PCL24-Br 10 1/1/2/160 20.0 484 800 357 700 3.17 

H40-(PCL)40-(PtBuA)100 H40-PCL40-Br 2 1/1/2/200 7.3 630 740 452 350 2.33 

H40-(PCL)50-(PtBuA)44 2 1/1/2/200 7.3 315 160 396 600 2.23 

H40-(PCL)50-(PtBuA)54 2 1/1/2/200 14.5 461 470 376 280 2.27 

H40-(PCL)50-(PtBuA)56 2 1/1/2/200 20.0 470 610 536 860 2.19 

H40-(PCL)50-(PtBuA)64 

H40-PCL50-Br 

1.5 1/1/2/250 48.0 507 190 732 760 3.37 

MI: macroinitiator, CuBr, L: ligand, M: monomer 
a measurement by 1H NMR in CDCl3 
b measurement by GPC in DMF 



Chapter V: Synthesis of amphiphilic star-block copolymers 
__________________________________________________________________________________________ 

 118 

 The results in Table V.9 illustrate the importance of the amount of macroinitiator 

introduced at the beginning of the reaction on the conversion. As often observed in organic 

chemistry, the reaction becomes significantly faster at a large scale. When 0.5 g of H40-

(PCL)17-Br macroinitiator were introduced during 17 h with [MI]/[CuBr]/[L]/[M] = 

1/1/2/100 ratio, a degree of polymerization (DPn) of 18 was determined from 1H NMR 

whereas under the same reaction conditions, 7 g of the same macroinitiator gave a DPn = 50. 

 

 The higher the molar mass of the macroinitiator, the slower the polymerization rate. 

When H40-(PCL)10-Br is used, a degree of polymerization of 115 is obtained providing a 

H40-(PCL)10-(PtBuA)115 whereas DPn is only 56 when initiating from H40-(PCL)50-Br 

providing a H40-(PCL)50-(PtBuA)56 after 20 h. This is thought to be due to increased steric 

hindrance. 

 

 Molar masses determined by NMR in CDCl3 and measured with GPC in DMF are in 

good agreement for the majority of the star-block copolymers synthesized with GPC molar 

masses often slightly higher than NMR values. When the difference between NMR and GPC 

is high, the polydispersity is also high (> 3), which may lead to errors in the Mn determination. 

Surprisingly, the molar mass obtained from GPC for H40-(PCL)50-(PtBuA)44 was somewhat 

higher than that for H40-(PCL)50-(PtBuA)54. However, given that the expected molar masses 

were relatively close this may be attributed to experimental scatter in the GPC measurements. 

The polydispersities (> 2) were larger than expected for polymers prepared via ATRP, owing 

to the heterogeneity of the macroinitiator, which have polydispersities between 1.72 and 2.79. 

 

(3) Is the ATRP of tBuA well controlled? 

 
 A kinetic study of the ATRP of tBuA with H40-(PCL)10-Br as the macroinitiator, 

CuBr as the catalyst and 2,2’bipyridyl as the ligand, was carried out as follows. Aliquots of 

the reaction medium were taken at different time intervals and analyzed by 1H NMR in CDCl3 

and GPC in DMF. The conversion was determined by comparing the intensity of the 

monomer protons between 5.5 and 6.3 ppm and the methylene groups of the PCL at around 

4.02 ppm (peak (d) in Figure V.16).  
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Figure V.16 1H NMR spectra of the aliquots of ATRP of t-BuA initiated by H40-(PCL)10-Br after 1h and 

5h reaction. 
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 Figure V.16 shows the decrease in the monomer concentration. After 1 h reaction the 

peak integration of the proton at around 5.5 ppm was 73.17 whereas after 5 h it decreased to 

28.68. Moreover the increase of the peak surface from 44.91 to 59.90 of the peak at 2.3 ppm, 

which corresponds to the methylene groups of the PCL (a) and of the PtBuA (h), also 

indicates polymerization. The integration measured for (c + i) peak after 1 h and 5 h 

conversion, which corresponds to the tert-butyl groups and to the methylene groups of the 

PCL blocks, remains constant (931.57 compared with 844.26), since the protons associated 

with the tert-butyl groups are present in the monomer and in the polymer. 

 

 The dependence of [M]/[I] ratio on time has been considered for the ATRP of tBuA 

under the conditions referred to above (in section (2)). In Figure V.17 the evolution of the 

molar mass of the sample (followed by the decrease in the initial monomer concentration 

[M0]/[M] as a function of time), determined from GPC in DMF, as a function of the reaction 

time has been given for monomer/initiator ratios of 100 and of 200 ([M]/[I] = 100 and 

[M]/[I] = 200). The results showed that the concentration of the propagating radicals was 

constant throughout the polymerization, and that [M]/[I] significantly influenced the 

conversion and the rate of the reaction. The reaction was slower with a high monomer 

concentration ([M]/[I] = 200) and faster with a high initiator concentration ([M]/[I] = 100), 

as required by Equation II.6. Well controlled behaviour was maintained, as confirmed by the 

monomodal GPC curve obtained for H40-(PCL)10-(PAA)70 (results not shown), even above 

80 % conversion. The low rate measured for [M]/[I] = 200 due to the dilution of the medium 

was consistent with results obtained previously with an octafunctional initiator.[224] 
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Figure V.17 Plots of ln([M0]/[M]) versus time during ATRP of tBuA at 90 °C initiated with H40-(PCL)10-

Br for two [M]/[I] molar ratios. 

 

 

 Figure V.18 shows the GPC traces, after purification, obtained in DMF at different 

times during the preparation of a star-block copolymer H40-(PCL)17-(PtBuA)q in the presence 

of ethylene carbonate and CuBr/2,2’-bipyridyl. The chromatograms showed no star-star 

coupling in spite of the large number of arms, reflecting the lower reactivity of the acrylate 

compared with that of methacrylates[224] and the importance of the choice of catalyst/ligand 

complex.  
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Figure V.18 GPC in DMF of ATRP of tBuA initiated with H40-(PCL)17-Br 

 

 

(4) Hydrolysis of the tert-butyl groups  

 

 The final step in obtaining amphiphilic multi-arm star-block copolymers (H40-(PCL)p-

(PAA)q) is hydrolysis of the tert-butyl groups of the H40-(PCL)p-(PtBuA)q under acidic 

conditions. Different routes may be followed.[99, 212, 216, 227, 279] For example, the hydrolysis of 

tert-butyl groups from a linear PCL-b-PtBuA block copolymer by using trimethyl silyl iodine 

(TMSI) followed by reaction with HCl aq. has been reported.[99] However, with high 

concentrations of TMSI, due to the large quantity of tert-butyl groups, it is observed that the 

PCL blocks are partially hydrolyzed. For this reason trifluoroacetic acid (TFA) has been 

chosen in the present work.  
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Scheme V.7 Hydrolysis of tert-butyl groups of the H40-(PCL)p-(PtBuA)q with TFA 
 

 

 The reaction was carried out by dissolving the polymer in dichloromethane in the 

presence of trifluoroacetic acid at room temperature. A first optimization was carried out on 

H40-(PCL)17-(PtBuA)50 star-block copolymer by varying the acidic concentration and the 

time of the reaction as described in Table V.10. Full conversion was obtained after 120 

minutes when the polymer was dissolved in dichloromethane at 6 wt% in the presence of 10 

equivalents of trifluoroacetic acid per tert-butyl group. According to these results, each star-

block copolymer prepared previously was dissolved in dichloromethane at 6 wt% and the tert-

butyl groups were hydrolyzed under the conditions summarized in Table V.11. 

 

 

Table V.10 Optimization of the hydrolysis of the tert-butyl groups of H40-(PCL)17-(PtBuA)50 by TFA 

 

Concentration [wt.%] Molar ratio tBuA/TFA Reaction time [min] Conversion [%] 

10 1/1 30 0 

10 1/10 30 66 

10 1/10 35 66 

10 1/10 45 74 

10 1/10 60 85 

6 1/10 120 100 
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Table V.11 Hydrolysis of the tert-butyl groups of the H40-(PCL)p-(PtBuA)q 

 
Initial star-block copolymer  Molar ratio tBuA/TFA Reaction time [h] Conversion [%] 

H40-(PtBuA)36 1/15 2.5 90 

H30-(PCL)12-(PtBuA)60 1/15 2.66 95 

H40-(PCL)10-(PtBuA)68 1/10 2.25 100 

H40-(PCL)10-(PtBuA)70 1/10 2.00 100 

H40-(PCL)10-(PtBuA)115 1/10 2.25 84 

H40-(PCL)17-(PtBuA)50 1/10 2.00 52 

H40-(PCL)24-(PtBuA)82 1/15 2.66 90 

H40-(PCL)40-(PtBuA)100 1/10 2.50 90 

H40-(PCL)40-(PtBuA)100 1/15 2.50 100 

H40-(PCL)50-(PtBuA)54 1/10 1.00 77 

H40-(PCL)50-(PtBuA)56 1/10 1.00 59 

H40-(PCL)50-(PtBuA)64 1/10 2.25 87 

 

 

 1H NMR spectroscopy in DMSO was used to characterize the product and the reaction 

(Figure V.19). The appearance of the carboxylic acid function was demonstrated by the 

formation of a broad peak at 12 ppm. The conversion was determined from the multiplet 

between 1.80 and 1.22 ppm (b+c+f+g), and the triplet at 3.99 ppm which corresponds to the 

methylene group of the PCL (d).  
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Figure V.19 1H NMR spectrum in DMSO of H40-(PCL)40-(PAA)100 (top) and enlarged spectrum (bottom) 

 

 
 13C NMR spectroscopy in DMSO showed the presence of the PCL block (24.08 ppm, 

24.89 ppm, 27.81 ppm, 33.37 ppm, 63.50 ppm and 175.73 ppm) and of the PAA block (40.84 

ppm, 41.33 ppm and 172.78 ppm) (Figure V.20). The presence of the carbonyl of the acidic 

function (172.78 ppm) and the disappearance of the peak at 80.29 ppm (which was attributed 

to the quaternary carbon of the tert-butyl groups) illustrated the sucess of the reaction. As was 

also seen in 1H spectrum, the 13C spectrum showed a peak at 27.56 ppm which corresponds to 

residual tert-butyl groups. However, although the presence of tert-butyl groups was 
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detectable, their amount decreased drastically in comparison with the precursor H40-(PCL)40-

(PtBuA)100 (peak at 28.08 in Figure V.14). The shift of the peaks between the two figures is 

due to the different solvents (CDCl3 in Figure V.14 and DMSO in Figure V.20). 100 tert-

butyl groups were measured per arm of hyperbranched polymer with 1H NMR spectrum in 

Figure V.13 and only 5 tert-butyl remained after hydrolysis with TFA. For this reason it was 

assumed that the reaction was essentially completed, giving an amphiphilic star block 

copolymer H40-(PCL)40-(PAA)100. 

 

 

 

 

Figure V.20 13C NMR spectrum of H40-(PCL)40-(PAA)100 

 

 

 The enlarged 13C NMR spectrum of H40-(PCL)10-(PtBuA)68 (Figure V.21 (a)) 

compared with the one of H40-(PCL)10-(PAA)68 (Figure V.21 (b)) indicated the conversion to 

be 100 % with the total disappearance of peaks corresponding to the tert-butyl groups at 27.5 

ppm and without any degradation of PCL. As it is shown in Figure V.20, the integrity of the 

PCL block was also maintained in H40-(PCL)40-(PAA)100 even though TFA was introduced 

in a large excess. This has been confirmed by GPC measurements with H40-(PCL)24 block 

copolymer. H40-Br and H40-(PCL)24 were solubilized in CH2Cl2 in the presence of TFA for 2 

h 15. After removal of the solvent the product has been precipitated in THF and the molar 

mass of the polymer determined by GPC in DMF. The Mn were compared with those of the 
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H40-Br and H40-(PCL)24 determined by GPC before treatement (Table V.12 and Figure 

V.22). No degradation was observed. The difference in the molar mass observed between 

H40-(PCL)24 before and after 2.5 h with TFA are not significant and again arise from 

experimental scatter inherent to the technique. 

 

 

 

 

 

 

 

Figure V.21 Enlarged 13C NMR spectra in CDCl3  of H40-(PCL)10-(PtBuA)68 (a) and H40-(PCL)10-(PAA)68 

(b) (region corresponding to 22-35 ppm) 
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Table V.12 Comparison between molar masses determined by GPC in DMF before and after TFA 

treatement 

Mn [g mol-1] No TFA TFA 

H40-Br 12 300 13 400 

H40-(PCL)24 94 300 114 300 

 

 

 

 

Figure V.22 GPC traces of H40 and H40-(PCL)24 without (- - - ) and after ( _____ ) treatement by TFA 

 

 

(5) Solution properties of the water soluble HBP-(PCL)p-(PAA)q 

 

 The solubility of the amphiphilic star-block copolymer H40-(PCL)p-(PAA)q contrasted 

with that of the star-block copolymer H40-(PCL)p-(PtBuA)q Whatever the polyelectrolyte 

block length, milky dispersions were obtained in water at pH = 2.5 instead of clear solutions. 

However, deprotonation of the carboxylic acid with sodium hydrogenocarbonate (0.1 g mol-1) 

(pH between 7 and 8) allowed good solubilization of the polyelectrolyte in aqueous solution 

(exept in the case of H40-(PCL)17-(PAA)50 and H40-(PCL)50-(PAA)q). This observation is in 

agreement with the literature where it is demonstrated that the solution properties of branched 

PAA are influenced by the branched architecture, the molecular weights, the number of non 
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polar segment at the vicinity of the carboxylic acids and by the pH. A high DB branched PAA 

is soluble in CH2Cl2, acetone and dioxane and is only soluble in water at pH > 10.[280] As 

observed with branched PAA polymers,[280, 281] high degrees of dissociation are required for 

water solubility in the present case.  

 

 The poor water solubility of H40-(PCL)17-(PAA)50 and of H40-(PCL)50-(PAA)q is 

thought to be due to the high DPn of PCL block relative to the DPn of the PAA block. Thus, 

H40-(PCL)17-(PAA)50 and the series H40-(PCL)50-(PAA)q will not be considered as 

encapsulant for volatiles in water solution in the remainder of the work. 

 

III.3.3 Preparation of cationic star-block copolymers 

 

 For the synthesis of a cationic polymer, 2-(N,N-dimethylamino)ethyl methacrylate 

(DMAEMA) was considered for ATRP. The methylation of the amine functions leads to a 

polymer containing quaternary ammonium (Scheme V.8).[282, 283] 

 

 

 

Scheme V.8 Strategy for obtaining a cationic polymer 
 

 

 Following the literature, the ATRP of DMAEMA was carried out in the bulk at 25 °C 

with CuBr and HMTETA as the ligand.[212] Under such conditions, gelation was observed 

after 2 h 20 and the reproducibility was poor. For these reasons, the conditions of the ATRP 

of tBuA were transposed to DMAEMA and the reaction with CuBr and bipyridyl was carried 
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out in the bulk at 100 °C (Scheme V.9). After 21 h, 50 % conversion was reached as 

determined with 1H NMR. However, the reaction was not reproducible.  
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Scheme V.9 Procedure of the ATRP of DMAEMA with H40-(PCL)17-Br as macroinitiator 

 

 

 N-Propyl-2-pyridylmethanimine[231], tris-2-dimethyl aminoethyl amine 

(Me6TREN)[211, 284] and HMTETA[285, 286] could also have been used for the ATRP of 

DMAEMA since it has been shown that rates of polymerization are faster with HMTETA and 

Me6TREN than with bipyridyl for a monofunctional initiator. This has not so far been 

attempted with the multifunctional initiator HBP-(PCL)p-Br. However it should be kept in 

mind that Me6TREN induces fast reactions and it has been shown with star macroinitiators 

that too fast a reaction induces bimodal GPC traces.[216] Finally the use of other ligands for the 

preparation of H40-(PCL)p-(PDMAEMA)q might be considered based on the preliminary 

results obtained here.  
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III.3.4 Preparation of non-ionic star-block copolymers 

 

 The chemical structures of the monomers used for the preparation of non-ionic water 

soluble capsules are given in Figure V.23 with DEGMA (diethylene glycol methacrylate) and 

PEGMA (poly(ethylene glycol) methyl ether methacrylate). 

 

 

 

Figure V.23 Chemical structure of non-ionic monomers 
 

 

 ATRP of DEGMA, with CuBr and PMDETA as the catalyst and ligand respectively, 

was investigated in THF at 50 °C and with [M]/[S] of 30/70 as determined for the ATRP of 

tBuMA. Similar problems were encountered i.e. star-star coupling and gelation. ATRP of 

PEGMA (Mn = 450 g mol-1) has been investigated with CuBr and PMDETA in THF with 

[M]/[S] of 50/50 (Scheme V.10). Because of the low conversion obtained for the ATRP of 

PEGMA with [M]/[S] of 30/70, a molar ratio of 50/50 has been used. Under these conditions 

there was no gelation, but the conversion remained relatively low, presumably due to the size 

of the monomer. 
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Scheme V.10 Procedure of the ATRP of PEGMA with H40-(PCL)17-Br macroinitiator[48] 

 

 

 Finally, the conditions found for the ATRP of tBuA were transposed to the ATRP of 

PEGMA. Thus the reaction was carried out in the presence of CuBr and bipyridyl in toluene 

at 75 °C for 4 h 45 and with [M]/[S] = 60/40. The reaction gave a H40-(PCL)17-(PPEGMA)6 

with only 6 % conversion and it was not possible under these conditions to significantly 

increase the conversion by varying the time or the monomer concentration. According to the 

literature,[231] a possible solution might be to use N-propyl-2-pyridylmethanimine as the 

ligand instead of bipyridyl. This has been investigated by G. Kreutzer et al. and is briefly 

described in section III.4.[48] 

 

 

III.4. Preparation of amphiphilic star-block copolymer with a glassy core and a 

neutral outer shell: H40-(PBMA)p-(PPEGMA)q  

 

 After functionalization with 2-bromoisobutyryl bromide, HBP Boltorn® H40 was 

used as a macroinitiator for consecutive ATRP of n-butyl methacrylate (BMA) and poly-

(ethylene glycol) methyl ether methacrylate (PEGMA) to give H40-(PBMA)p-(PPEGMA)q 

H40-(PPEGMA)50 was also prepared according to the same procedure, resulting in a star-
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block copolymer without the internal hydrophobic layer. Procedures are given in Appendix 4 

and in the literature.[48] 

 

 The synthesis of the star-block copolymer began with the modification of the 

hyperbranched polyester Boltorn® H40 with 2-bromoisobutyryl bromide (Scheme V.11). 1H-

NMR was used to demonstrate the complete conversion of the hydroxyl groups 

(disappearance of the –CH2OH multiplet, which is found at 3.35-3.60 ppm for the H40 

precursor, and appearance of a new signal due to the –CH3 groups of the isobutyryl moiety at 

1.89 ppm) (Figure V.24). GPC analysis of the H40 and H40-MI revealed an increase in Mn 

from 3 600 g mol-1 to 12 300 g mol-1, which was consistent with complete substitution of all 

hydroxyl functions of H40. The macroinitiator H40-Br can act as an initiator for ATRP. 
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Scheme V.11 Synthesis of the H40-Br macroinitiator[48] 

 

 

 

Figure V.24 1H NMR spectrum of the precursor (H40) in DMSO and of the macroinitiator H40-Br in 

CDCl3
[48] 
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 Well-defined poly(n-butyl methacrylate) star polymers (H40-(PBMA)p) were prepared 

in toluene using CuBr/N-propyl-2-pyridylmethanimine as the catalyst and H40-Br as the 

macroinitiator (Scheme V.12). GPC chromatograms of samples taken during the course of the 

polymerization were monomodal and did not indicate star-star coupling. Monomer conversion 

was monitored with 1H-NMR spectroscopy. Kreutzer et al. confirmed the controlled nature of 

the ATRP process by plotting ln([M]0/[M]) versus time and Mn and Mw/Mn versus monomer 

conversion. Table V.13 provides a summary of the reaction conditions, monomer conversion 

and GPC results for a H40-(PBMA)37 multi-arm star polymer.  

 

 
Scheme V.12 ATRP of BMA initiated by H40-Br macroinitiator to give H40-(PBMA)p

[48] 

 

 

 

Table V.13 ATRP conditions and analytical results for the polymerization of BMA initiated by H40-Br[48] 

 

Polymer 
Molar ratio of  

H40-Br/CuBr/ligand/BMA 
BMA conversiona [%] Mn

b [g mol-1] Mw/Mn
b  DPn

b  

H40-(PBMA)37 1/1/2/100 11.9 182 000 1.69 37 

a Determined with 1H-NMR spectroscopy. 
b Number-average molecular weight (Mn), polydispersity (Mw/Mn), and number-average degree of polymerization 

per arm (DPn). 

 

 

Kreutzer et al. prepared amphiphilic multi-arm star-block copolymers via ATRP of PEGMA 

using H40-(PBMA)37 as the macroinitiator (Scheme V.13). The reaction was carried out in 

toluene at 60 °C for 5 h using CuBr/N-propyl-2-pyridylmethanimine as the catalyst. Star-

block copolymers with PBMA and different PPEGMA block lengths were obtained. 

Polymerization conditions for each of these experiments together with GPC data of the 
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resulting polymers are given in Table V.14. H40-PPEGMA50 is a reference sample that was 

prepared by polymerization of PEGMA using H40-Br as the macroinitiator. 

 

 
 

Scheme V.13 ATRP of PEGMA initiated by H40-(PBMA)p-Br macroinitiator to give H40-(PBMA)p-

(PPEGMA)q
[48] 

 

 

 

Table V.14 ATRP of PEGMA with H40-(PBMA)37-Br[48] 

 

Polymer 
Molar ratio of H40-PBMA/ 

CuBr/ligand/PEGMA 

PEGMA 

conversiona[%] 
Mn

b [g mol-1] Mw/Mn
b DPn

b 

H40-(PBMA)37-(PPEGMA)39 1/2/4/100 18.9 782 000 2.04 39 

H40-(PBMA)37-(PPEGMA)19 1/2/4/500 6.5 476 000 1.81 19 

H40-(PPEGMA)50 1/2/4/250 - 780 000 1.82 50 

a Determined with 1H-NMR spectroscopy. 
b Number-average molecular weight (Mn), polydispersity (Mw/Mn), and number-average degree of polymerization 

per arm (DPn). 

 

 
 1H-NMR analysis was used to demonstrate that ATRP was well controlled. The 

absence of star-star coupling during the ATRP of BMA and PEGMA was verified by GPC. 

To prevent crosslinking between the PPEGMA blocks[287] of H40-(PBMA)p-(PPEGMA)q, 0.1 

wt % 2,6-di-tert-butyl-4-methylphenol (BHT) and 4-methoxyphenol (MEHQ) was added 

directly after workup. GPC analysis of star-block copolymers stored in bulk at 2 °C did not 

show any changes in molecular weight and polydispersity, even after 4 months. 
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IV. Conclusion 

 

 The particular architecture of HBPs leads to difficulties with characterization. To be 

consistent here, the HBPs were first investigated by GPC and NMR and these techniques 

were used subsequently to validate each stage of the synthesis. Given the results from GPC, 

NMR and titration, 36 hydroxyl groups per H40 molecule and 26 per H30 molecule were 

assumed throughout.  

 

 A series of star-block copolymers containing a hydrophobic PCL block and a 

hydrophilic PAA block were prepared from the HBP by the combination of ROP and ATRP 

to give pH-responsive copolymers. These block copolymers were characterized at each stage 

of the synthesis using 1H and 13C NMR in CDCl3 or DMSO, GPC in DMF and IR 

spectroscopy. Good control of the ROP and ATRP was demonstrated for the tBuA monomer. 

In order to develop cationic and non-ionic star-block copolymer to extend their use in various 

perfume compositions, other monomers were considered for ATRP such as DMAEMA, 

DEGMA and PEGMA. The expected star-block copolymers were not obtained with 

DMAEMA and DEGMA under conditions similar to those used for tBuA. However optimum 

conditions were obtained with PEGMA by modifying the ligand. 

 

 GPC measurements on the HBP-(PCL)p-(PAA)q star-block copolymers in water, using 

a Shodex column did not provide valid molar masses owing to the charges present on the star-

block copolymers. To avoid interactions with the column an alternative might be considered 

e.g. use of an improved column. In this work, the carboxylic acid of the outer shell of the star-

block copolymers HBP-(PCL)p-(PAA)q has been deprotonated improving the solubility in 

aqueous media and the molar masses were determined by 1H NMR.  
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Chapter VI. Physical properties of the star-block 

copolymers in the bulk and in solution  

 
___________________________________________________________________________ 

 

 

 

 In order to determine the structure-property relationships of the star-block copolymers 

and to gain a better understanding of their interactions with fragrance molecules inside the 

nanocapsules, the thermal properties and morphology have been investigated in the bulk and 

in solution.  

 

 

I. Thermal properties and morphologies of the polymers in the bulk 

 

 The thermal properties of the H40-(PCL)p, H40-(PCL)p-(PtBuA)q and the analogous 

water soluble H40-(PCL)p-(PAA)q were investigated by DSC. Glass transition, Tg, and 

melting temperatures, Tm, were measured and compared with those of a linear (PCL)30. The 

results are summarized in Table VI.1. Values obtained for H40-(PBMA)37-(PPEGMA)39 and 

H40-(PPEGMA)50 are also given.[48] 
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 The Tg of the H40-(PCL)p star polymers decreased strongly with respect to that of 

H40, and continued to decrease as DPp increased, so that for large DPp, Tg was generally 

comparable with that of the linear (PCL)30. This suggested a positive contribution to Tg from 

hydrogen bonding at the chain ends.[127] Melting behavior was also observed for H40-(PCL)p, 

with Tm showing a marked increase as DPp increased and increasingly sharp melting peaks 

(Figure VI.1). Indeed, Tm of H40-(PCL)50 exceeded that of (PCL)30, as expected on the basis 

of previous observations.[288] These have indicated a strong correlation between the 

equilibrium melting point of H40-(PCL)p, obtained from extrapolating experimental data, and 

that of linear (PCL)p analogues, both of which increase with DPp, albeit with slightly higher 

values being deduced for H40-(PCL)p for a given DPp. This may be explained in terms of the 

reduced conformational entropy of the star polymers.[288] On the other hand, the increased 

constraints on the chain conformations lead to reduced degrees of crystallinity, particularly 

for the shortest block lengths. Under the crystallization conditions corresponding to the 

present DSC experiments the star polymers showed spherulitic textures similar to those 

observed in linear PCL (Figure VI.2 (a)), which implies the presence of chain folded lamellae, 

at least for the largest DPp. This observation has been confirmed by TEM (Figure VI.3 (a and 

b)).  
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Table VI.1 Thermal properties for different amphiphilic star-block copolymers H40-(PCL)p-(PAA)q, the 

analogous non water soluble H40-(PCL)p-(PtBuA)q and star H40-(PCL)p 

Name Mn [g mol-1] Tg1 [°C] Tg2 [°C] Tm [°C] ΔHm [J/g] 

H40 4 100 a 29.9 - - - 

(PCL)30 3 300 a -61.3 - 51.7 82.3 

H40-(PCL)10 65 380 a -57.6 - 41.1 62.3 

H40-(PCL)17 89 890 a -59.2 - 49.1 71.2 

H40-(PCL)40 158 900 a -61.8 - 52.8 62.1 

H40-(PCL)50 184 640 a -62.2 - 54.1 65.7 

H30-(PCL)12-(PtBuA)60 204 000 a -76.2 25.2 - - 

H40-(PtBuA)36 199 490 a - 45.1 - - 

H40-(PCL)10-(PtBuA)68 488 520 a -70.4 25.9 - - 

H40-(PCL)10-(PtBuA)70 459 740 a -69.6 27.4 - - 

H40-(PCL)10-(PtBuA)115 549 000 a -69.8 29.8 - - 

H40-(PCL)17-(PtBuA)18 205 000 a -57.7 21.1 - - 

H40-(PCL)17-(PtBuA)50 274 930 a -60.6 27.7 - - 

H40-(PCL)24-(PtBuA)82 357 700 a -58.3 25.2 - - 

H40-(PCL)40-(PtBuA)100 452 300 a -64.3 32.4 - - 

H40-(PCL)50-(PtBuA)44 396 600 a -60.5 - 48.0 21.9 

H40-(PCL)50-(PtBuA)54 376 280 a -68.0 - 42.7 20.1 

H40-(PCL)50-(PtBuA)56 536 860 a -64.0 - 45.9 21.4 

H40-(PCL)50-(PtBuA)64 732 761 a -63.8 - 45.2 21.0 

H30-(PCL)12-(PAA)60 151 460 b -48.7 98.2 - - 

H40-(PAA)36 100 400 b - 99.3 - - 

H40-(PCL)10-(PAA)70 226 800b -65.4 116 - - 

H40-(PCL)10-(PAA)115 340 200 b -69.7 117.6 - - 

H40-(PCL)24-(PAA)82 307 400 b -71.2 81.9 25.1 7.42 

H40-(PCL)40-(PAA)100 425 500 b -67.3 116.9 30.0 10.3 

H40-(PBMA)37-(PPEGMA)39 782 000 a -64.1 12.2 - - 

H40-(PPEGMA)50 780 000 a -64.9 - - - 

a GPC in DMF 
b 1H NMR in DMSO 
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Figure VI.1 Melting behavior of H40-(PCL)p for different p compared with that of (PCL)30 

 

 

 

a)            b) 

 

 

Figure VI.2 Optical micrographs taken under crossed-polarizers of films of (a) H40-(PCL)50 and (b) H40-

(PCL)50-(PtBuA)64 cooled from the melt at 10 °C/min. 
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Figure VI.3 TEM micrographs of thin films of H40-(PCL)50 ((a) and (b)) and H40-(PCL)50-(PtBuA)54 ((c) 

and (d)) 

 

 

 The thermal properties of the star-block copolymers were found to depend on the 

lengths of both blocks. A phase-separated morphology was clearly present in at least some of 

the copolymers as indicated by the observation of two Tgs. The transitions at about -60 °C 

were assumed to be characteristic of the PCL block and the transitions at between 11 and 30 

°C, were attributed to the PtBuA. In the case of H40-(PCL)50-(PtBuA)q, the apparent absence 

of a Tg associated with the PtBuA blocks was thought to be due to the relatively high 
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proportion of PCL and the limited sensitivity of the apparatus. Tm and ΔHm were only 

measurable for the PCL blocks in H40-(PCL)50-(PtBuA)q, for which Tm was somewhat lower 

than in H40-(PCL)50, particularly for the longer PtBuA blocks. Thus, although these polymers 

were still able to form quasi spherulitic textures, the presence of the PtBuA blocks placed 

significant kinetic or themodynamic restrictions on crystallization. This is well reflected by 

the optical (Figure VI.2 (b)) and TEM micrographs (Figure VI.3 (c) and (d)).  

 

 Two Tgs were again observed after the hydrolysis of the tert-butyl groups, as well as 

melting peak in the case of H40-(PCL)40-(PAA)100. The higher Tg at about 117 °C was 

consistent with previous observations of the Tg in PAA rich domains of a linear block PAA-

graft-PE copolymer.[289] Tm = 30 °C, and ΔHm = 10.3 J/g was measured for the PCL layers in 

H40-(PCL)40-(PAA)100. Thus, the amphiphilic H40-(PCL)p-(PAA)q star-block copolymers 

again showed phase-separated morphologies, as also demonstrated for H40-(PBMA)37-

(PPEGMA)39.
[48] Moreover, the disappearance of the Tg corresponding to PtBuA (Tg ≈ 30 °C) 

provided a further indication of efficient conversion to acrylic acid functionality.  

 

 

II. Characterization in solution 

 

 Dynamic light scattering (DLS) has been used to determine the size of the star-block 

copolymers in water. The solutions were diluted to 0.34 mg mL-1. The results presented 

correspond to an average of three consecutive measurements at room temperature. Figure 

VI.4 shows the percentage by volume (left) and by number (right) of the particle sizes 

obtained for H30-(PCL)12-(PAA)60.  
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Figure VI.4 Hydrodynamic diameter distribution by volume (left) and by number (right) for H30-

(PCL)12-(PAA)60 in aqueous solution 

 

 

 The volume distribution for H30-(PCL)12-(PAA)60 shows that the sample was 

composed of three populations of particles. Two populations correspond to relatively large 

particles (diameters around 700 and 5000 nm). However the sample was essentially composed 

of small particles (diameter around 40 nm) as reflected by the number distribution (more than 

99 % of the particles have a diameter of around 40 nm). The same trend was observed for 

H40-(PAA)36 and H40-(PCL)24-(PAA)82 with three different populations evident in the 

volume distribution. In the case of H40-(PCL)40-(PAA)100 only two populations were 

observed.  

 

 The data for the star-block copolymers are summarized in Table VI.2, along with the 

number average molar masses. The diameters of the star-block copolymers HBP-(PCL)p-

(PAA)q and H40-(PBMA)p-(PPEGMA)q were very different relative to their molar masses. 

When PPEGMA was used as the hydrophilic layer, the diameter of the particles was reduced, 

although the molar masses were high. These differences may suggest aggregation of the 

molecules in the case of HBP-(PCL)p-(PAA)q. Diameters of 75 to 100 nm have been observed 

by AFM images (Figure VI.5) for H40-(PCL)40-(PtBuA)100 cast from dilute solution. Phase 

images (Figure VI.5) indicated differences in rigidity consistent with a phase separated core-

shell structure. This was confirmed by the AFM image in Figure VI.6 in which individual 

arms of the star-block copolymer are visible.  
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Table VI.2 Diameter of the star-block copolymer in aqueous solution from number distribution DLS 

measurement 

 

Copolymer Mn (g mol-1) 
Diameter (nm) 

(number average) 

H30-(PCL)12-(PAA)60 151 460a 42.8 

H40-(PCL)24-(PAA)82 307 400 a 59.2 

H40-(PCL)40-(PAA)100 425 540 a 128.7 

H40-(PPEGMA)50 780 000 b 24.2 

H40-(PBMA)37-(PPEGMA)39 782 000 b 26.6 
a Mn based on NMR conversion  
b GPC  

 

 

 

 

 

Figure VI.5 AFM intermittent contact mode images from H40-(PCL)40-(PtBuA)100 cast from dilute 

solution onto mica: (a) height image; (b) phase image 
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Figure VI.6 AFM intermittent contact mode height image from H40-(PCL)40-(PtBuA)100 cast from dilute 

solution onto mica 

 

 

III. Conclusion 

 

 A phase separated structure has been observed in the amphiphilic star-block 

copolymers prepared as described in Chapter V.III consistent with the core-shell architecture. 

In the case of H40-(PCL)50-(PAA)q, the observation of a melting point, associated with the 

PCL block, and the absence of the Tg2 of the PtBuA block, which was attributed to high 

proportion of PCL relative to the PtBuA, also reflected the poor water solubility of this series 

(Chapter V.III.3.2(5)).  

 

 Particle diameters of up to 100 nm were measured in dilute aqueous solution by DLS, 

and similar particle sizes were seen in AFM images of H40-(PCL)40-(PtBuA)100 cast from an 

organic solvent. The individual arms are also visible in certain AFM images.
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Chapter VII. Encapsulation of olfactory compounds in 

aqueous dispersions of star-block copolymer monitored 

by NMR spectroscopy 

 
___________________________________________________________________________ 

 

 

 Fragrances and flavors are complex mixtures of molecules with specific 

physicochemical properties. They are typically volatile, hydrophobic and some of them are 

unstable. Their lifetime is limited due to their rapid evaporation and instability, which result 

in loss of freshness during storage and use. Thus, they need to be stabilized by modifying 

their environment. Specific delivery systems that protect volatiles during storage and control 

their release during and after use, allow one to maintain freshness over relatively long 

periods.[59] 

 

 To demonstrate their capacity to entrap small hydrophobic molecules in aqueous 

media, selected multi-arm star-block copolymers synthesized in Chapter V.III were exposed 

to an excess of fragrance compound. The subsequent behavior has been studied by 1H NMR 

spectroscopy in D2O. In this chapter, after presenting the fragrance molecules and the selected 

water soluble star-block copolymers, the results of NMR diffusion and relaxometry 

measurements, carried out at Firmenich SA, are described. The encapsulation of the fragrance 

molecules in aqueous dispersions of the star-block copolymers and the parameters that 

influence the fragrance molecule loadings in the star-block copolymer are then discussed. 
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I. Characteristics of polymers and fragrance compounds 

 

 The four olfactory compounds investigated provide a range of polarity, chemical 

structure and function, vapor pressure, and solubility parameters. They were also chosen to be 

representative of compounds frequently encountered in practical applications. The 

hydrophobicity of an olfactory compound is characterized by logP (the octanol-water 

partition coefficient).[290-292] This is a frequently used parameter in organic synthetic 

chemistry. However, the practical applications of logP are much broader. LogP is commonly 

used in cosmetics to classify fragrances as a function of their water affinity and in drug 

design, where it is related to drug absorption, bioavailability, metabolism, and toxicity.[293] 

Table VII.1 summarize the characteristics of the four olfactory compounds: benzyl acetate, 

(E)-3,7-dimethyl-2,6-octadienol (geraniol), decanal and 4-tert-butyl-1-cyclohexyl acetate 

(Vertenex®). LogP were calculated by J.-Y. de Saint Laumer (Firmenich SA) using the 

EPIwin v 3.10 program (US Environmental Protection Agency, 2000). 

 

Table VII.1 Chemical structure and properties of four olfactory compounds 

 

 Chemical structure 
Molar mass 

[g mol-1] 
LogP a 

Vapor 

pressurea 

[Pa] 

Volatilitya 

[μg L-1] 

Benzyl 

acetate 
O

O

 

150.2 1.96 24.9 500 

Geraniol OH

 

154.2 3.47 2.1 93 

Decanal O

 
156.3 3.76 31.3 528 

Vertenex® 
O

O  

198.2 4.42 9.1 189.3 

a Values calculated using the EPIwin v 3.10 program (US Environmental Protection Agency, 2000)150 
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 The 1H NMR measurements for determining the fragrance loadings of the copolymers 

were carried out using water soluble star-block copolymers that differ in the length of their 

hydrophobic blocks (H40-(PCL)10-(PAA)115, H40-(PCL)24-(PAA)82 and H40-(PCL)40-

(PAA)100), in the functionality of the HBP core (H30 (26 arms) or H40 (36 arms)) and in the 

chemical nature of the blocks (H40-(PCL)p-(PAA)q and H40-(PBMA)p-(PPEGMA)q) as 

shown in Figure VII.1.  

 

 It is expected that the presence of the hydrophobic layer should facilitate the 

incorporation of hydrophobic guest molecules and therefore have an influence on the 

concentration of volatiles present in the capsule. Hence, encapsulation was also investigated 

with H40-(PAA)36 and H40-(PPEGMA)50, which did not include a hydrophobic layer.  
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Figure VII.1 Structure of the two types of polymers used for the encapsulation of fragrance molecules, 

with and without the hydrophobic internal layer 
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II. NMR diffusion and relaxation studies  

 

 

 The diffusion and relaxation studies described here only involved the H40-(PBMA)37-

(PPEGMA)39 amphiphilic star-block copolymer and were carried out by W. Fieber and H. 

Sommer (Firmenich SA).[47, 294] However, they are expected to provide general insight into 

the encapsulation behavior of such systems. 

 

 The mobility of a molecule in solution is defined by its diffusion coefficient, which is 

inversely proportional to the size of the molecule and hence to its molecular mass. Due to the 

large difference in mass between fragrance molecules and the star-block copolymers, the 

diffusion coefficient of a fragrance molecule in pure water is different from that of a molecule 

entrapped in a copolymer. This technique therefore gives information on the partition of the 

fragrance compounds in the solution. Relaxation time measurements may also be carried out 

to investigate the dynamics of the star-block copolymer, the localization of the guest and the 

dynamics of the polymer/fragrance molecule system. The relaxation time T1 corresponds to 

the reorientation of large molecules. T2 (restricted motion) provides information on the 

internal motion of the individual blocks of the star-block copolymer.  
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 The mobility of the hydrophilic shell in water has been studied by Fieber et al. by 

following the evolution of the relaxation times of the methyl groups of the hydrophilic block 

as a function of their position in the polymer chain in a 1 wt% solution of H40-(PBMA)p-

(PPEGMA)q in D2O. A significant decrease in the relaxation times from the external end 

group of the PPEGMA chain to the polymer backbone is observed, as shown in Figure VII.2. 

Moreover, the presence of a phase separated structure in water with a dense internal core and 

a highly mobile hydrophilic shell has also been confirmed by such relaxation studies. PBMA 

block is not observed in D2O, on the other hand, when the measurement is carried out in 

CDCl3, PBMA peaks are detected.  

 

 

 

Figure VII.2 Longitudinal T1 (full circle) and transverse T2 (open circle) proton relaxation times as a 

function of position in the PEGMA unit of H40-(PBMA)p-(PPEGMA)q
[294] 

 

 

 The diffusion coefficients for the four fragrance molecules presented in Table VII.2 

were determined in pure water by mixing 1 μL of fragrance with 700 μL D2O. Further 

dilutions were necessary for Vertenex® and decanal. The samples containing polymer were 

prepared by saturating a solution of the polymer in D2O with the fragrance molecules and 

then removing the excess of fragrance molecules. The polymer concentration was 10.7 mg 

mL-1 in D2O. Details on the procedure and the NMR apparatus are given in literature.[294] 
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 All the fragrance molecules showed a high diffusion coefficient in D2O (around 6 x 

10-10 m2 s-1) reflecting their unrestricted motion (Table VII.2). However, when the olfactory 

molecules were added to the polymer in aqueous solution, their diffusion rates decreased 

dramatically indicating a decrease in their mobility. Indeed, the diffusion coefficients of the 

fragrance molecules were generally close to those of the star-block copolymer (around 1 x 10-

12 m2 s-1), which is an indication that the olfactory molecules are encapsulated in the polymer 

and travel at the speed of the macromolecule. This was particularly true for fragrance 

molecules with high logP as shown in Figure VII.3, where the evolution of the diffusion 

coefficients of the fragrance compounds, in the absence and the presence of star-block 

copolymers, is given as a function of their logP. Similar measurements in the presence of 

H40-(PPEGMA)50 (which does not contain the hydrophobic layer) indicated the diffusion 

coefficient values to decrease relatively little, suggesting that the fragrance molecules are 

localized in the internal core of the star-block copolymers. The encapsulation of the fragrance 

molecules in the polymer has also been demonstrated from the evolution of the relaxation 

times of the fragrance molecules in water. The decrease in T1 and T2 of the fragrances in the 

presence of H40-(PBMA)p-(PPEGMA)q compared with the values obtained in the absence of 

the polymer indicated a decrease in the fragrance mobility.[294] (The logP of the fragrance 

molecules used by Fieber et al. were determined by high performance liquid chromatography 

(HPLC) and are therefore slightly different from those calculated using the EPIwin v 3.10 

program). 

 

 

Table VII.2 Diffusion coefficients for the fragrance compounds and H40-(PBMA)37-(PPEGMA)39 in D2O 

at 25 °C[294] 

 

Fragrance 

molecules 
LogPa 

Dfragrance (D2O) 

[m2 s-1] 

Dfragrance (with star 

block copolymer)  

[m2 s-1] 

Dcopolymer (with 

fragrance) 

[m2 s-1] 

Benzyl acetate 2.04 7.33 x 10-10 3.09 x 10-10 1.03 x 10-11 

Geraniol 2.97 5.98 x 10-10 1.74 x 10-10 1.13 x 10-11 

Decanal 4.00 5.49 x 10-10 2.03 x 10-11 9.66 x 10-12 

Vertenex® 4.47 5.59 x 10-10 2.47 x 10-11 9.50 x 10-12 
a values determined by HPLC  
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Figure VII.3 Encapsulation of different fragrance molecules in a water dispersion of H40-(PBMA)37-

(PPEGMA)39 (A) and H40-(PPEGMA)50 (B). Diffusion coefficients are given for the fragrance molecules 

in the free form (open circles) and encapsulated form (filled squares), and for the polymer molecules 

(open diamonds)[294] 

 

 

 To obtain a better understanding of the chemical equilibrium of star-block copolymer 

and fragrance molecules, a titration measurement was carried out by increasing the amount of 

benzyl acetate introduced into the star-block copolymer until saturation was attained. An 

increase in the amount of benzyl acetate in H40-(PBMA)37-(PPEGMA)39 in water resulted in 

a decrease in the diffusion coefficient of the benzyl acetate, illustrating that the encapsulation 

process represents an equilibrium between the free forms (of frangrance molecule and 

polymer) and the fragrance molecule/polymer complex. This equilibrium is shifted towards 

the complex form as the fragrance molecule concentration increases. The evolution of the 

relaxation times of benzyl acetate as a function of its concentration has been studied under the 

same conditions. T1 and T2 increase as the concentration of benzyl acetate increases. This may 

indicate that the benzyl acetate is first localized in the hydrophobic part of the nanocapsule 

where slow and restricted motions are observed (low T1 and T2) but, as more benzyl acetate is 

introduced, the nanocapsules fill up, so that benzyl acetate is also present in the outer shell 

(increased T1 and T2).  
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III. Quantification of fragrance molecule loadings in an aqueous dispersion 

of star-block copolymer 

 

 Diffusion and relaxation measurements do not give direct information on the capacity 

of the star-block copolymer to entrap the fragrance molecules, i.e. the fragrance loading. This 

question is addressed in the present section. 

 

III.1. General results 

 
 The encapsulation experiments were carried out by saturating a solution of the 

polymer in D2O with the fragrance molecules. After removal of the excess, the total amount 

of fragrance in the D2O phase was determined by 1H-NMR spectroscopy. Figure VII.4 to 

Figure VII.6 compare the uptake of benzyl acetate, geraniol, decanal and Vertenex® by H40-

(PCL)24-(PAA)82, H40-(PCL)40-(PAA)100 and H40-(PBMA)37-(PPEGMA)39 respectively. 

There was a strong linear correlation between the amount of polymer and the maximum 

amount of benzyl acetate, geraniol, decanal and Vertenex® that could be maintained in 

aqueous solution, suggesting encapsulation and dispersion of volatile hydrophobic molecules 

in water to have been achieved. Similar experiments were carried out with benzyl acetate and 

Vertenex® in the presence of aqueous solutions of H30-(PCL)12-(PAA)60 and with benzyl 

acetate in the presence of H40-(PCL)10-(PAA)115. The results confirmed the dispersion of 

volatiles in D2O in each case. The experiments were also repeated with the four olfactory 

compounds in the presence of H40-(PAA)36 and with benzyl acetate in the presence of H40-

(PPEGMA)50 to study the effect of the hydrophobic core. 

 

 For each polymer/fragrance system, the fragrance loading was determined by dividing 

the fragrance concentration by the corresponding polymer concentration and its mean value 

therefore corresponds to the slope of the linear regression line for the data in Figure VII.4 to 

Figure VII.6 and for H40-(PCL)10-(PAA)115 and H30-(PCL)12-(PAA)60. Table VII.3 

summarizes the loadings (in %) for the four fragrance molecules in an aqueous dispersion of 

one of the star-block copolymers studied.  
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Figure VII.4 Amounts of different fragrance molecules dispersed in D2O as a function of H40-(PCL)24-

(PAA)82 concentration 

 

 

 

Figure VII.5 Amounts of different fragrance molecules dispersed in D2O as a function of H40-(PCL)40-

(PAA)100 concentration 
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Figure VII.6 Amounts of different fragrance molecules dispersed in D2O as a function of H40-(PBMA)37-

(PPEGMA)39 concentration 

 

 

 

Table VII.3 Mean ratio of fragrance to polymer concentration (effective loading) for the different 

fragrance molecules in aqueous solutions of the copolymer 

 

Load of volatiles quantified by 1H NMR [%] 
 

Benzyl acetate Geraniol Decanal Vertenex® 

H30-(PCL)12-(PAA)60 16.0 - - 4.9 

H40-(PAA)36 2.0 0.5 0 0.5 

H40-(PCL)10-(PAA)115 9.2 - - - 

H40-(PCL)24-(PAA)82 23.3 19.7 28.6 8.7 

H40-(PCL)40-(PAA)100 27.1 10.7 20.1 4.0 

H40-(PPEGMA)50 3.9 - - - 

H40-(PBMA)37-(PPEGMA)39 25.2 24.4 12.4 17.7 

(-) not measured 
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 The effective loadings obtained in H40-(PCL)p-(PAA)q, were at least 8.7 wt % 

(Vertenex® in H40-(PCL)24-(PAA)82), which was significantly higher than the loadings of 2 

wt % measured for H40-(PAA)36 (Table VII.3). A similar trend was observed with benzyl 

acetate measured in the presence of H40-(PBMA)37-(PPEGMA)39 and H40-(PPEGMA)50, 

again illustrating the importance of the core-shell architecture for the encapsulation of guest 

molecules and, the entrapment of volatiles in the hydrophobic core of the star-block 

copolymers, as also indicated by the diffusion and relaxation studies (section II).[294] 

 

 

III.2. Influence of the polymer architecture 

 

 Structural parameters of the “host”, such as the block length, degree of branching and 

the rigidity of the blocks may be crucial for encapsulation. External factors such as the solvent 

type and pH, also influence the conformational behavior of the carrier.[15] The role of the 

polymer block length and the core functionality have therefore been investigated for benzyl 

acetate and HBP-(PCL)p-(PAA)q star-block copolymers. The number of arms per molecule 

was varied by using HBPs with different functionalities (H40 and H30).  

 

III.2.1 Effect of the polymer block length  

 

 The benzyl acetate loading was determined by 1H NMR spectroscopy for H40-

(PCL)10-(PAA)115, H40-(PCL)24-(PAA)82, H40-(PCL)40-(PAA)100 and H40-(PAA)36 

copolymers, by saturating a solution of each polymer in D2O with benzyl acetate as described 

previously (in section III.1). Figure VII.7 shows the amount of benzyl acetate as a function of 

the polymer concentration for each copolymer. 

 

 The loading increased as the PCL block length increased and approached zero (load of 

only 2.0 % in the case of H40-(PAA)36) in the absence of PCL block. The mean benzyl 

acetate loading for each polymer is given in Table VII.3.  
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Figure VII.7 Benzyl acetate concentration as a function of the star-block copolymer concentration for 

H40-(PCL)10-(PAA)115, H40-(PCL)24-(PAA)82, H40-(PCL)40-(PAA)100 and H40-(PAA)36 

 

 

III.2.2 Effect of the HBP core functionality  

 

 The effect of the HBP core functionality was investigated by comparing the benzyl 

acetate loading determined in an aqueous dispersion of H30-(PCL)12-(PAA)60 with that in 

H40-(PCL)10-(PAA)115 (Table VII.3 and Figure VII.8). 
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Figure VII.8 Amounts of benzyl acetate as a function of the polymer concentration for two different core 

functionalities 

 

 

 In spite of the lower core functionality, the loading of benzyl acetate in H30-(PCL)12-

(PAA)60 was higher than in H40-(PCL)10-(PAA)115. To gain a better understanding of the 

influence of the core on the entrapment of benzyl acetate another representation of the results 

is given in Figure VII.9, taking into account both the functionality of the core (number of 

arms per HBP molecule) and the length of the PCL blocks. The weight percentage of 

hydrophobic block was calculated by dividing the molar mass of the hydrophobic layer by the 

molar mass of the amphiphilic star-block copolymer (Table VII.4). The weight percentage of 

the hydrophobic block for H30-(PCL)12-(PAA)60 was 27.8 % which is considerably higher 

than 14.9 %, determined for H40-(PCL)10-(PAA)115. Hence, the high loadings in H30-

(PCL)12-(PAA)60 may be attributed to the greater proportion of the hydrophobic blocks than 

in H40-(PCL)10-(PAA)115. The linearity of the data in Figure VII.9 suggests this to be a 

general trend.  
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Table VII.4 Molar masses and percentage of hydrophobic block (by weight) for H40-(PCL)p-(PAA)q and 

H40-(PBMA)p-(PPEGMA)q amphiphilic star-block copolymers 

 

 
Mn  [g mol-1] 

hydrophobic block  

Mn [g mol-1] 

hydrophobic and 

hydrophilic block  

wt % of the 

hydrophobic layer 

H30-(PCL)12-(PAA)60 42 160a 151 460a 27.8 

H40-(PAA)36 - 100 400a - 

H40-(PCL)10-(PAA)115 50 800a 340 200a 14.9 

H40-(PCL)24-(PAA)82 108 300a 307 400a 35.2 

H40-(PCL)40-(PAA)100 173 900a 425 500a 40.8 

H40-(PBMA)37-(PPEGMA)39 182 000b 782 000b 23.3 

H40-(PPEGMA)50 - 780 000b - 

a 1H NMR 
b GPC in DMF 

 

 

 

Figure VII.9 Benzyl acetate loading (in %) as a function of the proportion of hydrophobic blocks in the 

star-block copolymers (in wt %) 

 

 

 



Chapter VII: Encapsulation of olfactory compounds 
__________________________________________________________________________________________ 

 161 

III.2.3 Results for geraniol, decanal and Vertenex® 

 

 The loadings of geraniol, decanal and Vertenex® were higher in the presence of a star-

block copolymer with a shorter PCL block (i.e. H40-(PCL)24-(PAA)82) than for a longer PCL 

block (Table VII.3) so that the trend observed for benzyl acetate was not apparently a general 

one. More systematic tests would be needed to investigate this point.  

 

 

III.3. Influence of the logP of the fragrances 

 

 In this section an attempt is made to correlate the loading of the fragrance compounds 

with logP as was done in the NMR diffusion study (section II). 

 

 

 

Figure VII.10 Loadings of the four fragrance compounds for each polymer (mean ratio of fragrance to 

polymer concentration in %) as a function of the logP values for each fragrance compound (see Table 

VII.1) for three star-block copolymers (H40-(PBMA)37-(PPEGMA)39 (star); H40-(PCL)24-(PAA)82 

(triangle) and H40-(PCL)40-(PAA)100 (square)) 
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 Figure VII.10 shows the fragrance loading, calculated by dividing the concentration of 

the fragrance molecule by the concentration of the polymer, for the four fragrance molecules 

in the presence of each of the three star-block copolymers (H40-(PCL)24-(PAA)82, H40-

(PCL)40-(PAA)100 and H40-(PBMA)37-(PPEGMA)39) as a function of logP of the fragrance 

compounds (Table VII.1). If only benzyl acetate, geraniol and Vertenex® are considered, the 

fragrance loading in the star-block copolymer appears to decrease with increasing logP. The 

more hydrophobic the volatile (higher logP), the lower the loading in the polymer. This effect 

was observed for the three star-block copolymers. However, in the case of decanal, the 

loading in H40-(PCL)p-(PAA)q was relatively high, in spite of its high logP. Hence, there is a 

globally negative correlation between the loading of fragrances and logP for the molecules 

chosen, but also a significant deviation from this trend (decanal). However, a further 

important factor is the solubility of the volatiles in the polymer. This is discussed in the last 

part of this section.  

 

 

III.4. Influence of the solubility parameters 

 

 A way of assessing the solubility of the guest molecules in the polymer core is to use 

the solubility parameter approach. The Flory-Huggins interaction parameter[111] (χ12) between 

the polymer (1) and the fragrance compound (2) is a measure of the interaction between the 

polymer and the volatiles and may be expressed as  

 

( )
RT

Vm

2
21

12

δδχ −≡  

 

where δ1 and δ2 are the Hildebrand solubility parameters for the polymer and the volatile 

respectively and Vm is the molar volume of a polymer “segment”. The one parameter 

approach is generally inadequate, so δ is often separated into hydrogen (δh), polar (δp) and 

dispersive (δd) contributions. δh, δp and δd, which are called the Hansen parameters, are used 

to assess miscibility using (δh1-δh2)
2 + (δp1-δp2)

2 + (δd1-δd2)
2 rather than (δ1-δ2)

2 as a 
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criterion.[295] In either case, good solubility is implied for small χ12, i.e. matching values of the 

δ. 

 

 In the literature[295], tables have been established allowing δ to be estimated from 

“group contributions” corresponding to each chemical function. The values of the Hansen 

parameters for the fragrance molecules and the polymers hydrophobic blocks have been 

determined using these tables and are summarized in Table VII.5. For the determination of the 

solubility parameter of the polymers only the hydrophobic block have been considered since 

it has already been demonstrated by NMR spectroscopy (in section II and III) that the 

hydrophilic outer shell does not contribute to the encapsulation of the fragrances. The 

difference between the solubility parameters of the hydrophobic block and of the fragrance 

molecules were determined for each polymer/fragrance system and are summarized in Table 

VII.6. These values are compared with the loadings (in %) determined by NMR in Table 

VII.7, the loadings being plotted as a function of the solubility parameter difference for each 

polymer/fragrance system in Figure VII.11. 

 

 

Table VII.5 Hildebrand solubility parameter calculated by the Hansen parameters approach for the four 

fragrance molecules and the two different hydrophobic polymer blocks PCL and PBMA 

 

 
δd  

[J1/2 cm-3/2] 

δp 

[J1/2 cm-3/2] 

δh 

[J1/2 cm-3/2] 

δ = (δh
2 + δp

2 + δv
2)1/2 

[J1/2 cm-3/2] 

Benzyl acetate 18.96 3.79 7.27 20.66 

Geraniol 15.84 2.81 10.60 19.26 

Decanal 16.52 4.33 4.94 17.78 

Vertenex® 24.32 3.29 6.86 25.48 

PCL block 17.66 4.97 8.43 20.19 

PBMA block 21.70 3.76 7.33 23.21 
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Table VII.6 Solubility parameter differences between the volatiles and the hydrophobic blocks (PCL or 

PBMA) 

 

 PCL block PBMA block 

 
[(δh1-δh2)

2+(δp1-δp2)
2+(δd1-δd2)

2]½ 

[J1/2 cm-3/2] 

[(δh1-δh2)
2+(δp1-δp2)

2+(δd1-δd2)
2]½ 

[J1/2 cm-3/2] 

Benzyl acetate 2.10 2.74 

Geraniol 3.56 6.78 

Decanal 3.72 5.73 

Vertenex® 7.04 2.7 

 

 

 

Table VII.7 Solubility parameter difference for the fragrance loadings/star-block copolymers systems and 

the associated fragrance loadings for H40-(PCL)40-(PAA)100 and H40-(PBMA)37-(PPEGMA)39 

 

 H40-(PCL)40-(PAA)100 H40-(PBMA)37-(PPEGMA)39 

 Fragrance loading 

[%] 

Solubility parameter  

difference 

Fragrance loading 

[%] 

Solubility parameter  

difference 

Benzyl acetate 27.1 2.10 25.2 2.74 

Geraniol 10.7 3.56 24.4 6.78 

Decanal 20.1 3.72 12.4 5.73 

Vertenex® 4.0 7.04 17.7 2.7 
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Figure VII.11 Solubility parameter difference as a function of the fragrance loadings. The solubility 

parameter differences were calculated with the three parameter approach 

 

 

 There is an apparent global correlation between the loadings of volatiles in the 

polymer and the solubility parameter differences. The correlation is more pronounced if 

decanal in H40-(PBMA)37-(PPEGMA)39 is not considered. The fragrance molecule loadings 

in the star-block copolymer increase with decreasing solubility parameter differences between 

the polymer and the volatile. This result suggests that the encapsulation of fragrance 

molecules in the amphiphilic star-block copolymer is strongly influenced by the solubility of 

the fragrance molecule in the hydrophobic part of the polymer. Moreover, the significant 

differences in the solubility parameters of the different blocks (PBMA or PCL) illustrate the 

importance of the choice of the chemical groups of the internal core for the fragrance 

loadings. However, this approach does not appear to be valid for decanal in H40-(PBMA)37-

(PPEGMA)39 reflecting either the need to consider other parameters (such as the polymer 

water solubility, the expansion coefficient of such polymer in water, or steric hindrance) or 

the inadequancy of the solubility parameter to describe the host-guest affinity.  
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IV. Conclusions 

 

 The ability of the star-block copolymers to encapsulate fragrance molecules has been 

demonstrated by NMR spectroscopy. The encapsulation process in water reflects a dynamic 

equilibrium between the free and encapsulated forms which is shifted towards the 

encapsulated form as the fragrance molecule concentration increases. The core-shell 

architecture with its phase separated morphology has been confirmed by NMR and the crucial 

role played by the hydrophobic internal core of the polymer has been demonstrated by 

diffusion and quantification experiments. 

 

 The decrease in the diffusion coefficients of the fragrance molecules in the presence of 

the star-block copolymers is most marked at high logP. This reflects an increased affinity of 

the volatiles with the hydrophobic core of the polymers with respect to the surrounding 

aqueous medium. However, the loading capacity of the polymers is also dependent on the 

solubility of the volatiles in the hydrophobic core of the polymers. The solubility parameter 

approach may be used to predict the host/guest affinity, and is shown here to account at least 

in part for the observed loadings, and may hence be considered a useful tool in the design of 

systems with affinities for specific fragrance molecules. However, in such systems, other 

parameters, such as the volatility of the fragrance molecules, the polymer water solubility or 

the temperature, which are correlated between each other, may still need to be considered to 

find a trend between the fragrance loadings and the star-block copolymer properties.  
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Chapter VIII. Industrial application: controlled release of 

fragrance molecules in fine perfumery and in fabric 

softener applications 

 
___________________________________________________________________________ 

 

 

 

 As pointed out in Chapter II.I.3, little data is available on the release of low molar 

mass active organic compounds from polymers. It is nevertheless clear that for the controlled 

release of fragrance molecules, drugs, and other active molecules from unimolecular micelles, 

diffusion is a primary consideration.[26, 151, 155, 165] However, many other parameters must be 

taken into account, such as the volatility and the solubility parameter of the perfume, for 

example. Moreover, in a final product, other compounds are present such as surfactants. In a 

softener, for example, 15 % cationic surfactant, 1 % perfume and 1 % of the polymer 

encapsulant are present in the aqueous phase (83 %). Under these conditions, it is necessary to 

take into account perfume diffusion from the encapsulant to the surfactant micelles. This 

illustrates the numerous parameters that must be taken into account in release studies for real 

applications. However the aim here was to investigate the capacity of the new amphiphilic 

star-block copolymers to prolong perception of the fragrance molecules. The pH-dependence 

property of H40-(PCL)p-(PAA)q is of particular interest in application such as the softener 

application where an increase of pH from acidic to neutral conditions is observed. At the 

beginning, pH in the softener base is between 3 and 5 whereas at the end, pH increased with 
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the immersion of the sample in pure water. The behavior of such pH-responsive polymer in 

this application is of interest. These pH-responsive nanocapsules have also been tested in fine 

perfumery compositions, which is not of direct practical interest due to the irritant character 

of ionic molecules for skin. However, comparison with the results obtained with the non-ionic 

capsules (H40-(PBMA)p-(PPEGMA)q) was of interest.  

 

 In what follows, the release of fragrance molecules from HBP-(PCL)p-(PAA)q and 

H40-(PBMA)p-(PPEGMA)q is described. Release rates were investigated by 

thermogravimetric analysis (TGA) and headspace analysis. In TGA measurements the weight 

loss of perfume dissolved in ethanol is monitored as a function of time. In headspace analysis, 

the evaporation of fragrance molecules under a constant air flow with humidity control is 

measured for compositions representative of a fine perfumery and a softener application. A 

reference sample containing the precursor hyperbranched polymer H40 has been used as a 

control in each case. Headspace analysis[296] is often used in the fragrance industry because of 

the speed of analysis and the possibility of studying conditions that mimic exactly the 

application conditions. 

 

 

I. Release monitored by thermogravimetric analysis (TGA) 

 

 The amphiphilic star-block copolymer H40-(PCL)10-(PAA)70 and H40-(PBMA)37-

(PPEGMA)39) (2 % (w/w)) and one of a range of fragrance compounds (benzyl acetate, 

geraniol, decanal or Vertenex®) (5 % (w/w)) were mixed in ethanol/water solution (85/8 % 

(w/w)). 10 μL of the solution were placed in an aluminium oxide crucible and the evaporation 

of the fragrance molecules was followed by measuring the weight loss of the sample as a 

function of time. The evaporation of the fragrance molecule was measured by heating the 

sample from 25 to 50 °C at 5 °C/min in order to evaporate the ethanol relatively rapidly. The 

sample was then held at 50 °C for 115 minutes. It was finally heated from 50 to 130 °C at 4 

°C/min and held at 130 °C for 15 minutes to remove any remaining fragrance molecules from 

the polymer.  
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I.1. Fragrance behavior 

 

 The first tests were carried out by mixing the fragrance molecules alone (5 % (w/w)) 

in ethanol/water (85/10 % (w/w)). The evaporation (weight in % relative to the initial weight 

at the beginning of the experiment as a function of time in min) for each fragrance molecule is 

given in Figure VIII.1. The evaporation of very volatile compounds (i.e. benzyl acetate (500 

μg L-1) and decanal (528 μg L-1)) was relatively fast, the fragrance compound evaporating 

completely after 20 minutes. In the case of Vertenex® (volatility of 200 μg L-1) the slope of 

the curve was reduced complete evaporation taking 50 minutes. The complete evaporation of 

the least volatile compound, geraniol (93 μg L-1), could only be achieved by increasing the 

oven temperature to 130 °C. As expected, therefore, the thermograms (weight loss of 

fragrance molecule (%) as a function of time) were directly correlated with the volatility of 

the fragrance molecules.  

 

 

 

 

Figure VIII.1 Evaporation of the fragrance compounds in an ethanol/water mixture, without any polymer 
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I.2.  Fragrance release in the presence of star-block copolymer 

 

 The evaporation of the fragrance compound in the presence of H40 or one of the 

amphiphilic star-block copolymers H40-(PBMA)37-(PPEGMA)39 or H40-(PCL)10-(PAA)70 

was investigated. Figure VIII.2 gives a representative example of the evaporation of benzyl 

acetate alone and in the presence of H40, H40-(PCL)10-(PAA)70 and H40-(PBMA)37-

(PPEGMA)39. The evaporation of benzyl acetate was in all cases significantly slowed down 

by the presence of the amphiphilic star-block copolymers. The effect was more pronounced 

than for H40 reference. Similar trends were also observed for geraniol, decanal and 

Vertenex® (Figure VIII.3). This underlines the importance of the hydrophobic core and of the 

hydrophilic shell. It was also observed that the effect of the star-block copolymers depended 

on the fragrance molecule. For example, H40-(PCL)10-(PAA)70 retarded most effectively the 

evaporation of decanal, whereas H40-(PBMA)37-(PPEGMA)39 was more efficient for benzyl 

acetate (Figure VIII.3). In the case of geraniol, no significant differences were observed. For 

Vertenex®, evaporation was slower with H40-(PBMA)37-(PPEGMA)39 up to 90 minutes 

under the conditions of the measurement, but after 90 minutes H40-(PCL)10-(PAA)70 

contained more residual Vertenex®. 

 

 

 

Figure VIII.2 Evaporation of benzyl acetate in the presence of different star-block copolymers 
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Figure VIII.3 Evaporation of decanal, Vertenex® and geraniol in the presence of H40-(PBMA)37-

(PPEGMA)39 or H40-(PCL)10-(PAA)70 
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 To illustrate further the effect of the amphiphilic star-block copolymers on the 

retention of the fragrance compounds, the difference between the weight of the fragrance 

compound (in %) in the presence of one of the amphiphilic star-block copolymers (H40-

(PCL)10-(PAA)70 or H40-(PBMA)37-(PPEGMA)39 and the H40 reference) and the weight of 

the fragrance compound in the absence of polymer has been tabulated after an arbitrary time 

of 80 min at 50 °C, as given in Table VIII.1.  

 

 

Table VIII.1 Increase in the retention of fragrance molecules in the presence of amphiphilic star-block 

copolymer with respect to values measured for the fragrance molecule alone 

 

Increase in weight [%] of the retention after 80 min at 50 °C of fragrance molecules 

 Boltorn® H40 H40-(PCL)10-(PAA)70 H40-(PBMA)37-(PPEGMA)39 

Geraniol +0.93 +2.48 +2.23 

Decanal +0.03 +2.10 +0.13 

Benzyl acetate +0.64 +0.46 +0.65 

Vertenex® +0.06 +0.60 +0.91 

 

 

 In the case of benzyl acetate, the increase of retention in the presence of H40-(PCL)10-

(PAA)70 or H40-(PBMA)37-(PPEGMA)39 was lower than (or equal to) in the presence of the 

H40 reference after 80 minutes. However there was still improved retention between 10 and 

40 minutes for H40-(PCL)10-(PAA)70 and between 10 and 70 minutes for H40-(PBMA)37-

(PPEGMA)39.  

 

 After 80 minutes at 50 °C the retention of geraniol was observed to be greater in 

comparison with the other fragrance molecules investigated. This may be explained by the 

low volatility of geraniol (93 μg L-1). In the presence of the star-block copolymers geraniol 

evaporation was linear with time (after the ethanol had evaporated). Its evaporation rate was 

not significantly influenced by the chemical nature of the star-block copolymers (Figure 

VIII.3).  
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 The evaporation of decanal was significantly delayed by H40-(PCL)10-(PAA)70 

(Figure VIII.3 and Table VIII.1) after 130 minutes at 50 °C, it was not completely evaporated. 

This was not true for H40-(PBMA)37-(PPEGMA)39 and the H40 reference, which no longer 

contained decanal after 60 and 40 minutes respectively.  

 

 Vertenex® evaporation was apparently sensitive to the nature of the star-block 

copolymer (Figure VIII.3). In the presence of H40-(PBMA)37-(PPEGMA)39, the evaporation 

of Vertenex® was significantly delayed but the rate of evaporation remained relatively fast 

compared with the rate of evaporation observed with H40-(PCL)10-(PAA)70. Evaporation was 

linear up to 125 minutes in the former case, after which no fragrance compound was detected. 

With H40-(PCL)10-(PAA)70, after 100 minutes at 50 °C the sample weight changed little with 

time (appearance of a plateau) although Vertenex® was still present (at least 1 % (w/w)).  

 

 Hence, in the presence of H40-(PCL)10-(PAA)70 the evaporation of decanal, geraniol 

and Vertenex® showed comparable behavior, with the “stabilization” of the evaporation of 

the respective fragrance molecules and the presence of a plateau, particularly in the case of 

Vertenex®. For benzyl acetate, on the other hand, the plateau was never observed, 

presumably due to its high volatility. The evaporation behavior of the fragrances is therefore 

sensitive to the volatility of the fragrance compounds even in the presence of the polymer. 

 

 H40-(PBMA)37-(PPEGMA)39 caused a significant decrease in the evaporation rate in 

all cases. The effect was more pronounced with benzyl acetate and geraniol, for which the 

evaporation times, for benzyl acetate, being increased threefold, and the retention of geraniol 

is double after 80 minutes. A retention effect was also detected for decanal and Vertenex® 

but was less pronounced.  

 

 The TGA measurements are not directly correlated with the fragrance loading in the 

polymer due to the difference in the encapsulation technique in the NMR measurement 

(Chapter VII) and in the present release measurement with the large presence of ethanol. TGA 

results illustrate that it is apparently easier to delay evaporation of weakly volatile fragrance 

molecules (i.e. geraniol) than highly volatile fragrance molecules (i.e. benzyl acetate). The 

efficiency of the star-block copolymers is nevertheless clearly demonstrated by TGA under 
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conditions that mimic those in fine perfumery applications and no significant conclusions may 

be establish in term of the charges present at the surface of the nanocapsules in the present 

conditions. 

 

 In certain cases a shift in the weight (%) measured occured at the end of the 

measurement, depending on the fragrance compounds and the star-block copolymers used. 

This shift was due to evaporation of the fragrance molecules before the oven temperature was 

stable (the beginning of the measurement).  

 

 

II. Release monitored by dynamic headspace analysis 

 

 Another parameter that is of great importance is the human olfactory threshold.[297] 

Even if the evaporation of the fragrances is delayed in the presence of the polymer it is 

important to know whether the corresponding concentrations is above or below the human 

olfactory threshold. In the TGA experiments, the discussion was based essentially on 

qualitative results. To gain a more quantitative idea of the effect of the star-block copolymers 

under application condition, headspace analysis has been undertaken, as will be described in 

the present section.  

 

II.1. What is headspace analysis? 

 
 Headspace analysis is a technique that quantifies the volatile components present in 

the gas space above a sample that contains the compound(s) of interest. Headspace gas 

chromatography is used for the analysis of volatiles and semi-volatile organics in solid, liquid 

and gas samples. The main variants of headspace sampling are described in the literature[298] 

and range from static headspace (SHS)[299] to headspace solid phase microextraction (HS-

SPME)[300] through purge and trap (P&T-HS)[301] or static and trapped headspace (S&T-

HS).[302] In the present work, purge and trap headspace, commonly named “dynamic 

headspace” has been used. This consists of continuously stripping the sample by air or gas 

flow. The volatiles are then trapped by an adsorbent, from which they are subsequently 
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thermally desorbed. This procedure allows the collection of greater amount of volatiles than 

those present at equilibrium (as in static headspace). An advantage of using dynamic 

headspace analysis in fragrance industry is the possibility of measuring the evaporation 

kinetics of several different fragrance compounds simultaneously and under exactly the same 

conditions as in the real application.  

 

 The popularity of these techniques has grown over recent years and they have now 

gained worldwide acceptance for analyses of alcohols in blood[303, 304] and residual solvents in 

pharmaceutical products.[305-307] Other common applications include industrial analyses of 

monomers in polymers and plastic,[308] flavor compounds in beverages and food products[309-

311], and fragrance compounds in perfumes and cosmetics.[298, 312, 313]  

 

 

II.2. A fine perfumery application 

 

 The measurement was carried out with and without the amphiphilic star-block 

copolymer in order to investigate the effect of the polymer on the evaporation of the fragrance 

compound. Two star-block copolymers were used, i.e. H40-(PCL)10-(PAA)70 and H40-

(PBMA)37-(PPEGMA)39. The sample was prepared by mixing the star-block copolymer (2 % 

(w/w)) with the perfume (composition given in Chapter IV.IV.2.1) (5 % (w/w)) in 

ethanol/water (85/8 % (w/w)) solution. 2 μL of the mixture was placed in a headspace 

sampling cell thermostatted at 25 °C and exposed to a constant air flow under humidity 

control. The fragrance compounds were continuously adsorbed onto cartridges for 60 minutes 

desorbed thermally and then analyzed with a gas chromatography (GC) equipped with a flame 

ionization detector (FID). The concentration (ng L-1) of the fragrance molecules was 

determined as a function of time (min). The physico-chemical properties of the fragrance 

molecules considered here for the perfume composition are give in Appendix 5. 
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II.2.1 Behavior of the volatiles  

 
 The profiles of the evaporation curves of the individual fragrances differ as a function 

of their volatilities. Evaporation profiles of compounds with volatility higher than 500 μg L-1 

(such as pipol, 3,5,5-trimethylhexanal, dimetol, acetophenone, ethyl (E)-2,4-dimethyl-2-

pentenoate, benzyl acetate, jasmonitrile, and decanal) follow an exponential decay from t = 0 

to t = 60 min, as shown in Figure VIII.4. For compounds with lower volatilities, (i.e. 

benzylacetone, 2-pentylcyclopentanol, geraniol, 4-cyclohexyl-2-methyl-2-butanol, 10-

undecenal, Vertenex®, allyl 3-cyclohexylpropanoate) the evaporation profile is 

discontinuous. The amount of compound increases to a maximum after 15 minutes and then 

decays exponentially as shown in Figure VIII.5. The polarity of the substrate i.e. the affinity 

between the fragrance molecules and the substrate, the solvent and the temperature may also 

influence the profiles.  

 

 

 

Figure VIII.4 Representative evaporation profile for highly volatile compounds: benzyl acetate 



Chapter VIII: Applications in the fragrance industry 
__________________________________________________________________________________________ 

 177 

 

 

Figure VIII.5 Representative evaporation profile for low volatile compounds: geraniol 
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II.2.2 Behavior of the volatiles in the presence of the star-block copolymer 

 

 The evaporation profiles of benzyl acetate, decanal, Vertenex® and geraniol in the 

presence of H40-(PBMA)37-(PPEGMA)39 and of H40-(PCL)10-(PAA)70 are given in Figure 

VIII.6 to Figure VIII.9. In both cases, the evaporation of the fragrance compounds was 

delayed in the presence of the star-block copolymers and the evaporation profiles of each 

volatile remained qualitatively unchanged. The maximum concentrations for Vertenex® and 

geraniol in the presence of the star-block copolymers were lower (Cmax Vertenex® = 4250 ng L-1 

and Cmax geraniol 1800 ng L-1) with H40-(PBMA)37-(PPEGMA)39, for example, than the 

maximum concentrations measured in the absence of polymer (Cmax Vertenex® = 5000 ng L-1 and 

Cmax geraniol 2750 ng L-1). This illustrate the effectiveness of the polymer at the beginning of 

the measurement. However, the kinetic curves measure in the presence and in the absence of 

the polymer crossed each other after a certain time, demonstrating the long-lastingness effect 

of the polymer in such conditions.  

 

 For the comparison of the data, the time to reach an arbitrary chosen headspace 

concentration of 50 ng L-1 was determined for H40-(PCL)10-(PAA)70 and H40-(PBMA)37-

(PPEGMA)39 The data summarized in Table VIII.2 were obtained for each fragrance 

compound in the perfume sample.  

 

 



Chapter VIII: Applications in the fragrance industry 
__________________________________________________________________________________________ 

 179 

Table VIII.2 Description of the effect of the polymer in headspace analysis experiment 

 
Time required to reach a headspace concentration of 50 ng L-1[min] 

Name of fragrance compound no copolymer H40-(PCL)10-(PAA)70 
H40-(PBMA)37-

(PPEGMA)39 

Pipol 4.5 *) 5.8 

3,5,5-Trimethylhexanal 7.9 5.0 12 

Dimetol 6.7 8.1 8.4 

Acetophenone 5.5 7.2 8.1 

Ethyl (E)-2,4-dimethyl-2-pentenoate *) 6.2 5.9 

Benzyl acetate 8.7 21.2 13.5 

Jasmonitrile 10 19 13 

Decanal 15.2 21.0 19 

Benzylacetone 13.5 25.0 22.2 

2-Pentylcyclopentanol 25.5 41.1 31.7 

Geraniol 36.2 49 45.2 

4-Cyclohexyl-2-methyl-2-butanol 29.7 45 34.4 

10-Undecenal 24.3 32 28.7 

Vertenex® 19.1 32.7 24.0 

Allyl 3-cyclohexylpropanoate 26.8 46.2 33 

*) headspace concentration always below 50 ng L-1  

 

 

 For each fragrance compound the time to reach the concentration of 50 ng L-1 in the 

headspace cell was longer in the presence of the star-block copolymer, indicating retarding 

effect of the copolymer on evaporation. Both types of star-block copolymers influenced the 

fragrance compound evaporation, although the differences were generally small. The 

apparently higher concentrations measured in the presence of H40-(PCL)10-(PAA)70 for the 

majority of the fragrances may be due to its thermal properties. At 25 °C, the PAA outer shell 

of H40-(PCL)10-(PAA)70 is in the glassy state (Tg around 110 °C). The restricted motion may 

retain the fragrance compounds. In H40-(PBMA)37-(PPEGMA)39, on the other hand, the 

PBMA core and the outer PPEGMA shell are in the rubbery state owing to the low Tgs 

(around -64 and 12 °C). However, H40-(PBMA)37-(PPEGMA)39 remains effective in 

extending the time over which the fragrances evaporate (Figure VIII.6). To compare further 

the star-block copolymers, the kinetic curve from 0 to 60 minutes must be considered. Under 
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the present conditions, no significant differences were observed (Figure VIII.6 to Figure 

VIII.9) illustrating that not only thermal properties but also other parameters (solubility in 

water, affinity with surface deposition) influence the release of fragrances.  

 

 Human olfactory thresholds have been used to assess the effect of the polymer on the 

release of fragrance molecules. Human olfactory thresholds are available for benzyl acetate 

and decanal.[314] In the case of decanal, as shown in Figure VIII.7, the presence of H40-

(PBMA)37-(PPEGMA)39 and H40-(PCL)10-(PAA)70 increased the human perception time 

from 40 minutes (for decanal alone) to more than 60 minutes under the conditions of the 

measurement. In the case of benzyl acetate (Figure VIII.6), the human perception time was 

increased from 5.6 minutes to 8.1 and 8.8 minutes in the presence of H40-(PCL)10-(PAA)70 

and H40-(PBMA)37-(PPEGMA)39 respectively. These experiments confirme the efficiency of 

the star-block copolymers, in terms of a criterion of direct relevance to the application. 

 

 
Figure VIII.6 Release of benzyl acetate in the presence of H40-(PCL)10-(PAA)70 or H40-(PBMA)37-

(PPEGMA)39 and comparison with the release of benzyl acetate alone 
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Figure VIII.7 Release of decanal in the presence of H40-(PBMA)37-(PPEGMA)39 or H40-(PCL)10-(PAA)70 

and comparison with the release of decanal alone (left). Detail with an indication of the human olfactory 

threshold (right) 

 

 

 
 

Figure VIII.8 Release of Vertenex® in the presence of H40-(PBMA)37-(PPEGMA)39 or H40-(PCL)10-

(PAA)70 and comparison with the release of Vertenex® alone 
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Figure VIII.9 Release of geraniol in the presence of H40-(PBMA)37-(PPEGMA)39 or H40-(PCL)10-(PAA)70 

and comparison with the release of geraniol alone 

 

 

II.3. A fabric softener application 

 

 The behavior of the pH-dependent star-block copolymer in a softener base is important 

for the protection of the fragrance molecule during storage (at low pH) as well as for its 

release once deposed on the target surface (after an increase of the pH at the end of the 

washing cycle). 

 

 A towel was immersed in a water solution that contained a softener and the 

perfume/star-block copolymer mixture or the perfume alone. In this case the perfume was 

composed of an equimolar amount of four fragrance compounds: benzyl acetate, 

benzylacetone, 4-cyclohexyl-2-methyl-2-butanol and allyl-3-cyclohexylpropanoate as it was 

detailed in the experimental section (Chapter IV.IV.2.2). After wringing, the towel was placed 

in the headspace sampling cell thermostatted at 25 °C and exposed to a constant air flow 

under humidity control. The fragrance compounds were for 5 minutes each 50 minutes 

adsorbed onto cartridges which were then desorbed thermally in a desorber and analyzed with 
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a GC equipped with a FID detector. The concentration (ng L-1) of the fragrance molecule was 

determined as a function of time (min).  

 

 Figure VIII.10 compares the release of benzyl acetate in the H40-(PBMA)37-

(PPEGMA)39 or H40-(PCL)10-(PAA)70. The release of benzyl acetate in the absence of the 

copolymers is also shown. At the beginning of the measurement a higher headspace 

concentration were measured in the absence of the amphiphilic star-block copolymer. 

Nevertheless, at the end of the experiment all headspace concentrations were higher in the 

presence of the copolymer, demonstrating the desired improvement in long-lastingness of the 

fragrance compound. However, the concentrations of benzyl acetate detected under the 

conditions of the measurement were always below the human olfactory threshold (around 

912.0 ng L-1). This effect could be explained by the relative humidity. It has been observed 

that the loss of volatiles increases with increasing humidity owing to the increase in mobility 

and in diffusion coefficient.[90] Moreover, the partial solubility of benzyl acetate in water 

contributes to its fast release (under the conditions of the measurement the towel was initially 

immersed in 600 mL water and the fabric softener also contained more than 83 % water). This 

explanation is support by the results obtained in the case of allyl 3-cyclohexylpropanoate 

(logP value of 3.85 as opposed to 1.96 for benzyl acetate). The initial concentration of allyl 3-

cyclohexylpropanoate was five times greater than that of benzyl acetate.  
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Figure VIII.10 Release of benzyl acetate in a fabric softener in the presence of the amphiphilic star-block 

copolymers and without the copolymer 

 

 

 

 

Figure VIII.11 Release of allyl 3-cyclohexylpropanoate in a fabric softener in the presence of the 

amphiphilic star-block copolymers and without the copolymer 
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 To compare the data, the concentration of each fragrance compound present in the 

perfume was determined after 370 minutes for H40-(PCL)10-(PAA)70 and H40-(PBMA)37-

(PPEGMA)39 (Table VIII.3). The concentration of each fragrance compound was generally 

higher in the presence of the star-block copolymers after 370 min, illustrating the long-

lastingness effect of the star-block copolymer in a fabric softener application. After 370 

minutes, the concentration of benzyl acetate, benzyl acetone and 4-cyclohexyl-2-methyl-2-

butanol are higher in the presence of H40-(PBMA)37-(PPEGMA)39 in comparison with H40-

(PCL)10-(PAA)70. After the immersion of the towel in water, the H40-(PCL)10-(PAA)70 

nanocapsules are partially ionized inducing partially desorption of the polymer from the 

cotton towel. The conformational change of the polymer in aqueous solutions may explained 

the lower volatiles concentrations in the case of H40-(PCL)10-(PAA)70.
[273] 

 

 

Table VIII.3 Headspace concentration measured after 370 minutes equilibration in the presence and the 

absence of H40-(PCL)10-(PAA)70 and of H40-(PBMA)37-(PPEGMA)39 

 

 
without polymer 

[ng L-1] 

in the presence of  

H40-(PCL)10-(PAA)70  

[ng L-1] 

in the presence of  

H40-(PBMA)37-(PPEGMA)39 

[ng L-1] 

Benzyl acetate 0.0 70.0 82.1 

Benzylacetone 150.0 147.0 298.2 

4-cyclohexyl-2-methyl-2-butanol 180.0 500.0 837.2 

Allyl-3-cyclohexylpropanoate 60.0 770.0 588.1 

 

 

II.4. Olfactory panel 

 

 To take into account further the human olfactory threshold, an olfactory panel for fine 

perfumery was set up. A perfume solution (composed of 15 olfactory compounds) provided 

by Firmenich SA and adapted for this kind of measurement  was investigated with and 

without H40-(PCL)10-(PAA)115 in the following proportions: 10 wt % perfume, 1 wt % 

polymer, 80 wt % ethanol and 9 wt % water. 4 days after the deposition of one droplet of each 

solution on two differents blades of glass, 17 panellists smelt the two samples successively. In 
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16 cases, perception of the perfume was significantly stronger in the sample that contained the 

polymer. This test is another very encouraging result which corroborates the TGA and 

headspace analyses, and confirms the interest of these new star-block copolymers for 

fragrance applications.  

 

 

III. Conclusions 

 

 Controlled release depends on the kind of the application. Some times it is important 

to have a blooming effect just after introducing the capsules into a medium, and sometimes 

not. In this work the emphasis has been on attaining constant release rates over extended 

periods of time. The aim is to prolong perception throughout the duration of the application.  

 

 The evaporation of fragrance molecules in a fine perfumery or a fabric softener 

application, in the presence of the star-block copolymers, is significantly delayed in 

comparison with the measurements in the presence of H40 precursor or in the absence of 

polymer. In the fine perfumery application, no significant differences in the release of the 

fragrance molecules were observed for H40-(PBMA)37-(PPEGMA)39 and H40-(PCL)10-

(PAA)70. In the case of the softener application, lower concentrations were detected in the 

presence of pH-responsive nanocapsules (H40-(PCL)10-(PAA)70) owing to structural changes 

in the polymer structure.  

 

 The efficiency of the star-block copolymer is clearly demonstrated in the case of 

decanal whose concentration remains above the human olfactory thereshold throughout the 

measurements. Olfactory panels, which only use human olfactory threshold, confirmed the 

practical interest of the star-block copolymers. 
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 In this work, amphiphilic multi-arm star-block copolymers HBP-(PCL)p-(PAA)q and 

H40-(PBMA)37-(PPEGMA)39 have successfully been synthesized using hyperbranched 

polyester polyol polymers, H30 and H40, with 26 and 36 functional groups respectively. 

These highly branched block copolymers were obtained by the combination of ROP and 

ATRP for HBP-(PCL)p-(PAA)q or by two consecutive ATRP of methacrylate monomers, in 

the case of H40-(PBMA)37-(PPEGMA)39. A 2-bromoisobutyril bromide was used as the 

macroinitiator for the ATRP, which allowed the preparation of star polymers with good 

control of the molecular weight distribution. In the case of HBP-(PCL)p-(PAA)q, tert-butyl 

acrylate monomer was polymerized by ATRP, and then the tert-butyl groups were hydrolyzed 

to form an amphiphilic HBP-(PCL)p-(PAA)q, which was dispersible in water after 

deprotonation of the carboxylic acid with sodium hydrogenocarbonate. The core-shell 

architecture resulted in a microphase separated structure, with a dense core in aqueous 

solution, and a highly mobile hydrophilic shell in both HBP-(PCL)p-(PAA)q and H40-

(PBMA)37-(PPEGMA)39. 
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 The capacity of these star-block copolymers to encapsulate fragrance molecules in 

aqueous solution has been demonstrated by different types of NMR measurement. 

Encapsulation in water is shown to correspond to a dynamic equilibrium between the free 

molecules and the host-guest complex. The fragrance molecules are preferentially localized in 

the hydrophobic block of the core-shell polymer to an extent that depends on the octanol-

water partition coefficient, logP. Loadings of up to 30 wt% of fragrance molecules have been 

measured in the polymers in aqueous dispersion, depending on the affinity between the 

hydrophobic block and the fragrance compound, as reflected by solubility parameter analysis. 

However, the various factors that influence the fragrance loadings in the polymer (logP, the 

volatility of the fragrance molecules, the water solubility of the polymer, the affinity between 

the polymer and the fragrance, the temperature, the concentration etc.) are interdependent, 

making it difficult to identify general trends.  

 

 The amphiphilic star-block copolymers are nevertheless shown to influence strongly 

the release of the fragrance compounds under conditions representative of a fine perfumery 

and a softener application, as determined by TGA and headspace analysis (Figure IX.1). The 

release of fragrance molecules in the fine perfumery application appears relatively insensitive 

to the choice of star-block copolymer, whereas in the softener base application slight 

differences were observed, which may be explained by the particular property of the pH-

responsive polymer.  

 

 Finally, a panel of 17 panellists, reported their impression after smelling a perfume in 

the presence and the absence of the polymer and confirmed the capacity of the amphiphilic 

star-block copolymer to delay and prolong the human perception of a mixture of fragrance 

compounds, consistent with the analytical results. 
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Figure IX.1 As a function of the human olfactory threshold (---): Efficient controlled release of decanal in 

the presence of H40-(PBMA)37-(PPEGMA)39 (___) in comparison with decanal alone (…)(headspace 

analysis result) 

 

 

 Given that the solubility parameter approach is shown to be useful in predicting the 

host guest affinity, the hydrophobic core may in principle be tailored according to the guest to 

be encapsulated, offering considerable promise for developing systems that target specific 

volatiles. However, the results also show that it is difficult to prolong evaporation of highly 

volatile fragrance molecules with the present systems, even in the presence of a glassy shell, 

as in HBP-(PCL)p-(PAA)q, and many other factors may need to be taken into account, 

including not only the volatility of the fragrances, but also the humidity and surfactant 

concentration, the phase behaviour of the polymer, and the polymer-substrate interactions. 

Cross-linking of the PAA blocks may be one possible way of increasing the barrier properties 

of the nanocapsules with respect to volatile guest molecules.  

 

 With regard to potential applications, the star-block copolymers prepared in the 

present work may also be useful in stabilizing commercial formulations in a similar manner to 

conventional surfactants. Moreover, their high functionality renders them extremely adaptable 
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to specific conditions through suitable end-group modification. Thus, whatever the perfumery 

application (softener, detergent, lotion, cream etc.), the star-block copolymers may in 

principle act both as stabilizers and encapsulants. Indeed, the absence of the surfactant 

micelles in practical formulations may improve the retention of the volatiles in the star-block 

copolymer, increasing the long-lastingness effect. Finally, the relatively low raw materials 

costs and straightforward chemistry means the present concept can provide cost effective 

solutions for industry, which represents a considerable advantage vis-à-vis dendrimer-based 

technologies, for example. 
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Appendix 1 

 

Encapsulation techniques used until now 

 

 Spray drying, spray chilling, spray cooling and fluidized bed methods consist of 

forming an emulsion between the active substance (flavor, fragrance…) and an aqueous 

solution of the polymer. The emulsion is dried by atomization in an enclosure equipped with 

an air flow. The nomenclature depends on the air flow temperature: spray drying (T = 180-

200 °C), spray cooling (T = 45-122 °C), spray chilling (T = 32-42 °C). A fine powder between 

20-100 μm is obtained. The fluidized bed method is based on the same principle, but with a 

second particle agglomeration step that gives large uniform particles between 200-2000 μm in 

diameter. 20 to 50 % loads are typically obtained with atomization techniques. The emulsion 

quality, the type of polymer, the drying conditions are important parameters. It has been 

demonstrated that spray drying gives good results with a wide variety of polymers. Moreover 

it may be used with a wide variety of active molecules and is relatively cheap. However, the 

lack of protection against oxidation leads to short life times.[68]  

 

 The coacervation method consists of the precipitation of the polymer induced by solid 

particles of the active molecules. In “complex coacervation”, micro-particles are formed using 

two polymers and in complex coarcervation with pH adjustment two polymers with opposite 

charges are used. The load is between 25 and 97 %. This technique is not expensive and the 

resulting particles have long lifetimes. However, their size is not well controlled and is 

relatively large (20-1000 μm), which can induce instability. Use of crosslinking agent can be 

considered as a means to improve stability of the particles.  

 

 Extrusion consists of mixing polymers and flavors (essential oils) and then passing 

them through an extrusion die into a bath that contains a non solvent for the polymer. After a 

rapid solidification, the extrudates are cut into 1 mm long granules. The main advantage of 

this technique is that the flavors are totally protected by the polymer. The lifetime of the 

particles is long, with good protection agasinst oxidation. However, i only 8 to 10 % loading 

is possible. This method was developed for the encapsulation of citrus oil[3] and is very often 

used for drinks and lyophilized foods that have to be solubilized in water before use. 
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Appendix 2  

 

Two other methods used for the preparation of hyperbranched polymers 

 

 

 

Self condensing vinyl polymerization 
 

 Self-condensing vinyl polymerization of an AB* type monomers as been developed by 

Fréchet et al.[315] in 1995. This consists of the activation of a group associated with a double 

bond, which reacts with the double bond of a second AB* monomer to give a covalent bond 

and a new active site on the carbon of the double bond. This second activated site creates 

branching as illustrated below. Poly(styrene) and poly(meth)acrylate hyperbranched polymers 

have been obtained by this technique.  

 

 

 

Self-condensing vinyl polymerization of an AB* monomer[113] 
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Multi-branching ring-opening polymerization 

 

 The present strategy for the preparation of HBPs was developed by Suzuki in 1992, 

who synthesized hyperbranched poly(amine) from cyclic carbamate[316] by ring-opening 

multi-branch polymerization (ROMBP). Branch points are generated through the propagation 

step. The reaction is induced by the addition of an initiator to the latent ABx monomer. Cyclic 

carbamate, epoxide, oxetane and caprolactone have been used for the preparation of HBPs by 

this method. 

 

 

 

 

Ring-opening multi-branch polymerization for the preparation of hyperbranched poly(amine)[316] 
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Appendix 3 
 

Schematic representation of the ligands used in ATRP process 

 

PMDETA: pentamethyl diethylene triamine 

HMTETA: hexamethyl triethylene tetramine 

Me6 TREN: tris-2-dimethyl aminoethyl amine 
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Appendix 4 

 

Procedure for the polymerization of n-butyl methacrylate and poly(ethylene glycol 

methyl ether methacrylate) on H40 based hyperbranched polymer 

 

 

Polymerization of n-butyl methacrylate using H40-Br as macroinitiator to give H40-(PBMA)p 

A flask equipped with a nitrogen inlet was charged with the macroinitiator H40-Br, toluene, 

n-butyl methacrylate, CuBr and N-propyl-2-pyridylmethanimine. The mixture was 

subsequently deoxygenated by three freeze pump-thaw cycles. Polymerization was carried out 

in a thermostatically controlled oil bath at 60 °C. After 140 min, the reaction mixture was 

cooled in an ice bath. The catalyst complex was removed by suction filtration of the reaction 

mixture through a layer of silica gel (ca. 3 cm) using a small quantity of toluene to rinse the 

column. The resulting polymer solution was partially evaporated and finally precipitated into 

methanol (20 times the volume of the reaction mixture). The precipitate was dried under 

vacuum. 

 

Polymerization of n-butyl methacrylate using H40-(PBMA)p-Br as macroinitiator to give 

H40-(PBMA)p-(PPEGMA)q 

A flask equipped with a nitrogen inlet was charged with CuBr and poly(ethylene glycol) 

methyl ether methacrylate (PEGMA). After degassing by bubbling nitrogen through the 

mixture for 30 minutes, N-propyl-2-pyridylmethanimine was added and degassing was 

continued for another 15 min. After that, a previously degassed solution of H40-(PBMA)p in 

toluene was added, and nitrogen purging was continued for 15 min. Finally, the reaction flask 

was placed in a thermostatically controlled oil bath at 60 °C. After 5 h, the polymerization 

was stopped by cooling the reaction mixture to 0 °C. The catalyst was removed by suction 

filtration through a layer of silica gel (~ 3 cm) using toluene to rinse the column. 

Subsequently, toluene was evaporated from the resulting polymer solution. The polymer was 

isolated and purified by repeated precipitation into diethyl ether (20 times the volume of the 

reaction mixture). Further purification was carried out by dialysis in water (molecular weight 

cut off = 10,000 g mol-1). 
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Appendix 5 

Physico chemical properties of the fragrance molecules used in headspace analysis 

The values were calculated by J.-Y. de Saint Laumer (Firmenich SA) using the EPIwin v 3.10 

program (US Environmental Protection Agency, 2000) 

Name Structure LogP 
Vapor pressure 

at 20 °C (Pa) 
Volatility  
(μg L-1) 

Pipol OH

 
1.49 283.27 4100.3 

3,5,5-Trimethylhexanal O

 
3.35 251.52 6393.8 

Dimetol OH

 
3.14 137.71 3023.6 

Acetophenone 

O  

1.74 43.8 583.1 

Ethyl (E)-2,4-dimethyl-2-

pentenoate O

O

 
3.24 - - 

Benzyl acetate O

O

 

1.96 24.9 500 

Jasmonitrile N

 
4.84 27.6 546.7 

Decanal O  3.76 31.3 528 

Benzylacetone 
O

 

1.89 8.4 107.9 

2-Pentylcyclopentanol 
OH

 
3.38 1.3 - 

Geraniol 
OH  

3.47 2.1 93 

4-Cyclohexyl-2-methyl-2-

butanol 

OH

 
3.75 1.3 174.9 

10-Undecenal 
O  4.12 9.9 188.3 

Vertenex® O

O  
4.42 9.1 200 

Allyl 3-cyclohexylpropanoate O

O

 

3.85 3.5 67.2 
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