UNDERSTANDING THE ORIGINS AND FATE
OF AIR POLLUTION IN BOGOTA, COLOMBIA

THESE N° 3768 (2007)

PRESENTEE LE 28 MARS 2007

A LA FACULTE DE L'ENVIRONNEMENT NATUREL, ARCHITECTURAL ET CONSTRUIT
Laboratoire de pollution atmosphérique et du sol
SECTION DES SCIENCES ET INGENIERIE DE L'ENVIRONNEMENT

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

POUR L'OBTENTION DU GRADE DE DOCTEUR ES SCIENCES

PAR

Erika ZARATE

M.Sc. in Civil Engineering, Universidad de los Andes, Bogota, Colombie
et de nationalité colombienne

acceptée sur proposition du jury:

Dr E. Gnansounou, président du jury
Dr A. Clappier, directeur de thése
Dr E. Behrentz, rapporteur
Prof. |. Bey, rapporteur
Dr R. Zah, rapporteur

ECOLE POLYTECHNIQUE

FEDERALE DE LAUSANNE

Lausanne, EPFL
2007






Imagine all the people
Living life in peace...

John Lennon
(1940-1980)






To mamda Elvia,
mamd Teresa, papd Saiil,
Elsita, Dorita and Fabio






Funding

This work has been funded by the

Swiss Agency for Development and Cooperation (SDC) & the
Technical-Administrative Department of Environment

in Bogota (DAMA)

The author expresses her gratitude for the
interest and good spirit that both institutions
have shown towards the present thesis.






Abstract

Bogota has more than 8 million inhabitants and is the 5" biggest urban
agglomeration in Latin America. It has more than one million vehicles and
a large number of small industries. High levels of air pollutants are thus
detected. The purpose of this work consists in applying air quality modelling
tools to the region of Bogota, aiming to acquire a deeper understanding of the
factors that originate air pollution in the city, and of the way pollutants are
dispersed and chemically transported. Furthermore, the knowledge gained is
used to propose and evaluate air pollution abatement strategies. In the first
part of this thesis, two versions of the traffic emission inventory are generated,
one using standard CORINAIR traffic emission factors and the other using
bulk real-world traffic emission factors. Both emission inventories are com-
pared and evaluated with the help of numerical simulations. The emission
inventory calculated using bulk real-world traffic emission factors generates
simulated concentrations closer to the observed values. Thus, an innovative
technique consisting in the combination of measurements and modelling to
estimate and evaluate traffic emissions is proposed in this part of the study.
In the second part, mesoscale meteorological and air quality models are ap-
plied to the city. The wind pattern developed over the complex topography
of the region and the development of the plume of pollutants are simulated
with success. In the third part of this work, the air quality model is used to
study the plume of pollution in terms of the governing chemical regimes and
the individual and combined effects of the main sources of emission. Traffic
is the major contributor to the plume of pollutants in Bogota. Three feasible
emission scenarios which are addressed to the mitigation of emissions from
heavy traffic are evaluated with the model. Whereas reductions are attained
for primary pollutants and aerosols (whose simulation is presented in the
forth part of this work), levels of Ozone increase with these scenarios. The
air quality model indicates that strategies directed to mitigate air pollution
might have contradictory effects depending on the pollutant to be tackled.
Air quality modelling proved to be a very useful tool for evaluating emission
scenarios in advance and prioritizing actions to mitigate pollution in Bogota.

Keywords: Bogota, Urban air pollution, Air quality management, Emis-
sion inventory, Real-world emissions, Complex topography, Photochemical
modelling, PM;, simulation.






Résumé

Avec plus de 8 millions d’habitants, un million de véhicules et une quan-
tité importante de petites industries, Bogota est la cinquieme plus grande
ville d’Amérique Latine. Ce travail a pour objectif 'utilisation de modeles
de qualité de l'air sur la région de Bogota afin de mieux comprendre les
facteurs qui génerent la pollution atmosphérique ainsi que ceux qui influen-
cent la dispersion et la transformation chimique des polluants sur la région.
Enfin, ces nouvelles connaissances sont utilisées pour proposer des straté-
gies d’abattement de la pollution et pour évaluer leur efficacité. Dans la
premiere partie de cette these, deux cadastres des émissions dues au trafic
sont générés, I'un a partir des facteurs d’émission standards proposés par
CORINAIR, et l'autre a partir de facteurs d’émission estimés grace a des
mesures réalisées dans les rues de Bogota. Les deux cadastres sont comparés
et évalués a 'aide de simulations numériques. Le cadastre calculé a partir
des facteurs d’émission provenant des mesures permet d’obtenir les concen-
trations simulées les plus proches des valeurs observées. Ainsi, cette partie
du travail a permis de montrer l'efficacité d’'une nouvelle technique consis-
tant a combiner des résultats de mesures et de modélisation pour estimer et
évaluer les émissions provenant du trafic. La deuxieme partie de cette these
est dédiée a I'application de modeles météorologiques et de qualité de 'air
sur la région. Ces modeles ont simulés avec succes I'évolution des champs
de vent et des panaches de pollution qui se développent sur la topographie
complexe entourant la ville. Dans la troisieme partie de ce travail, le modele
de qualité de l'air est utilisé pour étudier les facteurs qui contribuent a la
formation des panaches de polluants aussi bien en termes de régimes chim-
iques que des contributions individuelles et combinées des principales sources
d’émissions. Le trafic routier apparait comme la source majeure contribuant
a la formation du panache de polluants. L’efficacité de trois scénarios réalistes
concernant la réduction des émissions du trafic lourd est évaluée a l'aide du
modele. Dans les simulations des trois scénarios, les concentrations de pollu-
ants primaires et d’aérosols (la simulation de ces derniers est présentée dans
la quatrieme partie de cette these) diminuent, alors que les concentrations
d’ozone augmentent. Le modele de qualité de I'air met en évidence que les
stratégies d’abattement des émissions peuvent avoir des effets contradictoires
sur les niveaux des différents polluants atmosphériques. La modélisation de
la qualité de 'air s’avere étre un outil adéquat pour évaluer l'efficacité des
scénarios d’abattement des émissions et pour définir les priorités permettant
le controle de la qualité de I'air a Bogota.

Mots clés: Bogota, pollution de I'air, gestion de la qualité de I’air, cadastre
d’émission, topographie complexe, modélisation photochimique, aérosols.
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Chapter 1

Introduction. Large cities, air
pollution and tools for air
quality assessment.

1.1 Urbanization and urban air pollution

According to the United Nations (UN, 2006), 49% of mankind (3.2 billion)
were urban dwellers in 2005, as compared to a 13% in 1900. The process of
urbanization appears to be both a cause and a consequence of global change
(Mayer, 1999; Gurjar and Lelieveld, 2005), and there is a clear connection be-
tween high levels of urbanization and high rates of economic growth. People
are attracted by the economic opening-up offered by cities, more employ-
ment and education opportunities, access to comfort and to sophisticated in-
frastructure (the majority of megacities are internationally well connected).
Other reasons for migration to cities are the search of better political condi-

tions, to protect from violence, after natural disasters or to skip poverty.

The process of urbanization has been especially important in less devel-

oped countries,’ where governments do not have a strong presence in rural

!The terms ‘less developed countries’ or ‘developing countries’ are used along this study
to refer to countries with a relatively low standard of living, an undeveloped industrial
base and a moderate to low Human Development Index (UNDP, 1990). The definition
of ‘standard of living’ may be debated if one takes into account other aspects apart from
material goods. Standard of living is defined here as the quality and quantity of goods and



1. Introduction

areas and people migrate to the cities in search of a better quality of life.
In developing regions, urban population is about 7 times larger than in 1950
(fig. 1.1). In this year, there were only two megacities (with a population >
10 million), New York and Tokyo with 12.4 and 11.3 million people respec-
tively. At present there are around 25 megacities, most of them belonging to
developing countries or to countries with economies in transition (Gurjar and
Lelieveld, 2005; UNEP, 2006). Table 1.1 shows a list of the main megacities

in the world and its population.

3.5 4

Population (billions)
- =] =] [#%)
=1 1) o

n
|

0.5

0.0

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030

—&— More developed regions, urban populaticn —{F— Less developed regions, urban population

More developed regions, rural population —-—- Less developed regions, rural population

Figure 1.1: Urban and rural population of more developed regions and less developed
regions, 1950-2030. Source: UN (2006). The urban population of less developed regions
has increased almost exponentially in the last 50 years.

High levels of economical activities in large cities imply high energy con-
sumption, which is mainly dependent on the combustion of fossil fuels. This
generates emissions of huge amounts of polluting substances into the atmo-

sphere. Although air pollution is only one of the environmental hazards

services available to people and the way they are distributed within a population. In these
countries, there is low per capita income, widespread poverty, and low capital formation.
The term ‘developing countries’ does not convey for the author a notion of inferiority when
compared to ‘developed countries’.



1.1 Urbanization and urban air pollution

Table 1.1: Megacitites of the world and their air quality data. Years of data are 1999
and 2000. All data reported correspond to the mean annual concentration in pg m™3,
except for Oz which corresponds to the maximum annual 1-h concentration, in pg m™>.

3
Coverage is not complete since not all cities have monitoring systems. Source: Baldasano
et al. (2003).

Clty POplﬂ.a 03 TSPb PM10 SOQ NOQ
Tokyo, JP 33.4 49 18 68
Seoul, KR 23.1 84 44 60
Mexico, MX 22.0 546 201 52 46 55
New York, US 21.8 272 24 20 70
Bombay, IN 21.1 240 33 39
Delhi, IN 20.8 415 24 41
Sao Paulo, BR 20.3 403 53 18 47
Shanghai, CN 18.6 246 53 73
Los Angeles, US 17.9 225 39 9 66
Jakarta, ID 16.9 271
Osaka, JP 16.6 43 19 63
Cairo, EG 15.8 69
Calcutta, IN 15.4 375 49 34
Manila, PH 15.2 32
Karachi, PK 14.6
Dacca, BD 13.6
Buenos Aires, AR 13.9 185 20
Moscow, RU 13.4 100 80
Beijing, CN 12.4 377 90 122
Rio de Janeiro, BR  12.2 60 o0 40
WHO standard® 90 20 50 40
@ Population expressed in millions, 2005. The city refers to urban agglomerations. Source:

www.citypopulation.de.
b TSP = Total suspended particles.
¢ WHO standard for PM1g was issued in 2005, all the rest in 2000 (WHO, 2000, 2005).

alongside water contamination, hazardous wastes, noise and others, it is cur-
rently the most politically controversial environmental concern of large cities.
It affects every resident, it is seen by every resident, and is caused by nearly
every resident (Mage et al., 1996; Mayer, 1999). Studying the human health
effects of air pollution has been challenging, because it is difficult to iso-
late from other factors that also influence health such as smoking, diet, etc.

However, it is clear that exposure to elevated concentrations of ambient air
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pollutants cause adverse human health effects (increased mortality, morbid-
ity, deficits in pulmonary function and cardiovascular and neurobehavioural
effects), but the critical question has been how severely is health affected.
The World Health Organization (WHO, 2005) has estimated that urban air
pollution causes the premature death of more than 2 million people in de-
veloping countries per year, and millions of cases of respiratory illness are
associated to air pollution in big cities. Other environmental impacts from
air pollution, as reported by the World Bank (Kojima and Lovei, 2001), in-
clude damages to buildings and structures, agricultural crops, vegetation and

forests, reduced visibility and increasing greenhouse gas emissions (fig. 1.2).

21%
Climate
change

11%

Other 68% Health

Impacts

Figure 1.2: Composition of environmental damages from fuel combustion in six develop-
ing country cities, 1993. The cities are: Bangkok (Thailand), Krakow (Poland), Manila
(Philippines), Bombay (India), Santiago (Chile) and Shanghai (China). Source: Kojima
and Lovei (2001).

A number of local (Molina and Molina, 2002; Vivanco and Andrade, 2006)
and global studies (Mage et al., 1996; Mayer, 1999; Moussiopoulos, 2003)
show that on-road traffic is a major source of air pollution in large cities. It
is expected that with the process of urbanization more people will drive more

vehicles over greater distances and for longer time, increasing emissions. The

4



1.2 The case of Bogota

crucial problem of vehicle emissions, which occur near the ground level and
in densely populated areas, is that they cause greater human exposure to
harmful pollutants in the immediate locality than do emissions from sources
such as power plants that are situated at elevated levels and often further
away from dense population centers (Kojima and Lovei, 2001). They are a
major source of four of the six principal air pollutants (CO, NO,, Volatile
Organic Compounds and Lead), and contribute to the total suspended par-
ticle (TSP) concentrations. Besides, in cities where a substantial portion of
the motor vehicle fleet is diesel-powered, such as Bangkok, Manila and Seoul
(Mage et al., 1996), there are additional problems of black smoke, SO, and

greater particulate emissions.

Emissions of air pollutants by motor traffic not only depend on traffic den-
sity but also on different factors such as driving habits, state of maintenance
of the vehicle, technology, ratio of automobiles to trucks, quality of the fuel,
etc. As far as traffic is concerned, developed countries present the trend of
decreasing emissions of air pollutants, whereas less developed countries show
the opposite trend (Mayer, 1999). According to UNEP (2006), this happens
because much attention is directed to the regional and global consequences
of fuel combustion in rich countries, executing some control over the factors
mentioned above. In developing countries, the local environmental prob-
lems associated with energy use for transport remain a paramount matter
of concern. Pollution abatement in the transport sector is therefore likely to
become increasingly important in urban air quality management strategies in
the coming years, as suggested by institutions such as the World Bank (Ko-
jima and Lovei, 2001) and the World Health Organization (Mage et al., 1996).

1.2 The case of Bogota

Bogota, the capital of Colombia, is the 5 largest city in Latin America
(table 1.2) and the 32 in the world. As other cities, it also undergoes im-

portant immigration problems and growth. For example, an average annual
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population growth of 2.7 % was estimated during the last decade for the city
(Gutiérrez et al., 2001). Nowadays, it has more than 8 million inhabitants,

and it is classified as a lower-middle income city (Baldasano et al., 2003).2

Table 1.2: Supercities in Latin America and their air quality data. Years of data are
1999 and 2000. All data reported correspond to the mean annual concentration in pg m—3
except for the second Oz column (see note b). Source: Baldasano et al. (2003).

Clty POpU.l.a 03 03 b TSPe PM10 SOQ N02
Mexico city, MX 22.0 72 546 201 52 46 55
Sao Paulo, BR 23.1 403 53 18 47
Buenos Aires, AR 13.5 185 20
Rio de Janeiro, BR  12.2 139
Bogota, CO 8.4 38 348 58 40 39
Lima, PE 8.2 176 39 92
Santiago, CL 5.9 31 351 77 12 o1
Belo Horizonte, BR 5.7
Caracas, VE 4.8 53 33 57
Guadalajara, MX 4.4 61 26 71
WHO standard* 90 20 50 40

@ Population expressed in millions, 2005. The city refers to urban agglomerations. Source:

www.citypopulation.de. According to the World Bank (2006), about 75% of the Latin American pop-
ulation lives in urban agglomerations.

b Maximum 1-h concentration.

¢ TSP = Total suspended particles.

4 WHO standard for PM1( was issued in 2005, all the rest in 2000 (WHO, 2000, 2005). WHO guidelines
are designed to offer guidance in reducing the health impacts of air pollution.

Topographical aspects

Examining the topographical situation of a city is crucial in order to better
understand its atmospheric interactions. The Andean mountain chain is di-
vided into three ranges in the south part of Colombia. Bogota, located at

4.6°N and 74.1°W, lies in a plateau situated in the eastern Andean range (fig.

2The World Bank establishes a classification of Economies by Gross National Income
(GNI): (i) high income, $ 9 266 or more; (ii) upper middle income, $ 2 996 - $ 9 265; (iii)
lower middle income, $ 756 - $ 2 995; (iv) low income, $ 755 or less. Economies are divided
according to the 2000 GNI per capita (Baldasano et al., 2003). The National Department
of Statistics from Colombia (DANE, 2006) reports that around 10 % of the dwellings in
Bogota have at least one of the basic human needs unsatisfied.

6



1.2 The case of Bogota

1.3). The plateau is about 40 km wide and 100 km long, aligned from the
southwest to the northeast, with an average elevation of 2600 meters above
sea level (masl). Mountainous complex terrain borders the plateau in three
sides: two ridges are parallel to the plateau axis, at its eastern and north-
western borders, reaching about 4200 and 3600 masl respectively (fig. 1.4),
whereas it is partially closed at its northern side. It is open at its south-
ern border to the southwest, descending gently to the Magadalena Valley
(less than 500 masl), that separates two of the main Andean chains crossing
the country. Additionally, at its eastern side, the mountain range descends

steeply towards the The Fastern Plains.

Figure 1.3:  Geographical localization of Colombia and Bogota. Source:
http://www.worldatlas.com/.

Levels of pollution

Comparing levels of pollution between cities is difficult because the records
of such levels may be affected by the amount of measurements available and
the place where they are taken. In their report about air quality data from
large cities, Baldasano et al. (2003) compare mean annual 1-h concentrations
of different pollutants for a number of cities. Some of these results are pre-
sented in tables 1.1 and 1.2. It can be observed that the WHO air quality
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Figure 1.4: Topography of the region around Bogota. The black lines delimit the city
and its main zones. Other towns in the region are presented for reference.

guidelines (WHO, 2005) are exceeded for a number of cities. In Bogota,
O3 and PM, are the most critical pollutants. The hourly O3 standard and
24-h PM10 standard stipulated by the local environmental agency are also
frequently exceeded.® For example, in 2001 those standards were exceeded
281 times out of 49 913 hourly measurements for O3 (7 monitoring stations)
and 510 times out of 98 612 hourly measurements for PM;y (14 monitoring
stations). The maximum values attained during the same year were 393 pg
m~? (1-h) for O3 and 225 pg m~3 (24-h average) for PM;o.* Although there

is no regulation for other pollutants like toluene, benzene and formaldehyde,

3Departamento Técnico Administrativo del Medio Ambiente (DAMA), attached to the
Major’s office. Since 1997 it counts with a monitoring network which has 9 measuring
stations spread around the city.

‘DAMA standards are 163 pg m~3 (1-h) for O3 and 170 pg m~3 (24-h) for PMjo,
DAMA (2006), resolution # 391/01.
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1.8 Atmospheric Interactions

some data had been collected during the years 1998, 1999 and 2000 for these
pollutants. Unexpectedly high values were found in some measuring stations
in the city (UNIANDES/EPFL, 2001).

Bogota currently takes part of the Clean Air Initiative for Latin American
cities created by the World Bank (2006). This initiative includes also Buenos
Aires, Lima, Mexico city, Rio de Janeiro, Sao Paulo and Santiago de Chile.
It facilitates the creation and exchange of programs conceived to improve air

quality in Latin America.

1.3 Atmospheric Interactions

Emitted air pollutants are dispersed and diluted in the atmosphere. Chemical
reactions producing photochemical O3 or secondary aerosols occur frequently
during the transport process. Dispersion and dilution of air pollutants are
strongly influenced by meteorological conditions, especially by the wind and
the atmospheric stability. Topographical siting and urban structures have
a great effect on these meteorological parameters. Chemical reactions also
depend on ambient weather conditions because they are influenced by short-

wave radiation, air temperature and air humidity.

Chemical reactions and dispersion processes affect ambient air pollution
levels, causing concentrations of different substances which vary with time
and space (Mayer, 1999). Fig. 1.5 illustrates this process. Levels of pollutants
found at a given place depend thus on how much emissions are released,
chemical reactions, specific meteorological conditions and the background

levels of such pollutants.
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Figure 1.5: Atmospheric interactions of pollutants. Source: modified after Clappier,
A. (1999). Levels of air pollution found at a given place depend on specific emission
conditions, general meteorological conditions and the background air pollution (Mayer,
1999).

1.4 Scientific questions to be solved in the

frame of this work

At this point we can state that: (i) Bogota undergoes high levels of air
pollution; (ii) those levels are to a certain extent linked to the atmospheric
processes taking place, which are complex, depend on many factors and thus
are not easy to understand; and (iii) we want to tackle the air pollution
problem in the city. The first step to attack the problem consists in fully
understanding the processes taking place. The following questions can hence

be formulated for this purpose:

¢ How much emissions are released to the atmosphere in Bo-
gota?: What are the contributions of each one of the emitting sources?

Are standard bottom-up methodologies to calculate emission invento-

10



1.4 Scientific questions to be solved in the frame of this work

ries reliable enough in the case of Bogota? What can we expect if we
apply a top-down methodology to verify results? How is the spatial

and temporal distribution of such emissions?

e How does the plume of pollutants generated by Bogota be-
have? This question is very broad and probably several studies of this
kind will be necessary to fully reply it. In the frame of this work, the
question is addressed to those specific meteorological conditions which
occasion particularly high levels of both primary and secondary pollu-
tants in town. The first dry season of the year (late December, Jan-
uary, February and beginning of March) has been identified as a period
in which high levels of pollutants are presented in the city (UNIAN-
DES/EPFL, 2001). In this work, the development of Bogota’s plume
of pollutants is studied for these specific circumstances. This question
defines the size of the plume, its intensity, and its spatial and temporal

evolution.

e Do emissions released outside the city have an effect on it?
What kind of interactions exist between emissions from the city and
from outside, taking into account that some industrial corridors are lo-

cated outside the city, not far from it?

e What kind of abatement strategies can be recommended? On
which source should we act first? What impact might certain abate-

ment strategies have?

11



1. Introduction

1.5 Accessible tools: Approaches to Air Qual-

ity assessment

This section describes some of the tools which will be used along this work

to solve the questions presented in the previous section. The results through

the application of these tools in the case of Bogota, and the proposition of

new combined tools represent the main scientific contributions of this work.

12

e The Emission Inventory: Emission inventories are important tools

to describe the emission situation and eventually to manage air qual-
ity. They provide comprehensive information on emission sources and
emission fluxes in the area under consideration. Different methodolo-
gies can be applied to establish an emission inventory. While an inquiry
for single sources (based on in site information on emissions and activ-
ity data) is defined as bottom-up methodology, a use of statistic data
results in a top-down estimation. Bottom-up approaches are connected
to big efforts in data collection, therefore this approach is restricted to
a certain amount of emitters. On the other hand, top-down approaches
are often not detailed enough for urban emission inventories. The big
effort for bottom-up methodologies and the inaccuracy of top-down ap-
proaches are limitations of both methods. Therefore, a combination of
both methods can be used for urban emission estimates (Friedrich and
Reis, 2004).

Modelling: The European Directives on air quality (EU Directive
96/62/CE) recognize the importance of modelling as a tool in the defi-
nition of high pollutant concentration areas that are not in compliance
with air-quality objectives. According to Borrego et al. (2003), the use
of numerical models to estimate pollutants concentrations at mesoscale
or local scale, can be an important contribution to the identification of
sensitive urban areas in terms of air quality and evaluation of human
exposure to different pollutants. With the use of air pollution mod-

elling, it is possible to relate air emissions to air quality (Friedrich and



1.5 Accessible tools: Approaches to Air Quality assessment

Reis, 2004). Additionally, modelling might be the only tool capable
of adequately reproducing the complex phenomena taking place in the
atmosphere, allowing, once validated, to obtain rapid responses to pre-

designed emission scenarios.

e The monitoring networks: Models have to be validated through the
comparison of its results with measurements. The more measurements
exist, the better we can emit concepts on the accuracy of the models.
Bogota counts with a monitoring network administrated by DAMA,
with 9 measuring stations spread around the city (14 in 2002). Some
of them measure only meteorological parameters, and some measure
both meteorological parameters and air quality levels. Additionally, we
count on meteorological data generated by the departmental monitoring
network of CAR,? and by the national monitoring network of IDEAM.6

e Measuring campaign: Sometimes the monitoring networks are not
located at places where we foresee important impacts of the plume of
pollutants. Measuring campaigns allow to obtain such information at
the desired place for a short period of time, but long enough to ob-
tain crucial information (weeks or a few months). During a measuring
campaign, it is possible to catch “pollution episodes”, which correspond
to a series of days in which concentrations of pollutants were partic-
ularly high. This is the case of the measuring campaign which took
place in the region of Bogota during February and March, 2002. It was
coordinated by LPAS and logistically supported by UNIANDES.” The

®Data from 2 monitoring stations of CAR (Coorporacién Auténoma Regional de Cun-
dinamarca, CAR (2006)) was furnished under the frame of this work. CAR is the environ-
mental regulation authority at state level. Bogota is also the capital of the department of
Cundinamarca in Colombia.

6Data from 4 monitoring stations of IDEAM (Instituto de Hidrologfa, Meteorologfa
y Estudios Ambientales de Colombia, IDEAM (2006)) was furnished under the frame of
this work. One of them correspond to the international Airport El Dorado, located at the
western border of Bogota.

"The Air and Soil Pollution Laboratory (LPAS) from the Swiss Federal Institute of
Technology (EPFL), and la Universidad de los Andes in Bogota (UNIANDES) are the
scientific partners in the cooperation project that conceived this work.

13
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information obtained during this campaign was very valuable for this

work.

1.6 This Work

Chapter 2 of this work is devoted to the aspects related to the Emission
Inventory of Bogota and the region. Two versions of the Emission Inventory
are generated for the city. In the first version, known standard traffic emis-
sion factors are used. In the second, bulk traffic emission factors calculated
particularly for the city, using in-situ measurements and inverse modelling
techniques at street level, are used. Both emission inventories are compared
and evaluated with the help of an air quality model. Chapter 3 intro-
duces the reader to the meteorological and air quality numerical simulations
in the region around Bogota, at mesoscale level. The “episode” approach
is chosen, that means, the formation of the pollution plume during a typ-
ical photochemical 2-day episode is investigated. This approach helps to
acquire a deep understanding of the dynamics of the atmosphere in the zone
of study and open a new possibility to manage air quality in Bogota through
a scientifically-based approach. In chapter 4 some emission scenarios are
formulated and evaluated in order to identify the critical agents causing high
levels of pollution in Bogota. In the last part, some feasible emission scenar-
ios are proposed and evaluated using modelling tools. Finally, chapter 5

presents results regarding the simulation of aerosols for the region.

All chapters are presented in the form of scientific articles. Chapter 2
has been submitted to Atmospheric Environment, Chapter 3 and Chapter
4 have been submitted to the Journal of Environmental Management. All of

them are currently under review.
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Chapter 2

Combined techniques to
estimate and evaluate emission
inventories: The Bogota case.

Abstract

Two versions of the Emission Inventory (EI) are generated for the city of Bogota,
Colombia. In the first version (EI-1), CORINAIR traffic emission factors (EFs)
are used. In the second (EI-2), bulk traffic EFs calculated for the city, using
in-situ measurements and inverse modelling techniques at street level, are used.
EI-2 traffic emissions are 5, 4 and 3 times bigger than the corresponding values
in EI-1, for CO, PM;p and NMVOCs respectively. The main goal of this study
consists in evaluating the two versions of the EI when introduced into a mesoscale
air quality model. The AOT (Accumulated exposure Over a Threshold) index
is calculated for comparison between observed and simulated concentrations of
primary pollutants. Simulated concentrations using EI-2 are closer to the observed
values. This comparison allows us to extract some conclusions of the methodology
used to calculate the EFs. Local factors like the driving behavior, the altitude,
vehicle technology and an aged fleet cannot be totally included and corrected in
the standard methodologies, and seem to be more important than obtaining very
detailed and precise information on the classification of the fleet or driving speeds.
Under financially limited and fast changing situations, as in the case of many
developing countries, a simple methodology to estimate bulk traffic EFs and to
evaluate the EI, is of utmost importance. The use of combined techniques such as
in-situ measurements to estimate bulk traffic EFs, and further evaluation of the
inventories with numerical models, proved to be a useful tool for this purpose.
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2. Ewvaluation of the Emission Inventory

2.1 Introduction

Urban agglomerations are major sources of regional and global atmospheric pol-
lution. This case is especially severe in cities of developing countries, where pop-
ulation, traffic, industrialization and energy use increase as people continue to
migrate to the cities (Mage et al., 1996). Consequently, it is urgent to develop an
air quality management policy and to establish strategies of atmospheric pollution
prevention and control for such cities. Main limitations are, however, that either
environmental authorities are not always effective, or air pollution mitigation may
not be an immediate priority for the city (Mayer, 1999). Even if it is, there may
be a strong lack of information and knowledge. Bogota, capital of Colombia, is to
some extent a representative case of the latter condition. By 2001, it had reached
6.6 million inhabitants inside the urban perimeter (Skinner, 2004) and about 8.0

5" biggest city in Latin America

million taking into account the suburbs. It is the
with nearly one million vehicles circulating every day, among which 50 000 are
diesel-powered heavy vehicles. Bogota (4.6°N and 74.1°W) lies in a plateau placed
in one of the three Andean mountain ranges crossing the country. The plateau
is about 40 km wide and 100 km long, and aligned from the southwest to the
northeast. It has an average elevation of 2600 masl, while mountainous complex

terrain borders the plateau (fig. 2.1(a)).

Bogota has an air quality monitoring network administrated by the DAMA
(Departamento Técnico Administrativo del Medio Ambiente). Since 1997, it has
been registered that the air quality standards of PMjq (170 pg m—3, 24-h average),
O3 (83 ppb, hourly average) and NOg (168 ppb, hourly average) are frequently ex-
ceeded. For example, in 2001 those standards were exceeded 281 times out of 49
913 hourly measurements for O3 (7 monitoring stations) and 510 times out of 98
612 hourly measurements for PMjo (14 monitoring stations). The maximum val-
ues attained during the same year were 393 pg m~3 (1-h) for O3 and 225 pg m—3
(24-h average) for PMyg. The center and southwest parts of the city are highly
polluted zones (fig. 2.1(b)): MMA and Cazuca stations indicate the most frequent
exceedances for O3, Merck and Sony stations for PMjg, and Nacional and MMA
for NOy (DAMA, 2006).

Aiming to improve air quality in Bogota, the research project entitled Develop-
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Figure 2.1: Domain chosen for the emission inventory and simulations. (a) Topography
of the domain of study (212 km x 212 km, lower left corner 3.9°N and 75.0°W) and city
of Bogota. Cundinamarca department and Bogota’s urban perimeter are delimited in
thick black. Monitoring station number 17 (Duque) is also shown. (b) Bogota’s urban
perimeter, street network and measuring stations: 1. Corpas, 2. Escuela, 3. Fontibén, 4.
Merck, 5. Cazucd, 6. Sony, 7. Cade, 8. Monserrate, 9. Nacional, 10. Santo Tomas, 11.
MMA.

ment of an air quality management system for Bogota was conceived. This project
comprises the development of a set of tools which will facilitate the understanding
and management of the air pollution problem in the city. Uncertainty regarding
the response of pollutant concentrations to reductions of emissions, has made of
modelling an essential tool to test abatement strategies (Vivanco and Andrade,
2006; Martilli et al., 2003); hence meteorological modelling in combination with
air quality simulations is part of the set of tools to be developed. The modelling in
turn will depend on an optimal spatially and temporally distributed emission in-
ventory (EI). The goal of the project is to quantify emissions and to evaluate their
implications on air quality, by applying a combined meteorological-photochemical
air pollution model to the case of Bogota. The ultimate purpose is to imple-
ment efficient pollution control plans, following a careful cost benefit analysis. A
series of articles is currently being prepared in order to present the main contri-
butions of this case study. Up to now, a comprehensive spatially and temporally

resolved EI did not exist for Bogota, neither have up to date photochemical models
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2. Ewvaluation of the Emission Inventory

been applied to the region. The present paper is devoted to the presentation and
evaluation of the EI for Bogota, 2002 being chosen as the base year. Problems en-
countered while completing the EI are presented, as well as the solutions adopted.
This is of paramount importance because the lack of information and knowledge
on emissions is a frequent situation when working on air pollution case studies in
developing countries (e.g. Gurjar et al. (2004); Wang et al. (2005); Vivanco and
Andrade (2006)). Consequently, finding adequate solutions to quantify emissions

in a rapidly changing environment is often a major challenge for such countries.

Detailed Els of air pollutants from human activities and natural sources are a
first essential step towards understanding, controlling and mitigating air pollution;
since the composition of the atmosphere is directly related to the emission fluxes
(Taghavi et al., 2005). Two main methodologies can be applied when building an
EI (Friedrich and Reis, 2004), namely bottom-up (based on in site information
on emissions and activity data, it implies a big effort in data collection and it re-
lies on emission models), and top-down (independent estimates of emissions based
for example on analysis of statistical data, which are often not detailed enough
for modelling purposes). Many authors (Friedrich and Reis (2004); Vivanco and
Andrade (2006); Parrish (2006) among others) recommend a combination of both
methodologies; when their estimates agree, Els are then considered to be more

reliable.

Within the framework of this project a bottom-up approach is used to build
our EI. The emission model AIREMIS (ACRI, 2000), which is based on CORI-
NAIR methodologies (EEA, 1999), is used for this purpose. Two main types of
data are needed: activity data (for example data on on-road vehicle sources like
the average trip length, number of vehicles circulating per hour and per road, their
average speed, etc.) and emission rate data, that is, emission factors (EFs). The
first group of information represents a challenge in the case of Bogota because

often the required data are not available.

For the second group of information, in the case of Europe for example, large
databases of EF's exist, like those proposed by CORINAIR. Nevertheless, there is
still an important uncertainty regarding precise real-world emissions. We focus our

interest on on-road traffic because this source is among the main contributors to
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2.1 Introduction

air pollution at urban sites (Rappengliick et al., 2000; Na et al., 2003; Vivanco and
Andrade, 2006; Parrish, 2006). The project BAB II (Karlsruhe BundesAutoBahn
campaign (Germany), Corsmeier et al. (2005)), shows an example of the differences
that can be found between model-calculated and real-world on-road traffic EFs.
CO and NO, emissions are underestimated by the emission model by about 23%
and 17% respectively. For NMHC, the underestimation depends on the chemical
species, but it can go up to a factor of about 20 times. The accuracy of mobile
emission estimates have been questioned by many studies (Wang et al., 2005; Vi-
vanco and Andrade, 2006; Parrish, 2006), suggesting the need of verification of
the inventories and EFs. Traffic EFs depend to a large degree on the driving
conditions and therefore can vary depending on the location (Berkowicz et al.,
2006). This is particularly relevant for Bogota, where traffic jams are frequent,
roads are often in a poor state of repair, and travel times are long (Skinner, 2004).
There have been many attempts to estimate better real-world mobile emissions in
developing countries using different approaches, for example, in India and China
(Gurjar et al., 2004; Wang et al., 2005) laboratory measurements were done using
local driving conditions and motor vehicles. Mexico has worked on direct measure-
ment of exhaust emissions using remote sensing techniques (Schifter et al., 2003)
and mobile laboratory in chase techniques (Zavala et al., 2006), while some other
studies have been done to validate the EI through comparison with observations
such as the study made in Sao Paulo by Vivanco and Andrade (2006). Some other
methodologies like the application of street canyon models compared to measure-
ments have been applied (e.g Olcese et al. (2001); Berkowicz et al. (2006)). The
general conclusion of these studies is that model-calculated traffic emissions are
underestimated and further research is needed to bring modelled and real-world

traffic emissions in closer agreement.

In this paper, two estimations of the Bogota’s EI are presented and compared.
In a first step CORINAIR traffic EFs are used for the calculation of the EI (in the
following this EI will be labelled EI-1). An evaluation of the traffic EF's for Bogota
was conducted afterwards, via a top-down methodology which combines measure-
ments inside a street canyon (SC) and the inverse use of a dispersion model. In
this study, total on-road vehicle emissions are calculated by replacing CORINAIR
EF's by those obtained in our evaluation process, so as to obtain a second version
of the EI (in the following this EI will be labelled EI-2). Both Els are tested using
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2. Ewvaluation of the Emission Inventory

a state-of-the-art Air Quality Model (AQM) as tool of comparison. The AQM
is applied to the particular case of a photochemical episode which took place in
Bogota during 6 and 7 March 2002 (and for which a measuring campaign was
conducted). The simulated concentrations obtained using both versions of the EI

are compared with measurements.

Section 2.2 of this paper presents the relevant information on activity data for
each source of emission and the description of how the EI is built. In the case of
traffic, a brief description of the methodology used for the calculation of Bogota’s
traffic EFs is presented (section 2.2.2). In the last part of section 2.2, results of
the two versions of the EI are included. The evaluation and comparison of the Els
using the AQM is presented in section 2.3. Section 2.4 includes the analysis and

discussion of results once the Els have been evaluated.

2.2 Emission inventory data

The methodology for the preparation of the EI includes three steps, considering
that it will be used as input data of the AQM: definition of the temporal and spa-
tial resolution of the inventory, source classification and calculation of emissions,
and incorporation of the time dependent source data into the grid defined for mod-
elling. A temporal resolution of one hour is used, and calculations are done for a
given working day in March. As for the spatial resolution, the EI is calculated for
the Cundinamarca state (fig. 2.1(a)), which is included inside the grid used for
modelling (212 km by 212 km with 4-km square cells). Emission calculations are
first individually done by source for Cundinamarca and afterwards adjusted to the
4 x 4-km cells.

Four main sources are considered for the calculations: production and services
(P&S), air traffic, biogenic (section 2.2.1), and on-road traffic (section 2.2.2). For
the former, two sets of EFs are used: CORINAIR EF's (section 2.2.2) and Bogota’s
own EFs (section 2.2.2). Emission estimations are done for NO,, CO, NMVOCs,
COa2, SO9, CHy, and PM1g. AIREMIS is used for calculations and spatial aggre-
gations. Section 2.2.3 presents results for both Els.
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2.2 Emission inventory data

2.2.1 Input data other than traffic

Production and Services (P&S)

These sources are divided in point sources (industries and commercial establish-
ments) and area sources (fuel commercialization and Bogota’s landfill). DAMA
furnished emission data inside the urban perimeter for 4 818 point sources (table
2.1 and fig. 2.2), product of a detailed industrial EI carried out during 2001, using
the AP-42 series EF's proposed by the EPA methodology (DAMA /INAMCO, 2001;
EPA, 2004). From the 4 818 sources, 3 194 are georeferenced. The remaining do
not have an official address in agreement with DAMA’s street network database.
From the 3 194 sources, 106 contribute with 95% of the total emissions (except
NMVOC), so in this inventory they are considered as point sources inside the urban
perimeter, and their emissions are input to AIREMIS (as furnished by DAMA).
The remaining 4 712 sources (4818 — 106) are grouped as area sources by district
(Bogota’s urban area is divided into 19 districts, fig. 2.3). Most of the 106 point
sources are situated in the Puente Aranda district, the most important industrial

center in Bogota.

Table 2.1: Percentual distribution by economical activity in Bogota and Cundinamarca™®

Economical activity Bogota Cundinamarca
Food and drink production 14.8 28.9
Textile industry 2.5 3.2
Shoe production 4.3 NA
Chemical industry 4.1 16.5
Plastic and rubber industry 4.7 7.6
Metallurgy and metal products 1.6 13.3
Furniture manufacture 6.8 12.9
Non-metallic minerals extraction 0.1 15.8
and production

Manufacture of paper, cardboard NA 1.8
and derivatives

Hotels, bars 25.1 NA
Miscellaneous™* 36.0 NA

*sources: DAMA/INAMCO (2001); DANE (2004). **Miscellaneous comprises dry cleaning, printing,
engineering services, etc. NA=Not available.
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14%

26%

2% 33%

OPropane ® Coal+wood O Diesel
W Natural gas NOthers

Figure 2.2: Fuel usage for the 4818 records of point sources in Bogota. Other fuels are:
crude oil, fuel oil, burned oil and gasoline. Source: DAMA/INAMCO (2001). Although
59% of the industries are using propane and natural gas, a high percentage (16%) uses
coal, wood and other fuels of low quality.

To cover the spatial resolution of the inventory described in this study, indus-
tries located outside the urban perimeter but inside Cundinamarca department
are taken into account. A total number of 260 point sources, comprising two im-
portant industrial centers in the region (northern and western industrial corridors,
fig. 2.3), are used as input data. The existing information for these industries is
very poor, an official detailed database does not exist (only by economical activity,
table 2.1), and information concerning fuel usage or temporal distribution is even
more scarce. Either CORINAIR EFs or direct measurements of emissions, when
available, are used for the calculations. For example, 91 of the 260 sources, cor-
respond to brick factories. Existing emission measurements from a representative
number of them are used as average input emission data for all of them, because
EF's for some of the fuels used, such as crude oil, biomass, tires, etc., do not exist.
When possible, local characteristics of the fuels are used, as for example in the

case of composition of the coal used.

EPA’s methodologies and EFs (EPA, 2004) are used for the calculation of
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Figure 2.3: Spatial distribution of the main point industrial sources around the region
of Bogota. Three main industrial zones are shown: center of the city (Puente Aranda
district), and the northern and western industrial corridors. The administrative division
of Bogota by localities is also depicted: 1. Usaquén, 2. Chapinero, 3. Santafé, 4. San
Cristébal, 5. Usme, 6. Tunjuelito, 7. Bosa, 8. Kennedy, 9. Fontibén, 10. Engativa, 11.
Suba, 12. Barrios Unidos, 13. Teusaquillo, 14. Mértires, 15. Antonio Narino, 16. Puente
Aranda, 17. Candelaria, 18. Rafael Uribe, 19. Ciudad Bolivar.

emissions coming from the commercialization of fuel (NMVOC emissions due to
handling and selling gasoline) and the landfill (CH4, CO2 and NMVOCs). Both
are considered as area sources. For the first one, 19 area sources inside Bogota’s
urban perimeter (by district), and one area source for the rest of the Cundinamarca
department. As for the landfill, one area source comprising the whole extension of
it (fig. 2.1(b)).

Air traffic

The airport in Bogota is located inside the city (fig. 2.1). Emissions are calculated
based on the georeferencing of the landing strip and the airport area, the air fleet
composition, the total number of air operations per year and the temporal varia-
tions of them. EFs are those proposed by the MEET methodology (ACRI, 2000).
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2. Ewvaluation of the Emission Inventory

Results appear as both linear (over the landing strip, while taking off and land-
ing) and area (over the surface of the airport, while moving or parking) emissions,
and are calculated at the ground level. Pollutants taken into account are: CO,
NMVOC, NO, and SOs. The total number of air operations during the year 2000
was 165 497 (AEROCIVIL, 2002), value used as input for AIREMIS. Monthly,
daily and hourly coefficients are applied to obtain the temporal distribution of the
air operations (UNIANDES/EPFL, 2002).

Biogenic sources

The biogenic EI is important for modelling, because biogenic VOCs can contribute
significantly to the formation of ozone (Stockwell et al., 1997; Rappengliick et al.,
2000). Land use data (U.S. Geological Survey, 2002) grouped in three main types
of biogenic sources (foliar forest, grasslands and other kinds of similar vegetation,
and soils) is used for the calculation. The two first groups concern emissions of
Isoprenoids, Terpenes and other VOCs, whereas the last one concerns Methane
emissions. Although biogenic EF's are inherent to the existing vegetal species at a
given place and time, those from CORINAIR (EEA, 1999) are used for this study,
due to the lack of documentation in the geographical distribution of the vegetal
species of the region and their EFs. Typical hourly values of temperature and
Photosynthetically Active Radiation (PAR), for a day in the first dry season of

the year, are used to compute these emissions.

2.2.2 Input data for traffic
Classic methodology: CORINAIR EFs (EI-1)

Traffic emissions are calculated using three main groups of activity data: the
georeferenced street network, the fleet composition, and temporal and spatial
variations of circulation and parking of this fleet. A traffic model is applied to
the city (Reymond, 2002) to obtain the number of vehicles (and their average
speed) circulating per segment of the street network between 1800LT and 1900LT
of a given working day (this hour stands for the input information required by
AIREMIS). The linear emission per segment is calculated based on CORINAIR
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velocity-dependent EFs according to the composition of the fleet and the type of
road (highway, peripheral or urban). The emissions are computed hour per hour,

using hourly coefficients which are given as input to the model for each type of road.

Total traffic emissions are calculated by adding emissions from two different
sources, namely exhaust emissions and evaporative emissions. Exhaust emissions
are at the same time divided into the thermally stabilized engine operation (hot
engine) and the warming-up phase (cold start). Gasoline evaporation includes di-
urnal emissions, hot soak emissions and running losses. For both diurnal and hot
soak emissions, GIS-based data of the economical distribution of the city, that is,
the location of commercial, industrial and residential districts is used, in order
to generate the corresponding area sources of emissions. Hourly temperatures ex-
pected for a given average day of the first dry season of the year (January, February

and beginning of March) are also taken into account for this calculation.

Concerning the fleet circulating in Bogota, an official, complete and updated
database does not exist. Bogota has a total of 989 366 vehicles (684 428 reg-
istered in the city and 304 938 registered outside the urban perimeter but with
their owners having an address in Bogota, according to the state of the fleet in
2002, UNIANDES/EPFL (2002)). 6% are equipped with diesel. This corresponds
to buses, trucks and a few light duty vehicles and passenger cars (1%), whereas
the remaining 94% corresponds to gasoline passenger cars, light duty vehicles,
minibuses, microbuses and vans. The database containing the information of the
composition of the fleet by type and fuel has only 565 613 entries. We apply the
percentages of repartition from this database to the total number of vehicles (Ta-
bles 2.2 and 2.3). Splitting by classes (according to the engine capacity) is also
required as input data for each type of vehicle. 382 547 entries possess this infor-
mation in the existing database, so input percentages to AIREMIS are based on

information from these records.

The hourly coefficients of traffic circulation (fig. 2.4) per type of road are com-
puted based on existing vehicle counts (UNIANDES/EPFL, 2002). The coefficient
for the hour between 1800LT and 1900LT, the same hour for which the traffic model
is run, has a value of 1. The amount of vehicles circulating per hour is calculated

by multiplying such coefficients by the traffic model results. Calculations for all
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Table 2.2: Composition of Bogota’s fleet (% by year of production, state in 2002) for
Gasoline passenger cars (GPC).

Production year %
< 1972 4.66
1972-1977 7.90
1978-1980 5.49
1981-1985 9.91
1986-1992 15.82
1993-1996 20.97
1997-2000 12.07

> 2001 3.30
Total 80.12

See table 2.3 for the rest of the fleet distribution

the vehicles were done using an average trajectory length of 25 km, which is the
value reported by the Ministry of Transport (UNIANDES/EPFL, 2002).

Estimation of Bogota’s traffic EFs (EI-2)

On-road traffic is the most important factor contributing to urban pollution in
Latin American supercities. It is therefore of great importance to have reliable
traffic EIs. We apply a simple and cost-effective methodology to obtain real-world
EFs for Bogota. A brief description of the methodology, which is based in the
work made by Palmgren et al. (1999) and Olcese et al. (2001), is presented here
(details can be found in Manzi et al. (2003)). A new traffic EI is thus computed
by replacing CORINAIR EFs by those obtained for Bogota.

The methodology used to obtain Bogota’s EF's consists in the inverse applica-
tion of a dispersion model within a street canyon (SC) with a high traffic circula-
tion, assuming that it is representative of the general driving conditions and fleet
circulating in the city. This methodology allows estimation of hot emissions within
the SC, and it is based on the premise that the street contribution to pollution
(Cs, [g m™3]) is the product of the local street traffic emissions submitted to a
given dispersion, which is dependant on meteorological factors and the geometry
of the SC:

30



2.2 Emission inventory data

Table 2.3: Composition of Bogota’s fleet (% by year of production, state in 2002) for
Gasoline light duty vehicles (GLDV), diesel passenger cars (DPC), diesel light duty vehicles
(DLDV), heavy duty vehicles-trucks (HDV-T) and heavy duty vehicles-buses (HDV-B).

Production year GLDV DPC DLDV HDV-T HDV-B

< 1972 1.47 0.02  0.00 0.98 0.40
1972-1991 5.76  0.29  0.01 1.30 1.15
1992-1996 4.05 025 0.01 0.34 0.52
1997-2000 232 038  0.02 0.10 0.10

> 2001 0.19 0.07 0.01 0.01 0.14

Totals 13.80 1.01 0.04 2.72 2.31

For GPC see table 2.2. 55% of the total fleet is 10 years old or more at the moment of consulting the
database. From the total fleet, 6% run with diesel, 94% with gasoline.

Cs=D- Qs (2.1)
where D is the dispersion factor [s m™2] and Q; is the emission rate of pollutant
in the street [g m~! s7!], which varies with the daily traffic. In order to evaluate

D, the model STREET is used (Johnson et al., 1973; Berkowicz et al., 1997). It
is empirically derived based on pollution measurements in a number of SCs and
describes two formulations for Cs (C,, and Cj, for the windward and leeward sides
of the street). The formulation for C; can be found elsewhere (Berkowicz et al.,
1997; Olcese et al., 2001); C,, is expressed as:

Mo H—z_ g (2.2)

Cu=0Cs= w(u+0.5) H

where H is the depth of the SC [m], w is its width [m], v the wind speed at
roof level [m s7!], 2 the receptor height [m], and k¥ a nondimensional empirical
constant. Releasing known amounts of passive tracer so that a line source inside
the SC is simulated, and measuring its concentrations, k is obtained. Equation 2.2
can afterwards be inverted to calculate ()5 for the pollutants of interest, if their

concentrations are also measured.

Qs can be expressed as the total number of vehicles circulating per hour (ir)

times an average emission rate per mobile source ¢, [g m~! veh~!]. Moreover, for
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Temporal variation coefficient
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Figure 2.4: Hourly coefficients of traffic distribution, per type of road. A value of 1.0
is attributed between 1800LT and 1900LT to both types of roads, peripheral and urban
(highway not used in this study), for a working day. The rest of the coefficients are assigned
based on the existing traffic counts in the city.

two different types of vehicles (heavy and light):

Qs=tr-q=1trL qr +tru - qu (2.3)

where tp;, and tpp represent the hourly traffic counts for light and heavy vehicles
(as mentioned before, light and heavy vehicles use mainly gasoline and diesel as
fuel respectively). qr, and gg correspond to the average emission per mobile source
[¢ m~!veh~!] for each vehicle category. Whenever hourly car counts are available,
equation 2.3 is formulated. All the possible pairs of linearly independent equations
are solved, in order to calculate separately q; and g, which correspond to the

desired EFs in our study. The average values obtained are presented in table 2.4.

These EFs are replaced in AIREMIS as velocity-independent, equal average
values for every type of vehicle, separating only into two main types (light and

heavy vehicles). A discussion on these results is presented in section 2.4.2.
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Table 2.4: Traffic emission factors (¢) found for Bogota, for light and heavy vehicles* [g
km~! veh™1]

Pollutant Light Heavy Weighted average
CO 8.27+1.96 385.24+142.3 15.474+2.84
NOx 0.11+0.02  18.9£0.37 0.41£0.09
PM;q 0.27 2.38 0.35£0.08
NMVOC 5.58

*source: Manzi et al. (2003). Light vehicles include passenger cars and light duty vehicles; heavy duty
vehicles include trucks and buses. The average EF obtained + the standard deviation is presented in this
table.

2.2.3 Results of the Emission Inventories

Table 2.5 presents the results of the EI by source for Bogota, and its percentages
of contribution to total emissions in Cundinamarca. Two columns are presented
for traffic, using CORINAIR (EI-1) and Bogota’s (EI-2) EFs. This table shows
how total traffic emissions increase 5, 4 and 3 times for CO, PM;y and NMVOCs
respectively after applying Bogota’s EFs. A further discussion of these results will

be presented in section 2.4.

Table 2.5: Total emissions by source for the urban perimeter of Bogota [ton day—!]*

On-road traffic P&S Air Traffic  Biogenic
Pollutant EI-1 EI-2
CO 165.0 (73) 838.8 (64) 21.9 (41) 6.7 (100) -
NO, 39.0 (64) 37.4 (64) 3.8 (17) 7.6 (100) -
PMy 1.0 (70) 4.5 (65) 8.1 (78) - -
NMVOC  42.6 (83) 130.4 (68) 12.1 (78) 3.2 (100) 0.03 (0.4)
s, T 63069 a0 () 04(ion) -
CHy 1.4 (77) 132.7 (100) - -
COq 5 133.4 (70) 1.095.9 (22) - -

* Numbers in parenthesis are the percentage of contribution of Bogota’s emissions to total emissions over
the studied domain. P&S= Production and Services.
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2. Ewvaluation of the Emission Inventory

2.3 Evaluation of the Emission Inventories over

a specific case study

In order to assess the two versions of the EI, an AQM at the mesoscale level is
applied. The goal is to compare the concentrations of CO, NO,, NMVOCs and
Ozone generated by the AQM for both Els (EI-1 and EI-2). The AQM is ap-
plied to the 2-day photochemical episode during the dry season in 2002 (March 6
and 7). This test case represents a typical photochemical pollution situation often
found during the dry seasons in the plateau of Bogota (see section 2.3.2), and it
is chosen because we rely on data from a measuring campaign which took place
in the region for this period, allowing a better validation of the model. Simulated
and observed concentrations are compared to evaluate the proximity of both Els
to measurements. Sections 2.3.1 and 2.3.2 present a brief description of the AQM
and the meteorological situation in the region respectively. Results of running the

AQM for the two emission scenarios (EI-1 and EI-2) are presented in section 2.3.3.

2.3.1 Model description

The models TAPOM (Transport and Air POllution Model, Martilli et al. (2003))
and FVM (Finite Volume Model, Clappier et al. (1996)), developed at LPAS
(EPFL), are used for this study. They are three dimensional Eulerian models
using terrain following grid and finite volume discretization. The transport and
photochemistry model TAPOM includes the RACM lumped species mechanism
(Stockwell et al., 1997), the Gong and Cho (1993) chemical solver for the gaseous
phase, the ISORROPIA module for inorganic aerosols (Nenens et al., 1998), the
passive transport of organic aerosols, and the solar radiation module TUV devel-
oped by Madronich (1998) to calculate the photolysis rate constants. Meteorolog-
ical input data for TAPOM is obtained from the model FVM, whose borders can
be forced using wind and temperature fields from large scale model results. FVM
includes an urban turbulence module (Martilli et al., 2002, 2003) which specifically
simulates the effects of urban areas on the meteorology. For both meteorological
and air quality simulations, we use a domain of 212 km by 212 km (fig. 2.1), with
4-km square cells and the city of Bogota in the middle. A pre-run of one day with

the same emissions and wind fields is conducted for all the simulations, in order
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2.8 Evaluation of the Emission Inventories over a specific case study

to provide more realistic initial conditions.

2.3.2 Meteorological situation in the zone of study dur-
ing the episode

The episode chosen corresponds to a period of the year in which the general cli-
matic conditions in the colombian Andes are dry and hot. During late December,
January, February and early March, the intertropical convergence zone (ITCZ)
is located at a latitude of about 2°N, thus global scale winds (The Trade winds)
come from the NE to the region of study. The influence of these winds is mainly
seen over Bogota’s plateau during the mornings, hence pollutants are pushed to
the southwest of the city. As the sun heats up the ground throughout the day,
a thermal wind predominates, air masses go up from the valleys and are pushed
towards the FEast and Northeast, so pollutants are recirculated back over the city
again. This meteorological behavior is representative of the first dry season of the
year in the region, and it is of main interest since pollutants are brought back
over the city towards the end of the morning, increasing exposition levels. The
validation of meteorological and air quality simulations has been done using both
data from Bogota’s monitoring network and from the measuring campaign. It will

be presented in separate articles which are currently being prepared.

2.3.3 Comparison of simulated and observed surface

concentrations

A first comparison with primary pollutants is conducted. CO and NO, are little
influenced by the chemistry on the temporal scale of the order of a few hours (even
if NO and NOg are reactive, the total NO, = NO + NOs is little influenced by the
chemistry). They are mainly influenced by dispersion and thus their concentrations
are good indicators to evaluate the EI. Predicted daily CO concentrations using
CORINAIR traffic EFs (EI-1) are much lower than the observed values and than
those predicted with Bogota’s traffic EFs (EI-2) (fig. 2.5). Nightly peaks of CO
are not well reproduced by the simulations, probably due to an inadequate distri-
bution of the nightly wind field. For NO, (fig. 2.6), both simulations give similar

results, since total NO,, traffic emissions do not differ much between both inven-
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tories (around 4 %, see table 2.5), nevertheless, morning and nightly maximum
concentrations are over-predicted at Nacional station. The hour of the morning
peak, which is related to traffic, is generated by the model at 0900LT, and it is in

good agreement with observations.
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Figure 2.5: Time series of observed (stars) and simulated CO concentrations in ppm
using two versions of the emission inventory: EI-1 (dashed line) and EI-2 (solid line), 6
and 7 March 2002, for Fontibon and Sony measuring stations.

In order to better evaluate results, the index AOT),,;, is calculated (Accu-
mulated exposure Over a Threshold, is the surface under the curve of pollutant
concentration time series above a certain threshold, in this case the threshold is
the minimal concentration found for each curve), for both emission scenarios and
observations, and for all the measuring stations. The difference in percentage be-
tween the AOT,,;,, values obtained for the simulations and those obtained for the
observations is computed for each station and afterwards averaged (table 2.6). The
simulation labelled EI-2 is closer to observations, especially for CO, presenting an
average percentual difference of 33%, whereas simulation EI-1 presents 85%. For
NO,, percentual differences with respect to observations are smaller for EI-2, al-
though not so different from EI-1 results. This indicates a clear underestimation of

CO emissions in EI-1, whereas for NO, both EI-1 and EI-2 generate similar results.

The model also shows how simulated concentrations of NMVOCs (fig. 2.7) are
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Figure 2.6: Time series of observed (stars) and simulated NO, concentrations in ppb
using two versions of the emission inventory: EI-1 (dashed line) and EI-2 (solid line), 6
and 7 March 2002, for Nacional and Santo Tomas measuring stations.

Table 2.6: Percentual difference between the AOT,,;, values computed for the two sim-
ulations (EI-1 and EI-2) and the observations. AOT values are calculated over the 2-day
pollution episode (6 and 7 March 2002).

Pollutant EI-1 EI-2
CO 85 33
NO, 76 72

much higher when using Bogota’s EFs. Since there are no NMVOC measurements
available, we proceed to examine Ozone concentrations (fig. 2.8) as an indirect way
to evaluate the impact of a change in the NMVOCs input emission data, although
Ozone chemistry is strongly non-linear and concentrations depend on many other
factors such as solar radiation and wind. On 6 March, the maximum measured O3z
value is 149 ppb, attained at Nacional station, downtown Bogota. With both Els,
the model reproduces an O3 maximum in the city center (87 and 107 ppb for EI-1
and EI-2 respectively, at Nacional station), showing a better agreement for EI-2.
On March 7, the maximum measured O3 value is attained at Monserrate station,
towards the eastern part of the city (see fig. 2.1), with 120 ppb (not shown),
whereas the model simulates a maximum in downtown, as the day before. This

difference allows us to conclude that the meteorological conditions of the second
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Figure 2.7: Time series of simulated NMVOCs concentrations in ppm using two versions
of the emission inventory: EI-1 (dashed line) and EI-2 (solid line), 6 and 7 March 2002,
for Nacional and Sony stations.

day are not accurately reproduced by the model. Therefore, even if EI-1 simulated
O3 values are closer to measurements in Nacional and Merck stations for the sec-
ond day of simulation, we consider that the calculation using EI-2 simulates better

the O3 production.

2.4 Discussion and implications of the emis-
sion inventory results

Once both EIs have been evaluated and EI-2 is found to be more realistic, further
conclusions are extracted based on it (section 2.4.1). Afterwards, some limitations

of the methodology are outlined (section 2.4.2).

2.4.1 Distribution of emissions by source and by region

The most important contribution of CO, NMVOC, COs and NO, in Bogota is
attributed to traffic (fig. 2.9). A similar relative source strength is found for other
Latin-American cities such as Santiago and Mexico city (CONAMA, 2000; SMA,
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Figure 2.8: Time series of observed (stars) and simulated O3 concentrations in ppb using
two versions of the emission inventory: EI-1 (dashed line) and EI-2 (solid line), 6 and 7
March 2002, for Corpas, Merck, Nacional and Duque stations.

2004), especially for CO and NO,. Fig. 2.10 shows the repartition of the on-road
traffic emissions for light and heavy vehicles. For PM;p, NO,, CO and SO,, the
99, 96, 84 and 65% of the total traffic emission, respectively, correspond to heavy
vehicles (buses and trucks). This result is of main importance when considering
that only 5% of the total fleet corresponds to heavy vehicles, using diesel as fuel.
This small proportion of the fleet accounts for a large part of the air pollution
in Bogota, and sheds light on where the environmental authorities should address
their efforts. A similar situation is found in other cities like Sao Paulo (Colon et al.,
2001; Vivanco and Andrade, 2006) and Mexico (Zavala et al., 2006), where only a
small portion of the fleet is responsible of a large part of the total traffic emissions.
Moreover, although the methodology described in this study is developed to de-

termine emissions for only two vehicle classes (light and heavy), it would be very
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interesting to apply it (with more specific traffic counts) aiming to obtain emissions
for different light vehicle categories, since, as in the case of Mexico City (Zavala et
al., 2006), some particular gasoline powered light vehicle categories might account

for a large percentage of the emissions.
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Figure 2.9: Distribution of the emissions by source and pollutant in Bogota’s urban
perimeter. Biogenic emissions are mainly found outside the urban perimeter (not shown
here).

Total NO,, traffic emissions for EI-1 and EI-2 do not differ significantly. Never-
theless, a very important proportion of the emission (96 %) is attributed to heavy
duty vehicles in EI-2. This high proportion may be partially attributed to the
effects of altitude, as it has been shown by Bishop et al. (2001). However, NO,
is one of the species that is most influenced by the driving mode (Zavala et al.,
2006), and the methodology described in this paper attempts to represent the av-
erage driving mode of a typical street in Bogota. It would be interesting to explore
results of the application of the same methodology presented in this study, but for

a street characterized by a different driving mode.

Fixed sources contribute mainly with PMyy and SOs. Concerning PMjg, some

sources were not taken into account in this EI, like construction, natural sources
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or resuspension and therefore this conclusion is not definitive. Further research is

needed regarding PM .
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Figure 2.10: Distribution of the on-road vehicle emissions in Bogota by type of vehicle
and by pollutant.The last bar indicates the repartition of the fleet.

The spatial distribution of emissions (fig. 2.11 and table 2.7) indicates that
downtown Bogota (cell ID’s X21, Y20, Y21, Z20, Z21 and Z22) contributes with
significant emissions of CO, PM1g, NMVOC and NO,.. Those emissions are mainly
related to traffic, and to a less extent to one of the main industrial centers in the
city, located in Puente Aranda district (fig. 2.3). The cell where the landfill is
located (cell ID X17) contributes by far with the highest amount of CHy in the
domain (this pollutant is not significant in the process of ozone production, but it
is of interest for other reasons such as global warming and climate change). The
cell where the airport is located (cell ID X23) indicates a significant contribution
of NO,. 16% of the NO, emissions in the city is coming from air sources. This
result is important because it indicates that the proximity of the airport to the city
may have important repercussions over air pollution, namely on the production of
ozone. Another significant contribution of NO, is seen in the western industrial
corridor of the region. This NO, is brought over the city contributing to the pro-

duction of ozone (see section 2.3.2). The northern industrial corridor (cell ID’s
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2. Ewvaluation of the Emission Inventory

AB30, AC29, AE35) points out important emissions of PM;g, NO,, CHy, SO2 and
COy. This region is characterized among others by a number of brick manufac-
tures operating with fuels like coal, crude oil, fuel oil, etc, and thus, generating

important contributions to emissions.

SO,, PM10, —.

NO_, CH,, CO,

25

Kilometers

Figure 2.11: Spatial distribution of the emissions in the region of Bogota. The most
polluted cells in the domain of study are presented. The city center presents high levels of
emissions for all the pollutants. Refer to table 2.7 for data about emissions in these cells.

2.4.2 Limitations of the methodology and discussion

The major shortcoming of the bottom-up methodology used to build our EI is the
difficulty to obtain all the necessary input data. The incomplete data make diffi-
cult to conduct a full evaluation of uncertainties. We can state that uncertainties
in our EI come from three sources: first, the quality of the input data we have
collected. Second, the extrapolation based on the existing information to fill in the

remaining data gaps. Third, some aspects of the methodology itself and AIREMIS
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2.4 Discussion and implications of the emission inventory results

Table 2.7: Most polluted cells in the domain of study and their emissions

Pollutant  Cell ID and emission, ton day ™! cell™!

CcO z21 722 Y21 Y20
89.6 72.7 69.0 65.9
NO, X23 zZ21  AES35 V2s
7.2 4.2 4.1 4.0
PM;q Y21 X21 AE35 Z20
2.7 1.9 1.6 1.1
NMVOC  Z21 222 Y21 Y20
13.5 11.9 10.6 9.7
CHy4 X17 AB30 AFE35 Z21
132.2 0.3 0.2 0.1
COq AB30 AE35 Y21 Z21
1997.8 1476.7 663.8 534.0

For each pollutant, the first line indicates the cell ID (the location of each cell is shown in fig. 2.11.) and
the second its emission.

procedure, as it has been developed and applied by European countries and is not

necessarily optimized for other countries.

In the second approach used for this study, bulk EFs are obtained for light
and heavy vehicles regardless of a more complex composition of the fleet, and of
variations in the driving speed (obtained EFs are assumed to be an average of the
average driving speed measured inside the SC, 30 km h™!). Results from the previ-
ous section allow us to conclude that the inventory including Bogota’s own on-road
traffic EF's is more realistic (closer to measurements) than the one obtained using
CORINAIR EFs. This means that at the present, for a city like Bogota, focusing
efforts in obtaining EF's representative of the actual state of maintenance of the ve-
hicle fleet, local driving patterns and effects due to the altitude, is more important
than obtaining especially detailed and precise information of the fleet classification
and its circulation speeds. The later should be conceived as to facilitate the identi-
fication of the biggest contributors. Although more research is needed in order to
improve these EF's, (for example, measurements could be conducted in more than
one SC, for different driving speeds, more vehicle categories), the aggregated value
of this methodology consists in its simplicity, relative low cost, the representation

of real-word driving conditions at the altitude of Bogota, and the fact that it takes

43
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into account a large number of vehicles. On the other hand, a direct and quick
evaluation of some abatement scenarios, which would need new on-road EFs, is
not as simple as it is via a bottom-up methodology. Both methodologies are thus

complementary.

An additional limitation of this methodology stands for the fact that the EI
is evaluated on only one pollution event. We use this event because we rely on
more data for validating its simulation and because it is particularly interesting
since there is a recirculation of pollutants over the city due to a change in the
wind direction, which is a common situation during the first dry season of the
year. Nevertheless, conclusions remain only partial until simulating several pollu-

tion episodes or even applying long-term simulations.

Despite the limitations, a first version of Bogota’s EI is accomplished, enhanc-
ing the knowledge about the spatial and temporal distribution of emissions in the
region. The EI allows to identify the relative contribution of each source to pol-
lution in the region, which will in turn help to recognize where efforts should be
focused in order to improve the quality of the EI. Our results indicate that special
attention should be given to heavy vehicles in Bogota, because they contribute
crucially to air pollution in the city. Moreover, further investigations on emissions

of this type of vehicles in Bogota are needed.

2.5 Summary and outlook

Two versions of the emission inventory for Bogota have been established. First,
calculations were done using CORINAIR on-road traffic EFs. Second, real-world
EFs for Bogota were used for the calculation. These real-world EFs have been
obtained by means of in-situ measurements and inverse modelling. A numerical
model was used to evaluate the emission inventories, and emissions of CO, PMq
and NMVOC’s were found to be underestimated when using CORINAIR traffic
EFs.

A comprehensive understanding of emissions is available for the first time in

the region, pointing that on-road traffic sources represent a significant contribution
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of the EI. Though further investigation is required to fulfill the gaps in the miss-
ing information before emitting definitive conclusions, our results suggest that in
particular heavy vehicles play a key role in the air pollution of the city, indicating

where environmental authorities should focus their efforts.

The lack of complete databases and real-world EFs in many countries, repre-
sent a foremost limitation when building an EI. It is paradoxical that this lack of
information is mainly found in countries contributing enormously to global emis-
sions (Gurjar et al. (2004); Wang et al. (2005); Vivanco and Andrade (2006) and
many others), making uncertain the emission estimations. Improving the quality
of data as to fulfill the requirements of the existing methodologies such as CORI-
NAIR, is perhaps a very expensive and time-consuming task for such countries.
In the case of Bogota, using a simple methodology to estimate bulk real-world
on-road traffic EFs, we succeed in obtaining an EI which in turn generates pol-
lutant concentrations (via the AQM) closer to observations for this specific case.
Factors such as the stop-and-go driving behavior, the altitude, an aged fleet and
the state of maintenance of the fleet, seem to be more important than obtain-
ing very detailed information on the repartition of the fleet or driving speeds, for
emission calculation purposes; at least as a first stage in the calculation. Conse-
quently, under financially limited situations, a simpler methodology to estimate
bulk traffic EFs might be of utmost importance. Moreover, the traffic situation
is constantly changing in developing countries, and thus emissions. Efforts on im-
proving methodologies able to quantify such changes periodically are crucial for
those countries. The use of combined techniques such as measurements inside a
street canyon to estimate traffic EFs, and further evaluation of the inventories with
numerical models, proved to be a useful tool for this purpose. Nevertheless, the
analysis presented here should be considered only as a first step towards a full eval-
uation of the EI. Further research is needed running the AQM for a longer period
of time in order to draw final conclusions, as well as exploring the possibility to
better couple both bottom-up and top-down techniques in order to optimize the

evaluation of abatement scenarios.
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Chapter 3

A study of the photochemical
plume formed in Bogota using
numerical simulations.

Abstract

Air pollution in Bogota is a challenging case study due to high levels of emissions
in a region of complex Andean topography. Aiming to understand the formation
of the pollution plume during a typical photochemical 2-day episode, which took
place in March 2002, meteorological and air quality mesoscale modelling tools are
applied for the first time to the city. The influence of the global scale Trade Winds
is investigated, as well as the local thermal winds developed due to the orographic
features. This study examines the interaction between these two types of winds
as to understand the atmospheric circulation pattern that takes place during this
period of the year in the region. Convergence fronts are identified and the conse-
quences over the formation of the plume of pollutants are analyzed. The plume
is mainly developed over the city core and sharp ozone peaks cross the central
part of the city. The models successfully simulate such phenomena, showing good
agreement with measurements. They help to understand the dynamics of the at-
mosphere in the zone of study and open a new possibility to manage air quality in
Bogota through a scientifically-based approach.
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3. Study of the photochemical plume

3.1 Introduction

Bogota, the capital of Colombia, is the 5* supercity in Latin America, with 6.6
millions of inhabitants inside the urban perimeter by 2001 (Skinner, 2004), and
8.0 millions taking into account the suburbs. It is a dynamic metropolitan area,
and as many other urban zones, significant amounts of gaseous pollutants and
particulate matter are released to the atmosphere. Critical concentrations of pol-
lutants are often found in the city, exceeding the air quality standards for PMjg
(170 1/m3, 24-h average), NOy (168 ppb, hourly average) and O3 (83 ppb, hourly
average)(DAMA, 2006).

High levels of Ozone indicate that photochemical smog episodes take place.
These are widespread phenomena in urban regions worldwide where increased la-
bels of volatile organic compounds (VOC’s) and nitrogen oxides (NO,) may be
found from various anthropogenic sources. For example, in 2001 the hourly stan-
dard of O3 was exceeded 281 times out of a total of 49 913 hourly measurements
in the city of Bogota (7 monitoring stations), with maximum values around 200
ppb (DAMA, 2006). A scientifically-based air pollution control legislation requires
to determine the amount of emission reduction needed, in order to control and
mitigate such episodes. Adopting pollution control measures is a very expensive
work, and the expected results may not necessarily be as efficient as believed, be-
cause the processes involved in the formation of photochemical episodes are very
complex and highly non-linear (Martilli (2001); Berkowitz et al. (2005); Yang et
al. (2005) and many others). Therefore, in order to better define high pollutant
concentration areas and to test in advance different scenarios of abatement strate-
gies and pollution control measures, air quality models are widely used (Borrego et
al., 2003; Martilli et al., 2003; Wang and Ostoja-Starzewski, 2004; Rappengliick et
al., 2005; Tong et al., 2005; Calori et al., 2006). The research project Development
and Implementation of an Air Quality Model for Bogota (EPFL, 2002) aims to
study such aspects locally, for the particular case of a big city like Bogota located
on a complex terrain, and to generate a tool that can be used for air quality man-
agement, able to test abatement strategies for the city. This project includes the
generation of a spatially and temporally distributed emission inventory, as well as
meteorological and air quality simulations. The goal of the project was first of

all to understand the air pollution problem in Bogota, the relative contribution of
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3.1 Introduction

each emission source and the features affecting the meteorology for such complex
terrain and thus air quality. Subsequently, to propose and test different abatement
strategies for the city. A series of articles is currently being prepared in order to

present the main contributions of this case study.

The present contribution is devoted to the results of the application of mod-
elling tools (meteorological and air quality simulations) to the region, investigating
the influence of the topography and the urban island over air quality. Data from
a specific pollution episode which took place during 6 and 7 March 2002 is used
to validate results from the models. Although the simulation of one episode is
presented here and care must be taken when generalizing conclusions, this study
represents a first step in understanding air pollution in the region and contributes
to the comprehension of the meteorological phenomena taking place in the high
mountain ranges of the Andes and big cities located in altitude. Section 3.2 and
3.3 of this paper present the description of the models and of the measurements
respectively. Results of meteorological and air quality simulations are presented
in sections 3.4 and 3.5. Section 3.6 sums up the main results and discuss them.
Below, some main aspects of the topography and the climate in the region are

presented.

3.1.1 Topography of the region

Bogota lies in a plateau situated in one of the three Andean mountain ranges cross-
ing the country (fig. 3.1). It is located at 4.6°N and 74.1°W. The plateau is about
40 km wide and 100 km long, aligned from the southwest to the northeast. It has
an average elevation of 2600 masl. A mountainous complex terrain borders the
plateau on three sides. Two ridges are parallel to the plateau axis, on its eastern
and northwestern borders, reaching about 4200 and 3600 masl respectively. Fur-
ther to the east, there is a very steep and narrow descent which leads to “Los llanos
orientales” (the Eastern Plains, between 0 and 500 masl). The plateau is partially
closed at its northern side. It is open on its southern border to the southwest,
descending gently to the central Magadalena valley (less than 500 masl), which

separates two of the main Andean chains.
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Figure 3.1: Topography of the Colombian Andean region and domains of simulation.
(a) First meteorological domain simulated (1008 km x 1008 km, resolution of 24 km).
The Andes are divided into three chains when they enter the country. The central black
square indicates the domain in: (b) the eastern Andean chain where Bogota’s plateau is
located, and domain of the meteorological simulation (212 km x 212 km, resolution of 4
km). The central black square in (b) shows the domain used for the air quality simulations
(55 km x 55 km, resolution of 1 km), and the localization of the city. Measuring station 16
(Vanguardia) is also shown in this image, towards the south-eastern part of the domain.
See fig. 3.2 for other measuring stations.

3.1.2 Main features of the climate in the region

Since Colombia is crossed by the Equator, it is influenced by the Intertropical
Convergence Zone (ITCZ), and therefore by the Trade Winds, circulating towards
the ITCZ. During January, February and early March, the ITCZ is around 2°N
of latitude, thus most of the country undergoes a dry season with global-scale
winds coming from the NE (the Trade Winds). Late March, April, October and
November, correspond to periods of time in which the ITCZ goes across the region,
first from south to north (late March and April) and then in the opposite sense
(October and November) (Pabédn et. al., 2001). Therefore, Bogota’s basin climate
is conformed by two dry and two wet seasons throughout the year, with the rainy
seasons corresponding to the passage of the ITCZ. During the first dry season,

period of the year chosen to conduct the simulations presented in this paper, it
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3.2 Models description and set-up

is common to have, on one hand, winds coming from the NE, especially in the
mornings. On the other hand, this time of the year is also characterized by days
with clear sky conditions, and thus high solar radiation and temperatures (daytime
temperatures increasing from 6 to 25°C, for an altitude of 2600 masl) are reached.
In such days, the orographic features strongly influence the wind patterns and the

local climate in the region.

3.2 Models description and set-up

3.2.1 Meteorological model

The model used in this study (called FVM, Finite Volume Model) is a three di-
mensional Eulerian meteorological model, which uses a terrain following grid with
finite volume discretization (Clappier et al., 1996). It was mainly developed at the
Air and Soil Pollution Laboratory (LPAS) of EPFL. The borders can be individ-
ually forced for wind and temperatures by large scale model results. It provides
an urban turbulence module which specifically simulates the effects of urban areas

on the meteorology, representing the city as a series of parallelepiped of concrete.
This model has been described in detail by Martilli (2001); Martilli et al. (2002).

Two different grids are simulated with FVM. The first one covers an area of
1008 km x 1008 km (fig. 3.1(a)), whereas the second one is 212 km x 212 km (fig.
3.1(b)). Horizontally, the grids have a resolution of 24 km and 4 km respectively,
in both x and y directions. Nesting procedures are applied from the coarser grid
to the smaller one, so that results of wind and temperature from the 1008-km grid
are used as initial and boundary conditions for the 212-km grid. Vertically, the
grids extend up to 11 000 m and are divided into unequal layers increasing their
size progressively with a stretching ratio of 1.2. The layer thicknesses near the

ground and at the top are 20 and 1500 m respectively.

Land use data, necessary as input information for the simulations, are obtained
from the U.S. Geological Survey (2002). Parameters for each grid cell are obtained
by performing a weighted average according to the fraction of the various land

use types. Rural area’s soil is considered of two types: sandy-clay-loam, with a
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moisture saturation factor of 40%, for altitudes bigger than 2000 masl, and silty-
clay-loam, with a moisture saturation factor of 60% for altitudes below 2000 masl.
This consideration is based on the fact that soils at low altitudes have a thicker
tropical vegetation canopy and thus are more humid. As for the urban land use,
downtown Bogota has high-rise buildings being closely packed. The density is
lower in the surroundings. Two types of urban classes are considered: Downtown
and surroundings, with average building heights of 15 and 7 m respectively. A
pre-run of one day is performed for all the meteorological simulations, in order to

provide more realistic initial conditions.

3.2.2 Air quality model

TAPOM (Transport and Air POllution Model, Martilli et al. (2003); Junier et al.
(2005)), developed at LPAS, is a transport and photochemistry three dimensional
Eulerian model. It uses a terrain following grid with finite volume discretization. It
includes the RACM lumped species mechanism (Stockwell et al., 1997), the Gong
and Cho (1993) chemical solver for the gaseous phase, the ISORROPIA module
for inorganic aerosols (Nenens et al., 1998), passive transport of organic aerosols,
the transport algorithm developed by Collela and Woodward (1984), and Clappier
(1998), as well as the solar radiation module TUV developed by Madronich (1998)

to calculate the photolysis rate constants.

A grid of 55 km x 55 km (fig. 3.1(b)) with a resolution of 1-km in both x
and y directions is run with TAPOM. Vertically, the grid extends up to 7300 m,
and is divided into unequal layers with stretching factors of 1.2 and 1.6 (for the
lower and upper layers of the grid respectively). The layer thicknesses near the
ground and at the top are 15 and 1900 m respectively. Meteorological data from
the mesoscale simulation with FVM are interpolated and used as input to the air
quality simulation. A pre-run of one day is performed in order to provide more

realistic initial conditions.
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3.8 Measurements description

3.3 Measurements description

Model results are compared to the available measurements in the region (fig. 3.2)
for the same days of the episode evaluated. Bogota counts with a monitoring net-
work administrated by the local environmental regulation agency (DAMA, 2006),
currently with 9 measuring stations spread around the city. In 2002, 10 monitor-
ing stations are in service: Corpas, Escuela, Fontibon, Merck, Cazucd, Sony, Cade,
Nacional, Santo Tomdas and MMA. Some of them measure only meteorological pa-
rameters, and some measure both meteorological parameters and air quality levels,
with a time resolution of 10 minutes. Hourly averages are obtained out of these

data. The stations report data at an average elevation of 8 m above the ground.

Data from two more meteorological monitoring stations (Cogua and Tisque-
susa) are furnished by the Departmental regulation agency (CAR, 2006). They
supply information about the meteorological behavior in Bogota’s plateau. More-
over, meteorological data from three additional stations administrated by the In-
stitute of Hidrology, Meteorology and Environmental studies (IDEAM, 2006) (Do-
rado, Mosquera and Vanguardia) serve to enhance the available information to
validate the model in the domain of interest. Whereas Mosquera is located on
Bogota’s plateau, Vanguardia is situated at the border between the Eastern Plains
and the mountain range (fig. 3.1), with an altitude of 423 masl. Dorado station
corresponds to Bogota’s international airport. This station reports sounding bal-
loon vertical profiles of temperature, wind speed and wind direction once per day
(at 0700LT). Both CAR and IDEAM surface temperatures and wind are taken
at an average elevation of 2 and 10 m above the ground respectively. The time

resolution of the reported data is one hour.

3.4 Meteorological simulations and results

3.4.1 Boundary and initial conditions (simulations over

the large domain)

The model is first applied to a 1008 km x 1008 km grid, aiming to generate ade-

quate boundary and initial conditions for our mesoscale domain. This grid contains
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Figure 3.2: Localization of the Measuring stations: 1. Corpas, 2. Escuela, 3. Fontibon,
4. Merck, 5. Cazuca, 6. Sony, 7. Cade, 8. Monserrate, 9. Nacional, 10. Santo Tom4s, 11.
MMA, 12. Cogua, 13. Tisquesusa, 14. Dorado, 15. Mosquera. See fig. 1 for localization
of station 16, Vanguardia. Stations 1 and 2 are placed in the northern part of Bogota.
Stations 3,4,7,9,10 and 11 are in the center and western part of the city, and 5 and 6 in
the southern part. The city’s western border is given by El Dorado Airport (station 14).
Stations 12,13 and 15 correspond to small towns near Bogota. Station 8 is placed on the
top of one of the eastern hills bordering the plateau (Monserrate), at 3210 masl, and it
was set during the measuring campaign held under the frame of this study.

the three colombian andean mountain chains, as well as the Magdalena valley and
the Eastern plains (fig. 3.1(a)). This simulation uses 6-hourly data from the
NCEP/NCAR (2006) reanalysis dataset for its initial and boundary conditions.
The examination of NCEP wind data gives us some features of the global wind
pattern in the region. In early March, when the episode of our interest takes place,
the Trade Winds come from the northeast and enter the country, crossing it un-
til converging with the southern Trade Winds (towards the ITCZ, around 2 °N).
When they enter the country, they undergo a perturbation at the surface level due

to the Andean chains. Data from NCEP show slope winds and deviations due to
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this topography, which is seen in average as a single thick chain reaching maximum
altitudes of around 1300 masl (NCEP’s resolution is 1°latitude-longitude). In gen-
eral, this wind pattern remains through the entire episode treated. Preliminary
tests made with different resolutions of the grid indicate the importance of fairly
reproducing the three mountain chains and the valleys in the first simulation, e.g.
keeping a relatively high resolution, since the dynamics in the Magdalena valley

play an important role in the atmospheric circulations of Bogota’s plateau.

A resolution of 24 km in both x and y directions is thus used for the simulation
of the 1008 km x 1008 km grid. The perturbation of the Trade Winds coming from
the Northeast, occasioned when they hit the Andean mountain ranges, is well seen
in this simulation (fig. 3.3), as well as some local effects. At 0700 local time (LT)
(fig. 3.3(a)), when the sun has not yet heated enough the surface, air masses are
pushed down the slopes still forming nightly mountain-valley breezes. In the case
of the eastern mountain range where Bogota is located, air masses are going both

in the direction of the Magdalena valley and the eastern plains.

Due to the sun-heating effect, at 1200LT (fig. 3.3(b)), air masses are partly
pushed up the slopes and partly channelled through the valleys in the direction of
the point where the three mountain chains are joined, in the south of the coun-
try. Bogota’s plateau experiences the effect of winds blowing from the Magdalena
valley. Due to the same effect of mountain-valley breezes, some air masses go up
from the Eastern Plains side towards the plateau, generating thus an important
convergence front, on the top of the eastern mountain range. The Eastern Plains
show a wind direction which is the result of the perturbation caused when the NE
Trade Winds hit the Andean mountains plus the local effect of the thermal breeze.
At 1700LT (fig. 3.3(c)), the effect of the sun-heating is stronger, the wind is chan-
nelled through the Magdalena valley but slope winds going up to the plateau are
also important. During nighttime (2300LT, fig. 3.3(d)), the local effects of the air
masses going down the slopes are seen again, in the direction of the Magdalena
Valley and the Eastern Plains. Around 0300LT of the second day (March 7), the
global-scale effect gains importance again. A very similar behavior of the wind pat-

terns between the two days of the episode is simulated by the model (not shown).

To sum up, the global pattern of the Northeastern Trade Winds is seen at this
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Figure 3.3: FVM wind field simulation at ground level for the domain of 1008 km x 1008
km with a resolution of 24 km x 24 km, 6 March 2002. Geographical coordinates of the
lower left corner: 77.7°W, 1.0°N. Maximum wind speed shown: 18.8 m s™'. The mesoscale
domain (212 km x 212 km) is depicted in the center. (a) 0700LT, (b) 1200LT, (c) 1700LT,
(d) 2300LT.

resolution throughout the entire episode of our interest. Some local effects such
as slope winds generated from both sides of the mountain strongly affect the wind
pattern over the plateau. The slope wind coming from the Magdalena valley to-
wards the plateau strengthens as the day advances. A better resolution is needed
in order to catch the complex effects of the hills surrounding the plateau and the

convergence front formed on the top of the mountains.
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3.4.2 Mesoscale simulation (over the small domain)

The domain presented in fig. 3.1(b) (212 km x 212 km) is chosen for the mesoscale
meteorological simulations of the episode. Bogota’s plateau is located approxima-
tively in the center of the domain, and it also encompasses part of the Magdalena

valley and the steep descent to the Eastern Plains (Llanos Orientales, see fig.

3.1(a)).

Wind fields at ground level

In the morning, the wind blows to Bogota’s plateau from the northeast. At 0900LT
(fig. 3.4(a)), some air masses still descend the slopes and some others start to climb
them up due to the effect of the sun. By 1100LT (fig. 3.4(b)), the sun has warmed
up the ground, and the thermal wind is developed in the region. Air masses come
up from the Magdalena valley and they enter the plateau from the southern side of
its axis. Some other air masses reach the plateau from the northwest, coming also
from the Magdalena valley, but they go up first to 3600 masl (the northwestern
hilly border of the plateau) and then by inertia they go down until converging
with the air masses coming from the southwest. At 1400LT (fig. 3.4(c)), the
wind strengthens and the thermal regime is fully developed. Air masses coming
from the Magdalena Valley enter the plateau and go on partly eastwards, to climb
its eastern mountainous border; and partly northwards, channelled through the
axis of the plateau. Two main convergence fronts can be perceived at this time:
air masses coming from the Magdalena valley, entering from the southwest and
the northwest, find each other over the plateau, as explained for the situation at
1100LT. Another convergence front, of paramount importance for air quality, is
the one formed just behind the eastern mountains bordering the plateau. Slope
winds climbing from the Eastern Plains side go up to 4200 masl and meet up the
air masses which originally come from the Magdalena valley and have crossed the
plateau. This flow pattern does not change much throughout the afternoon. At
1900LT, the solar heating has ceased and the land surface cools down. During the
night, (fig. 3.4(d)), the wind gradually weakens and the night slope wind is devel-
oped. Air masses come down to the plateau from the eastern mountain border and
continue further down through the southern exit to the Magdalena Valley. Around
0300LT of the second day (March 7), the northeastern wind is predominant again.

A very similar behavior of the wind patterns between the two days of the episode
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is simulated by the model.
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Figure 3.4: FVM wind field simulation at ground level for the domain of 212 km x 212
km, 6 March 2002. Here a zoom of the domain presented in fig. 3.1(b) is shown for
better visualization. Maximum wind speed shown: 6.9 m s, (a) 0900LT, (b) 1100LT, (c)
1400LT, (d) 2100LT.

The measurements taken during the episode corroborate this wind pattern.
All the measuring stations (fig. 3.2) show systematically daily and nightly max-
imum wind speed values (fig. 3.5), which correspond with the full development
of the slope winds. Minimum wind speed values are observed between 0500LT
and 0600LT, and at 1800LT, when a change in the wind direction takes place (fig.
3.6). The first change of wind direction corresponds to the change in predominance

from the nightly slope wind to the northeastern wind, as explained above. The
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model reproduces this change a bit too early (0300LT). The second change in wind
direction is accurately reproduced by the model, corresponding to the cooling of

the ground and the development of the nightly slope wind.

CADE MMA NACIONAL
T ST Y. Y. Sl
- ——Simulation r - r - r
6. | **** Measurements L 6. 4 L 8. o L
5. 1 - 5.7 r 5.7 r
4. 1 | 4.7 r
3.4 3.4 . N r
2.1 2.4 - 2.4 r
1.4 [ P r 1.4 x r
4 L 4 L N o L
0. 0. et erererree e e 0. e e
06 12 18 00 06 12 18 00 06 12 18 00 06 12 18 00
MAR 6 MAR 7 MAR 6 MAR 7
DORADO MERCK
v. Y. Pl Y.
i L N - N ™ e -
6. - 6.9 6.9 " « =
N L N L N . M L
5. 1 r 5.7 r 5.7 x r
N L N L N x L
4. 4.7 4.7 * r
N L N L N * L
3.4 3.4 . N r
2.1 2.4 - 2.4 r
1. 7 [ P [ Pl r
0. —FrrrrTT T 0. —FrrrrTT T 0. —FrrrETTTT T
06 12 18 00 06 12 18 00 06 12 18 00 06 12 18 00 06 12 18 00 06 12 18 00
MAR 6 MAR 7 MAR 6 MAR 7 MAR 6 MAR 7
COGUA MOSQUERA/TIBAITATA VANGUARDIA
Y. Pl Y. Pl Y.
6. 1 - 6.4 - 6.4 r
5. 1 r 5.7 r 5.7 r
4. 1 | o4 r
3.4 3.4 . N r
2.1 2.4 2.4 r
1.4 [ Pl r 1.4 r
b *x o % r 1 r b r
T T T 0. —Frrrrerree T 0. —Frrrrrrree AARARRARRARSARR s Rk aa
06 12 18 00 06 12 18 00 06 12 12 18 00 06 0 06 12 18 00
MAR 6 MAR 7 MAR 6 MAR 7 MAR 6 MAR 7

Figure 3.5: Simulated (solid line) and observed (stars) wind speed (m s1) time series at
ground level for different stations, 6 and 7 March, 2002

The morning observations at all the stations in town (Cade, MMA, Nacional,
Fontibon, Dorado and Merck, fig. 3.6), show a wind blowing from the north, for
the two days of the episode. This pattern changes around midday, a sudden in-
crease in the wind speed is observed in the same stations, and the wind starts
blowing eastwards (about 270°), until 1800/1900LT. It indicates that a strong
thermal wind is formed over the plateau, blowing up to the eastern ridge. Mos-

quera/Tibaita station corroborates this direction. The model reproduces correctly
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Figure 3.6: Simulated (solid line) and observed (stars) wind direction (°) time series at
ground level for different stations, 6 and 7 March, 2002.

the morning and afternoon pattern for most of the stations. The wind direction
in Cogua station is an indicative of the thermal predominance in this part of the
domain, with air masses blowing northwards during the day, in both observations
and the simulation. This station is placed at the feet of the northwestern mountain

ridge bordering the plateau (fig. 3.2).

Different kinds of measuring stations can be identified when regarding the wind
speed data. Low wind speeds (maximum 3 m s~!) are found in stations like CADE,
MMA and Nacional, which are located downtown Bogota (fig. 3.2). These stations
undergo the effect of the city and its buildings. Some other stations such as Fonti-

bon, Dorado and Merck are also in the city but not in the packed center (different
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building morphology), so maximum wind speed values are between 5 and 7 m s~.

The model reproduces well wind speeds for Fontibon and Dorado stations, whereas
for Merck they are under-predicted. The explanation for this lays on the resolution
used, since Merck is in the cell where the building morphology changes. Cogua,
Mosquera/Tibaitatd and Vanguardia, are stations located outside Bogota. Maxi-
mum wind speed values go up to 4 m s~! and the model predicts them fairly well.
Nocturnal wind speeds are over-predicted for Vanguardia station which might also
be attributed to the resolution used. A sudden increase of the wind speed is seen
at the end of the second day of simulation, which is not registered by observations.
This result is produced by the increase of the wind in the NCEP/NCAR reanalysis

boundary conditions.

Temperatures

In general, FVM captures correctly the trends and magnitude of the tempera-
ture variations. The model predicts well the time of the day when temperatures
start increasing due to the sunrise (around 0600LT), as well as the time of the
maximum value (between 1200LT and 1300LT, fig. 3.7). On the other hand, it
underestimates nocturnal temperatures in urban stations such as Merck and Fonti-
bon. One possible explanation stems from the fact that the NCEP/NCAR nightly
temperatures are also underestimated at ground level, contributing to cool down
the borders of the domain, and thus the simulated temperatures. The vertical
profile of temperature at 0700LT (fig. 3.8) shows for both observations and the
simulation that there is a thermal inversion at this hour of the day. The model
indicates lower values of temperature when compared to observations, which is in
agreement with the low nocturnal temperatures simulated. Although we do not
have more vertical measurements during the day, the model indicates that as the

sun heats the ground, temperatures increase and the thermal inversion disappears.

In conclusion, the episode chosen represents a common situation found in the
region during the first dry season of the year. Low temperatures at night generate
a thermal inversion in the early morning, which is later broken as the sun heats the
ground and daily temperatures rise. The wind follows the northeasterly synoptic
flow in the morning. As the sun heats the ground, a thermal breeze is developed,

which strengthens and penetrates further in the plateau. Two main convergence
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Figure 3.7: Simulated (solid line) and observed (stars) air temperature (°C) time series
at ground level for different stations, 6 and 7 March, 2002

zones are created, one of them formed not far from the core of the city and thus

of paramount importance for air quality purposes.

3.5 Air quality simulation and results

A detailed emission inventory was previously developed for the region (Zarate et
al., 2006a). It is calculated for a given full-working day during March, with a
temporal resolution of one hour and a spatial resolution of 4 km x 4 km. It is
afterwards interpolated to the cells of the domain of 55 km x 55 km. Non methane
volatile organic compounds (NMVOC) emissions are speciated and grouped for
each source of emission according to the groups of chemical species proposed by
Stockwell et al. (1997) in their RACM lumped species mechanism (table 3.1). The
same percentages of repartition are applied every hour to the total NMVOC emis-
sions; except for biogenic emissions, whose speciation depends on solar radiation

and temperature and thus change with the hour of the day. This speciation is
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Figure 3.8: Simulated (solid line) and observed (stars) vertical profiles of temperature
at 0700LT, El Dorado Airport(see fig. 3.2 for localization of the station). (a) 6 March
2002 (b) 7 March 2002. The Y axis represents the elevation in meters above the point of
measurement.

taken as reported by Velasco (2003) for the Mexico city region, for Isoprene, Ter-
penes and other VOCs (OVOC). In order to adapt these data to the requirements
of RACM, Terpenes are split as proposed in the CORINAIR methodology (EEA,
2006). The list of compounds proposed by Guenther et al. (1994) is used to split
the OVOC, assigning equal percentages of distribution to each compound and then

grouping into the RACM categories.
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Initial and boundary conditions are primarily set at the same values, and a
pre-run of one day with the same emissions and wind fields is conducted, in or-
der to provide more realistic initial conditions for the simulation. Measurements
taken from stations located outside Bogota are used as input data for initial and
boundary conditions when possible. In the case of NMVOCs, standard suburban
concentrations are taken (Seinfeld and Pandis, 1998). The same chemical-species
distribution used for the emissions is used to generate the split of the initial and
boundary conditions of NMVOCs.

Table 3.1: Speciation of NMVOCs per source and group of chemical species (Mass %),
as input data for the air quality model TAPOM

Species LVG LVD HDVD P&S FC A L B
ETH 1.13  0.52 0.04 8.67 0 1.20 0 2.14
HC3  13.07 4.83 3.01 21.57 1.77 842 558 T7.12
HC5 9.66 0.00 0.14 3.97 20.82 17.75 0.00 6.51
HCS 6.82 3257 4031 736 70.72 426 9.00 15.32
ETE 9.03 7.04 9.63 12.70 0.00 20.28 0.00 2.14
OLT 9.61 6.70 3.88 857 081 423 0.13 8.09
OLI 451 1.80 5.72 215 156 330 9.34 0.00
TOL  18.57 5.15 0.49 2241 242 391 36.38 0.00
XYL 18.61 5.28 5.09 2.66 0.00 1.55 39.56 0.00
CSL 0.00  0.00 0.00 3.05  0.00 0.33 0.00 0.00

HCHO 1.85 1447 11.57 1.95 0.00 1851 0.00 0.00
ALD 7.08 19.11 20.12 269 191 1436 0.00 4.19
KET 0.05 2.53 0.00 225 0.00 1.90 0.00 3.76
ISO 0.00  0.00 0.00 0.00 0.00 0.00 0.00 24.71
API 0.00  0.00 0.00 0.00 0.00 0.00 0.00 22.24
LIM 0.00  0.00 0.00 0.00 0.00 0.00 0.00 3.78

LVG: Light vehicles running with gasoline, LVD: Light vehicles running with Diesel, HDVD: Heavy duty
vehicles running with diesel, P&S: Production and services, PD: Fuel commercialization, A: Air traffic, L:
Bogota’s landfill, B: Biogenic. Chemical species: ETH:Ethane, HC3:Alkanes, alcohols, esters and alkynes
with HO rate constant less than 3.4x10~'2 cm?3 /s, HC5:Alkanes, alcohols, esters and alkynes with HO rate
constant between 3.4x107!2 and 6.8x107'2 cm3 /s, HC8:Alkanes, alcohols, esters and alkynes with HO
rate constant greater than 6.8x10~12 cm?/s. ETE:Ethene, OLT:Terminal alkenes, OLI:Internal alkenes,
TOL:Toluene and less reactive aromatics, XYL:Xylene and more reactive aromatics, CSL:Cresol and
other hydroxy substituted aromatics, HCHO:Formaldehyde, ALD:Acetaldehyde and higher aldehydes,
KET:Ketones, ISO:Isoprene, APIl:a-pinene and other cyclic terpenes with one double bound, LIM:d-
limonene and other cyclic diene-terpenes. For details on each one of the chemical species see Stockwell
et al. (1997). The same split was used hourly for every source, except for biogenic emissions. Values
presented here correspond to the split over the daily totals.
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3.5.1 Primary pollutants

Both simulated and measured concentrations of CO and NO, (Fig. 3.9) show
an important morning peak between 0700LT and 0900LT. This peak is related to
high emissions from traffic circulation in the morning rush hour and a low mixing
height. The intensities of the peaks of both CO and NO, are in good agreement
with observations (except from Escuela station), nevertheless, the background con-
centration of CO appears to be a problem in stations like Cazuca and Merck. Based
on observations, this value is set at 2 ppm for the simulations. Fontibon and Merck
are stations which are not far one from each other (fig. 3.2), placed on a highly
polluted zone of the city. However, observations show important differences in
their baselines, and this is not reproduced by the model. As for Cazuca, the op-
posite case is observed, the simulation under-predicts all the measured values in
the order of 2 ppm. These differences could be explained either by a continuous
source of emission which has not been taken into account in the simulations (for
example a chimney located close to the measuring point), or by a problem in the

calibration of the measuring stations.

Important nightly peaks of CO and NO, (around 2100LT), appear both in
the simulation and measurements. This peak is also related to traffic and it is
sometimes overestimated by the model, which might be attributed to an underes-
timation of the nightly wind speed (it is the case for example for Fontibon station),
and/or to an overestimation of the traffic circulating at this hour. A second nightly
peak appears around 0300LT, which corresponds to the time in which the simula-
tion changes the circulation pattern from nightly slope wind to the northeastern

global pattern.

3.5.2 Secondary pollutants: Ozone
Spatial distribution

Primary pollutants are mainly emitted by the city (located in fig. 3.10 where sta-
tions Merck, Nacional and Corpas are depicted). The spatial distribution of ozone
is generated depending on the primary pollutant concentrations and the meteoro-

logical conditions. For this episode, pollutants are pushed in the mornings by a
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Figure 3.9: Simulated (solid line) and observed (stars) CO and NO, (ppb) time series
for different stations

wind coming from the northeast, while ozone is being formed (fig. 3.10(a)). Around
1100LT the wind pattern changes and pollutants are transported eastwards, which
in turn occasions a plume of ozone with its maximum values at midday, fully de-
veloped over the city (fig. 3.10(b)). Two O3 maxima are computed at this time of
the day, 170 and 135 ppb, for the northeastern and southeastern parts of the city
respectively. After midday, thanks to the wind that penetrates the plateau from
the southwest (the Magdalena valley), which is afterwards channelled through it,
the plume continues to move in the northeast direction (fig. 3.4(c)). At 1600LT
maximum ozone values have dropped to 80-85 ppb (fig. 3.10(d)) and the plume
has taken a preferential northerly direction. The plume cannot advance forward

to the east because of the converge wind front (fig. 3.4(c)) generated by the air
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masses going up the mountains from the Eastern Plains (from los Llanos Orien-

tales). These results indicate that the plume of pollutants is pushed southwards in

the early morning, while the synoptical conditions predominate. When the ther-

mal wind is developed, pollutants are then transported eastwards, crossing again

the central part of the city. This happens at the same time of maximal solar radi-

ations, thus important peaks of ozone are generated in town.
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Figure 3.10: Map of Ozone concentrations (ppb) simulated by TAPOM in the domain
used for the air quality simulations (55km x 55 km), 6 March 2002. Measuring stations:

CO: Corpas, ME: Merck, NA: Nacional, MO: Monserrate
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Comparison with measurements

The O3z measurements corroborate the presence of the plume over the city, with
high peaks in Merck (119 ppb), Nacional (149 ppb) and Corpas (72 ppb) stations
for 6 March, and lower values for 7 March. This might imply that the city plume
remains mainly in the city center on 6 March, but is slightly moved towards the
East on 7 March. The simulation shows high Og levels at the same stations as
the observations do on 6 March (fig. 3.11), indicating a good reproduction of the
plume position. The model underestimates the maximum intensity of the peak
at Nacional station (of about 40 ppb), however, this station appears between the
two cores of the plume presented at midday (fig. 3.10), with maximum values of
135 and 177 ppb respectively. As for Corpas, a station located in the northern
part of the city and away from the main emissions of primary pollutants, both
measurements and the simulation (maximum values of 72 ppb and 90 ppb respec-
tively, at 1300LT) confirm the fact that pollutants are being transported in the

eastern/northeastern direction after 1100LT.

Monserrate represents a good urban airmass fingerprint, even if there are no
measurements on March 6. It shows an observed maximum of 106 ppb for March
7. The model predicts a maximum as well for this station, but less intense and in
delay. This might be due to a slight underestimation of the wind speed for this
specific day, so the simulated plume of pollutants reaches Monserrate in late with
respect to measurements. This also explains why measured O3 peaks are lower
on this day in town as compared to the simulated values. The wind transports

pollutants towards the east faster than on 6 March.

Observations in Merck and Nacional show a night peak of ozone reaching val-
ues between 40 and 50ppb, which is well reproduced by the model. This peak is
attributed to the change in the easterly slope wind, bringing downwards to the

plateau air masses containing the remaining ozone formed during the day.
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Figure 3.11: Simulated (solid line) and observed (stars) Ozone (ppb) time series for
different stations

3.6 Discussion

The meteorological model FVM creates a complex flow pattern with several conver-
gence zones over the region of interest. For this particular episode, an important
influence of the global scale winds is perceived in the morning hours, approxi-
mately between 0300LT and 1000LT, which pushes primary pollutants southwards
of Bogota’s plateau. As temperature increases throughout the day, thermal winds
become predominant. Due to the complexity of the orography, we can speak of
thermal winds developed at two different scales: (i) those generated by the sur-
rounding mountains of the plateau (fig. 3.4) and (ii) circulations generated at a
national scale, due to the three Andean chains crossing the country. Air masses

penetrate the plateau from the Magdalena valley thanks to this pattern. Pollu-
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tants are hence mainly carried further to the east, but also go on towards the
north due to the phenomenon explained in (i). A converge front is developed
when these air masses encounter others coming also from the Magdalena valley
but penetrating the plateau from the northwest. Another convergence front, more
important for air quality, is generated further the eastern border of the plateau
when the western air masses encounter winds coming from los Llanos Orientales.
In order to reproduce adequately the phenomena taking place over the plateau, it
is necessary to use a grid which covers at least the main features of the orography:

the Magdalena valley, the Eastern Plains and the mountains bordering the plateau.

Simulations made with TAPOM show a plume of pollutants for this particular
episode, with high photochemical activity. This plume is mainly developed over
the city area for 6 March, and not entirely for 7 March, but probably more towards
the east of the city. Due to the eastern converge front, pollutants remain trapped
not far from the city, and they come back down to it at night, thanks to the change
in the circulation pattern. Little knowledge about VOCs in the ambient air of the
city is available so far. This information would allow to better understand the

processes of Og production taking place in the region.

The urban area has an important impact over the air circulations in the plateau,
decreasing the simulated wind speeds at daytime. Observations are in agreement
with this statement. The decrease of the wind speed generated by the city con-
tributes partially to a development of the plume over it. The model over-predicts
the decrease in the wind speed generated by the urban island on 7 March, gener-
ating an Ozone peak in Monserrate which is in late in comparison to observations
(fig. 3.11). Monserrate site is under urban influence in the afternoon for this

episode.

The episode presented in this study describes a circulation pattern which is
typical of the main dry season in the region. We believe that understanding the
flow pattern for specific episodes is a first essential step before starting long-run
simulations, which in turn will allow the generalization of conclusions for all the
year. As photochemical study, this particular kind of circulation is of extreme im-
portance since the O3 precursors are partly pushed to the southwest, outside the

city; to be pushed again to the northeast later on, at the moment of major solar
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radiation. This consequently causes the photochemical plume to be developed over

the city, crossing the measuring sites, with sharp peaks of ozone up to 170-180 ppb.

3.7 Conclusions and outlook

The modelling approach of simulating a photochemical episode using a nested
mesoscale meteorological model and an air quality model has been applied to the
study case of air pollution in Bogota with success. This is a challenging applica-
tion due to the combination of complex terrain features and a very dense urban
agglomeration. The models helped to better understand the phenomena taking
place for this episode, by correctly reproducing the effects of the Magdalena valley
over Bogota’s plateau, the mountain-valley breezes and the urban heat island. This

study represents the first air quality modelling contribution to the region of Bogota.

Finally, it must be stressed that in order to verify our results, it would be very
useful to have data about the real VOC concentrations. Additionally, although
the most favorable conditions to generate photochemical pollution were chosen, in
order to extend conclusions aiming to apply abatement strategies, further research
is necessary concerning the different meteorological cases presented throughout the

year in Bogota.
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Chapter 4

Origins of the pollution plume
in Bogota and design of
abatement strategies based on
air quality simulations for
different emission scenarios.

Abstract

In this study, modelling tools are used to characterize the plume of pollution
formed in Bogota during a typical photochemical episode which took place dur-
ing March 2002. A better understanding of the origins of the plume leads to the
identification of optimal abatement strategies to mitigate air pollution. First, the
ozone-precursor relationship is determined by establishing the chemical regimes
governing during this episode. Second, different hypothetical emission scenarios
designed to identify the critical aspects causing high levels of pollution in Bogota
are formulated. A factor separation technique is applied in order to evaluate the
relative contribution of each one of the sources investigated. This approach shows
that Bogota’s traffic is the main contributor to pollution in the region. More-
over, in this episode emissions before 0900 local time (LT) are responsible of the
major peaks of pollutants formed during the day. A better knowledge of the pro-
cesses involved during the episode facilitates the proposition of emission abatement
strategies and the understanding of their responses in terms of pollution levels. In
the last part of this study some feasible emission scenarios are proposed and eval-
uated. Primary pollutants decrease linearly with the emission reduction, whereas
it is not the same case for Ozone, which shows a more complex response.
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4. Design of abatement strategies

4.1 Introduction

Photochemical pollution is one of the main air quality problems that the city of
Bogota must face. A complete characterization of the plume of pollutants is neces-
sary in order to allow environmental regulators to apply the most efficient measures
of pollution control. Due to the complexity of the non-linear chemical reactions
taking place, numerical models represent a powerful tool for this purpose. In this
context, the research project Development and Implementation of an Air Quality
Model for Bogota (EPFL, 2002) was created in order to investigate the air pol-
lution problem in Bogota. In the first phase of this project, a detailed emission
inventory for the city and its surroundings (Zarate et al., 2006a) was generated. In
the second phase, numerical simulations of a typical photochemical episode (6 and
7 March 2002) were performed and validated (Zarate et al., 2006b). We studied
the meteorology as well as the transport and chemical reactions of the pollutants
emitted for this particular episode. The agglomeration of Bogota has more than 8
million inhabitants and is located on a plateau at 2600 masl. Bogota is a challeng-
ing case-study in terms of air quality, characterized by high levels of anthropogenic
emissions released in a region with complex topography and air circulation pat-

terns.

The design of abatement strategies requires a deep understanding of the crit-
ical aspects leading to high levels of pollution in the specific location where such
strategies are to be applied. One way to initiate this understanding consists in
the numerical simulation of hypothetical emission scenarios over a given episode
of pollution (Grossi et al., 2000; Palacios et al., 2002; Oanh and Zhang, 2004). In
this paper, we first make a sensitivity study to evaluate the evolution of the pho-
tochemical regimes as defined by Sillman (1999), namely NO,-sensitive and VOC-
sensitive regimes. The characterization of the plume in terms of the relationship
between ozone and its main precursors allows to achieve a deeper knowledge of the
non-linear processes taking place, and sheds light over the generation of possible
abatement strategies. Some key factors playing a crucial role in the problem are
identified out of this analysis. Secondly, a hypothetical set of emission scenarios is
designed and applied to this specific pollution episode, aiming to quantify the rel-
ative importance of such factors. The factor separation (FS) technique proposed

by Stein and Alpert (1993) is used, as to obtain the relative contributions and
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interactions of the processes which are being investigated. In the last part of the
study, some feasible abatement strategies are proposed and evaluated for the same
pollution episode. The examination of such strategies over a well characterized
episode facilitates the comprehension of the responses obtained when they are ap-

plied.

4.2 Models description and set-up

The models FVM-TAPOM are used in this study. FVM (Finite Volume Model,
Clappier et al. (1996)) performs the meteorological simulations whereas TAPOM
(Transport and Air POllution Model, Martilli et al. (2003); Junier et al. (2005))
performs the photochemical dispersion simulations. Both models were mainly de-
veloped at the Air and Soil Pollution Laboratory (LPAS) of EPFL. They are three
dimensional Eulerian models, and use a terrain following grid with finite volume
discretization. FVM borders can be individually forced for wind and temperatures
by large scale model results. It provides an urban turbulence module which specif-
ically simulates the effects of urban areas on the meteorology, representing the city
as a series of parallelepiped of concrete. This model has been described in detail
by Martilli (2001); Martilli et al. (2002a).

The chemical model TAPOM includes the RACM lumped species mechanism
(Stockwell et al., 1997), the Gong and Cho (1993) chemical solver for the gaseous
phase, the ISORROPIA module for inorganic aerosols (Nenens et al., 1998), pas-
sive transport of organic aerosols, the transport algorithm developed by Collela and
Woodward (1984) and Clappier (1998), as well as the solar radiation module TUV
developed by Madronich (1998) to calculate the photolysis rate constants. The
RACM chemical mechanism includes a total of 237 chemical reactions, in which
17 stable inorganic species, 4 inorganic intermediates, 32 stable organic species (4

of these of biogenic origin), and 24 organic intermediates, are involved.

Two different grids are simulated with FVM. The first one covers an area of
1008 km x 1008 km and the second one is 212 km x 212 km (fig. 4.1). Horizon-
tally, the grids have a resolution of 24 km and 4 km respectively, in both x and
y directions. 6-hourly wind and temperature data from the NCEP/NCAR (2006)
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reanalysis dataset supply the initial and boundary conditions for the 1008-km do-
main. Results of wind and temperature from this grid simulation are used as initial
and boundary conditions for the 212-km grid. Vertically, the grids extend up to
11 000 m above the ground level and are divided into 23 unequal layers increasing
their thickness progressively with a stretching ratio of 1.2. The layer thicknesses
near the ground and at the top are 20 and 1500 m respectively. The goal of this
nested simulation is to assure that all the details of the complex topography of

the Andean mountains in Colombia, and the regional and local effects of the at-
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Figure 4.1: Topography of the Colombian Andean region and domains of simulation. (a)
First meteorological domain simulated (1008 km x 1008 km, resolution of 24 km). The
Andes are divided into 3 chains in the southern part of Colombia and they go across the
country. The central black square indicates: (b) the domain of the mesoscale meteoro-
logical simulation (212 km x 212 km, resolution of 4 km). This domain is composed by
a section of the Eastern Andean chain, where Bogota’s plateau is located. This chain is
bordered by the Magdalena valley on the west and by the Eastern Plains on the east.
Parts of these valleys are included in the domain. The central black square in (b) shows
the domain used for the air quality simulations (55 km x 55 km, resolution of 1 km), and
the localization of the city.

A grid of 55 km x 55 km (fig. 4.1(b)) with a resolution of 1-km in both x and
y directions is used for the air quality simulations with TAPOM. Vertically, the

grid extends up to 7300 m above the ground level, and is divided into 12 unequal
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4.8 Description of the pollution event: Base case

layers with stretching factors of 1.2 and 1.6 (for the lower and upper layers of
the grid respectively). Meteorological data from the FVM mesoscale simulation is

interpolated to the air quality simulation grid, and used as input for TAPOM.

For TAPOM, initial and boundary concentrations are primarily set at the same
values. Measurements taken from background stations are used when possible, and
a pre-run of one day with the same emissions and wind fields is conducted, in order

to provide more realistic initial conditions for the simulation.

The emission inventory that is used for this study takes into account the follow-
ing main sources of emissions: on-road and air traffic, production and services, fuel
commercialization, landfill and biogenic (Zarate et al., 2006a). Linear, punctual
and area emissions from these sources are adapted to the 55 km x 55 km domain.
The emission inventory is built for a full working day in the region of interest with

hourly resolution.

4.3 Description of the pollution event: Base

case

Bogota’s basin climate is conformed by two dry and two wet seasons along the
year, with each one of the rainy seasons corresponding to the passage of the In-
tertropical Convergence Zone (ITCZ), first from south to north and after in the
opposite sense (Pabén et. al., 2001). During the first months of the year, the
ITCZ is around 2°N, and thus Bogota (4°N) undergoes the first dry season of the
year, characterized by days with clear sky conditions and high solar radiation and
temperatures. Besides, due to the localization of the ITCZ, the global scale Trade
Winds, coming from the NE, influence the wind pattern over the region. 6 and
7 March 2002 are chosen for simulation not only because these days present the
features described above, but also because more observations are available thanks
to a measuring campaign which took place during February/March 2002 in the
region. Data from this measuring campaign have been used to perform the valida-
tion of both meteorological and air quality simulations. Detailed results from this

validation have been presented in a previous contribution (Zarate et al., 2006b).
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1000LT 1200LT

Figure 4.2: Main wind pattern observed in the region as simulated by FVM for the 6
March 2002. (a) 1000LT, (b) 1200LT, (c) 1400LT, (d) 1600LT. The measuring stations
presented as grey squares in (a) help to identify the size and location of the city (names
not shown apart from Nacional (NA) and Merck (ME) which are located in the central
part of the city, Corpas (CO) in its northern end and Monserrate (MO) on the top of one
of the eastern mountains bordering the plateau.

In general, the models FVM-TAPOM reproduce well the observations obtained
for this episode. The observed daily wind pattern is very similar for both 6 and 7
March. For the purposes of this paper, we focus only on 6 March. From one side,
Bogota’s plateau is influenced by the NE Trade Winds, especially between 0500
local time (LT) and 1000LT. A prevailing NE wind direction is observed over the
plateau at the ground level (fig. 4.2(a)), with maximum intensities of 3-4 m sL.

Important amounts of pollutant emissions are released to the atmosphere during
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the same block of hours, because it corresponds to the morning traffic rush hour.
Therefore, pollutants are pushed towards the SW part of the city (fig. 4.3(a)).
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Figure 4.3: Map of Ozone concentrations (ppb) simulated by TAPOM, base case, 6
March 2002. (a) 1000LT, (b)1200LT, (c) 1400LT, (d) 1600LT. Some measuring stations
are presented to facilitate the location of the city: Nacional (NA) and Merck (ME) are
located in the central part of the city, Corpas (CO) in its northern border and Monserrate
(MO) on the top of one of the eastern mountains bordering the plateau. For simulated
and observed Ozone time series of these stations, refer to Zarate et al. (2006b).

Since clear-sky conditions and high solar radiations prevail, as the sun heats
the ground slope winds start gaining importance. Thus, the wind direction changes
after 1000LT, and air masses ascending from the Magdalena valley penetrate the
plateau from the west and continue going up the mountains which border the

plateau towards the E; SE and NE directions, reaching maximum ground intensi-
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ties of 6-7 m s! around midday (fig. 4.2(b)). Due to this wind pattern, pollutants
are pushed again over the city (fig. 4.3(b)). The western wind direction remains
throughout the afternoon (fig. 4.2(c) and (d)), until 2000LT (not shown), hour
from which the direction of the slope wind changes, and air masses descend the
slopes. This nightly wind remains until the Trade Winds regain importance in the

early morning of the following day.

The slope wind phenomenon also appears from the eastern side of the mountain
range, that is, air masses blow from the Eastern Plains up to higher peaks of the
mountain range, reaching the other side of the mountains which border the plateau
at its eastern side. In consequence, air masses blowing from the Magadalena valley
and from the Eastern Plains converge over the eastern border of Bogota’s plateau,
not far from the city (fig. 4.2(c) and (d)). This convergence front avoids the plume
of pollutants to move further to the east, remaining “trapped” by the convergence
front and only moving slightly northwards (fig. 4.3(c) and (d)). In this way, the
nightly wind brings some of this pollution back over the city.

The maximum O3 peak (which is a good tracer for the pollution plume of the
city in this case) is attained at midday with 177 ppb (fig. 4.3(b)). It is formed to-
wards the northeastern part of the city. A second plume of pollutants is observed
in the southeastern part of the city, which is formed when the wind direction
changes and western air masses arrive to the plateau. The maximum Os peak of

this secondary plume reaches 139 ppb, also at midday (fig. 4.3(b)).

Succinctly, the photochemical plume of Bogota is mainly developed over the
city. Downtown measuring stations like Merck and Nacional exemplify this be-
havior with sharp peaks of ozone up to 170-180 ppb. Monserrate and Corpas
stations confirm that the plume is mainly transported eastwards, and to a less
extent, northwards (time series are not shown, see Zarate et al. (2006b) for further
details).
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4.4 Quantification of pollutants response to

hypothetical emission scenarios

In this section some hypothetical changes to anthropogenic emissions with respect
to the base case (described in the previous section) are introduced. The reper-
cussions that such changes might have over the mixing ratios of CO, NO,, VOC
and Og are evaluated. First, the region is characterized in terms of the governing
chemical regimes (section 4.4.1). Critical geographical spots and hours during the
day can be identified out of this analysis. Second, total emissions are split into
predefined groups in order to quantify the individual impact of each group and the
interactions between them (section 4.4.2). The temporal and spatial distribution
of emissions and the impact of the main emission sources, are the features in which

the selection of groups is based.

4.4.1 Sensitivity of Ozone production to reductions in

its precursor’s emissions

Sillman (1999) states that the relationship between O3 and its two main precur-
sors (NOz= NO + NOz and VOC) can be understood as a fundamental split into
NO,-sensitive and VOC-sensitive chemical regimes, which is difficult to determine
when specific pollution events take place. There are several techniques used to
identify the transition between the two chemical regimes (Sillman, 1999; Martilli
et al., 2002b; Couach et al., 2004; Oanh and Zhang, 2004). A straightforward way
to distinguish NO, and VOC sensitive conditions, consists in alternatively apply-
ing moderate reductions (20-50%) to the total NO, and VOC emissions and then
evaluating the model response to those reductions in terms of O3 concentrations.
Therefore, if 20 or 50% reduction in VOC emission is more effective in reducing
O3 than the same percent reduction in NO,, the governing chemical regime is
VOC-sensitive. Another way of distinguishing the chemical regimes consists in the
calculation of indicators such as the HoO2/HNO3, O3/NO, and O3/NO, ratios
(NO, = NO, — NO,). VOC-sensitive conditions correspond to values below 0.3,

7 and 9 for each one of these ratios respectively.

In this study, we choose to reduce anthropogenic VOC and NO, emissions by
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35 % in the domain. Two new simulations are generated keeping the same initial
and boundary conditions, and O3 results from both are compared. If O3[35% less
VOC]-03[35% less NO,| < 0, it is more efficient to decrease VOC in order to
tackle the O3 problem, so we can state that we are in a VOC-limited chemical
regime. If it is > 0, it is more efficient to decrease NO,, thus we are in the NO,-
limited chemical regime. Fig. 4.4 presents the daily evolution of the chemical
regimes for the region of Bogota, for this particular episode. Downtown Bogota
is VOC-limited in the morning (fig. 4.4(a) and (b)). At 1200LT, hour of the O3
maximum (fig. 4.4(c)), the VOC-limited regime has contracted and moved with
the city plume towards the east. At 1400LT (fig. 4.4(d)), the remaining plume
has changed entirely to a NO,-limited regime. The following statements can be

withdrawn from this analysis:

e Two main VOC-limited regions are identified at 0900LT (fig. 4.4(a)): a big
region found over the city core, and a smaller one situated outside the city,
towards its northwestern part (in the following, this zone will be defined as
the NW zone). The former appears over an important industrial corridor,
with high NO, emissions. “Titration zones” in which Og is destroyed by
freshly emitted NO, are identified inside the same regions at this hour of
the day. The destruction of O3 occurs at nighttime in places with high NO,
emissions (in this case, downtown and the NW zone). The effects of titration
are perceived until 0900LT, that is, Og values from the base case simulation

remain lower than the background until this hour of the day.

e The city plume shows two regions with maximum values when the wind
direction changes (around 1000LT) and starts blowing towards the east,
carrying back the pollution from the early morning over the city (see sec-
tion 4.3). One region is located towards the NE and the other towards the
SE. At 1000LT (fig. 4.4(b)), both plumes are in the VOC-sensitive regime.
Later on, only the portion of the plume going NE remains VOC-sensitive
(fig. 4.4(c)), so that the SE maximum O3 is in the NOy-sensitive regime.
The places where both NE and SE O3 maximums appear are considered also

as critical spots functioning under different chemical regimes (fig. 4.5).

e The Hy0O2/HNO3 ratio <0.3 has been found to be a robust indicator to de-
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()

Figure 4.4: Evolution of the chemical regimes in the region of Bogota for 6 March 2002.
Bogota’s O3 plume is presented in all the figures (Ozone concentrations in ppb are included
in the scale to the right of each figure), and it is delimited by the isoline of 2 ppb. The
thick black line included in (a), (b) and (c) represents the limit between VOC-sensitive
(inside) and NO,-sensitive (outside) regimes. The VOC-sensitive zone shrinks and moves
eastwards until 1300LT. At 1400LT (d), all the region is in the NO,-sensitive regime. In
(a), titration zones are shown in black. They indicate simulated O3 concentrations smaller
than the background value (30 ppb), confirming the nightly Oz destruction. The black
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squares symbolize some measuring stations (see fig. 4.3).

fine a VOC-sensitive regime (Jeanneret et al., 2001; Chen and Chang, 2006).
The contour line of 0.3 defined by this indicator overlaps almost entirely (not
shown) the VOC-sensitive zones presented in fig. 4.4. The values reached
at the places of the maximum NE and SE Og peaks are 0.1 and 0.31 in
that order (at 1200LT). These values corroborate the VOC-sensitive and

NO,-sensitive nature of the NE and SE plumes respectively. However, the

v
i
[ ]
T T
35 4

5

180

140

100

20

180

140

100

20



4. Design of abatement strategies

result obtained for the SE plume indicates that a small swift in the original
conditions could easily favor a VOC-sensitive regime in this portion of the
plume. Other indicators like O3/NO, and O3/NO, ratios behave similarly,
that is, values far below 7 and 9 for the NE plume, and close to 7 and 9 in
the SE (not shown).

e The maximum Og increase predicted by the simulation in which 35% of NO,,
emissions are reduced, with respect to the base case, is of 55 ppb and it takes
place in the city center (at 1000LT). The maximum Oz peak in the domain
is increased by 25 ppb with this emission reduction. In the same way, the
maximum O3 decrease predicted by the simulation in which 35% of VOC
emissions are reduced, with respect to the base case, is of 47 ppb and it
takes place in the northeastern part of the city (1100LT), in the core of the
city plume. The maximum Os peak in the domain is reduced by 27 ppb.
Additionally, the maximum reduction attained in the city center is about 20
ppb (1100LT).

Four critical spots of Bogota’s pollution plume (fig. 4.5), which react differ-
ently to changes in emissions, have been identified out of this analysis: The NW
region is separated from the main emissions in town, and is characterized by high
NO, emissions. The NE and SE regions correspond to two different parts of the
city plume, with important O3 peak values at midday but functioning under dif-
ferent chemical regimes. Finally, the city center (represented by the letter C), with

constant high levels of emissions.

4.4.2 Interactions and contributions of different emis-
sions to the pollution plume and to Ozone for-

mation

The factor separation (FS) technique proposed by Stein and Alpert (1993) is used
in this part of the study. It quantifies the relative contribution of predefined
factors, individually and in mutual interaction (i.e. Thunis and Cuvelier (2000);
Grossi et al. (2000); Tao et al. (2005); Carvalho et al. (2006)). Without isolating the
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Figure 4.5: Definition of critical zones of pollution in the region: NW=Northwest,
NE=Northeast, C=Center of the city, SE=Southeast. The map of simulated Os con-
centrations (ppb) for the base case, 6 March 2002, 1200LT is also presented. Note that
two O3 maximums appear at this time of the day, in the NE and SE regions. The black
squares illustrate some of the measuring stations (see fig. 4.3).

contributions from the different factors, ambiguous or deceptive results might be
expected, due to the nonlinearity of the processes involved. This technique requires
2™ simulations, where n is the number of factors to be studied. Hence, to estimate
the relative impact of factors A and B, 4 simulations are required: including none
of the factors, only with factor A, only with factor B, and including both factors.
The results of the simulations are denoted by: Sy, S4, Sp and S respectively.

Subsequently, the isolated contribution of factors A and B is given by,

Sy=84— S (4.1)
Sp =S — S (4.2)

Therefore, the simulation including both A and B is stated as:
Stot:SO‘i‘gA‘i‘gB“‘gAB (4.3)
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4. Design of abatement strategies

Table 4.1: Notation used to quantify the interactions of different emissions according to
the Factor Separation technique ¢

Emissions
Shot Total (all the emissions)
So None (only biogenic emissions)
Stot Bogota’s contribution = S;,; — Sp

SN Nighttime (0100LT-0900LT)

Sp Daytime (1000LT-2400LT)

SpN Mutual interaction between Nighttime and daytime
Sy Urban perimeter

Sr Rural

Svr Mutual interaction between urban and rural

Sor Others than traffic

St Traffic

Sorr Mutual interaction between traffic and others

Sor Others than industries

St Industries

Sorr Mutual interaction between industries and others
Sor Others than light vehicles

St Light vehicles

Sorr  Mutual interaction between light vehicles and others
Sorn  Others than heavy vehicles

SH Heavy vehicles

Somn Mutual interaction between heavy vehicles and others

@ Note that Stot = So + Sp + Sy + Spv = So + Su + Sr + Sur = So + Sor + St + Sorr =
So + Sor+ Sr+ Sorr = So+ Sor + St + Sorr = So+ Son + Su + Sora. All the simulations are
run with the same initial and boundary conditions. Sp denotes the background concentrations. To obtain
this value, a simulation with only biogenic emissions is run.

The term Sy stands for the contribution due to other factors apart from A and
B. The term S 4B stands for the contribution due to the interaction between A

and B and is caused by the nonlinear processes taking place.

The factors to be studied are defined based on the results obtained from the
previous section, following to the characterization of the chemical regimes and the
identification of critical zones. First, nighttime and daytime emissions are investi-

gated. The split between these two is set at 0900LT, that is, nighttime emissions
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4.4 Quantification of pollutants response to hypothetical emission scenarios

include emissions from 0000LT (time when the simulation starts) until 0900LT,
whereas daytime emissions are considered from 0900LT until 2400LT. This defini-
tion takes into account that significant Og production starts after 0900LT (values
are lower than the background due to Og titration before 0900LT'). Thermal winds,
turbulence and mixing start gaining importance after this hour as well. Second,
the influence of anthropogenic rural and urban emissions is studied. “Rural” emis-
sions describe those released in the domain of study but outside the prescribed
urban perimeter of Bogota. The role and contribution of these emissions to the
formation of the plume are examined. Third, the impact of traffic and industrial
sources is analyzed individually. Fourth, since traffic is the most important source
of pollution in Bogota, the role of light and heavy traffic emissions is also evalu-

ated. Heavy traffic corresponds to buses and trucks heavier than 3.5 tons.

The FS technique is applied to compare two factors at a time, so a total of
14 simulations is necessary to cover the issues proposed above (see table 4.1 for
details): Sy, So which correspond to the base case and the background simulation
(simulation run only with biogenic emissions); S N Sp which correspond to the
simulations with nighttime and daytime emissions; SU, S Rr, related to the urban
and rural emission simulations. In the case of traffic and industrial sources, 4 sim-
ulations are required (§OT, Sr, Sor and S 1), since they are not the unique sources
of emission in the region, and we want to keep the directive of the analysis of two
factors at a time. The same situation is presented for the analysis of light and
heavy traffic (SO L, S L, Soy and S 7). This notation will be used in the following
to describe the individual contributions of each factor of interest. The same initial

and boundary conditions are kept for all the simulations.

Daytime and nighttime emissions

Table 4.2 presents the contributions of daytime and nighttime emissions to the to-
tal concentrations of pollutants found at midday (the hour of the O3 maximum),
for each one of the critical regions defined in the previous section. The O3 peaks
in the NE and SE regions (177 and 139 ppb) present important contributions of
nighttime emissions (fig. 4.6(a)), with 148 and 93 ppb respectively, indicating
that emissions before 0900LT play a predominant role in the formation of the

peak. This means that abatement strategies should be focused on the reduction of
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160

Figure 4.6: Contribution of nighttime and daytime emissions to O3 formation (ppb) at
the time of the maximum (1200LT). (a) Sn, (b) Sp, (c) Spn, (d) Siot-

nighttime emissions in order to influence the Og levels. The effect of the mutual
interaction (S’ DN, fig. 4.6(c)) is negative over most of the domain, implying that
emissions after 0900LT cause a reduction in the O3 production due to an effect of
saturation of the system. Observing at the values obtained for Sp (56ppb) and
SpN (-55ppb), it can be stated that the contribution of the day saturates itself.
As we move from the NE to the center of the city, a more balanced repartition be-
tween Sy and Sp is observed, which is expected since emissions are being released
downtown at this hour of the day. The NW region shows as well a predominance

of daytime emissions at this hour of the day. This is explained by the fact that
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4.4 Quantification of pollutants response to hypothetical emission scenarios

Table 4.2: Contribution of nighttime and daytime emissions to pollutant concentrations
(ppb) at 1200LT in 4 specific locations of the domain (fig. 4.5), according to the FS
technique. NMVOC = Non methane volatile organic compounds.

Stot SO SN SD SDN

NE CO 4399 1984 1779 642 -6
NO, 39 0 19 15 >
NMVOC 196 84 71 37 4
O3 177 28 148 26 -95

SE  CO 2789 2004 562 209 14
NO, 9 0 3 5 1
NMVOC 111 87 15 9 1
O3 139 35 95 28 -17

C CO 3262 2003 281 1001 -23
NO, 38 0 2 36 1
NMVOC 149 87 9 23 0
O3 100 35 51 37 -23

NW  CO 2040 1998 31 11 0
NO, 11 0 0 11 0
NMVOC 86 87 0 -1 0
O3 72 37 10 28 -3

this region, which does not undergo the effect of the morning rush hour emissions

in Bogota, is located on an important industrial corridor with permanent emissions.

In the case of NO,, similar total concentrations are found in the city center
and in the NE (38 and 39 ppb), but they exhibit different contributions of Sy and
Sp. In the NE, Sy is predominant (19 ppb), indicating the presence of important
amounts of NO,, emitted at nighttime and carried away with the wind. Downtown,
freshly emitted NO, is observed (36 ppb). A similar behavior is observed for both
NMVOC and CO, indicating important Sy and Sp contributions in the NE and

central regions respectively.

Urban and rural emissions

Urban and rural emission interactions (fig. 4.7, table 4.3) show that the plume of

Bogota is mainly formed by the pollutants released by the city. 149 and 104 ppb
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Figure 4.7: Contribution of urban and rural emissions to O3 formation (ppb) at the time
of the maximum (1200LT). (a) Sg, (b) Su, (¢) Sur, (d) Siot-

of the O3 peaks in the NE and SE respectively are attributed to urban emissions
(S'U), with zero contribution from emissions outside Bogota (S” r). In the same way,
rural contributions are weak for all the domain, except for the NW region, whose
contributions are mainly from rural origin (fig. 4.7(a)). If Sy and Sy O3 maps
are compared (fig. 4.7(b) and (d)), similar levels of pollution are appreciated, but
the plume formed by Sy is less expanded. The extension of the plume towards the
NW in the base case simulation (gtot) is thus due to rural emissions. S'U Rr values
remain close to zero, which implies that there is a very weak interaction between

these two types of emissions.
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Table 4.3: Contribution of rural and urban emissions to pollutant concentrations (ppb)
at 1200LT in 4 specific locations of the domain (fig. 4.5), according to the FS technique.

St S0 Sk Sy

0

UR
NE CO 4399 1984 1 2414 0
NO, 39 0 0 39 0
NMVOC 196 84 0 112 0
O3 177 28 0 149 0
SE  CO 2789 2004 1 786 -1
NO, 9 0 0 9 0
NMVOC 111 87 0 25 0
Os 139 35 0 104 0
C CO 3262 2003 0 1259 0
NO, 38 0 0 38 0
NMVOC 149 87 0 62 0
O3 100 35 0 65 0
NW  CO 2040 1998 25 16 1
NO, 11 0 11 0 0
NMVOC 86 87 -1 0 0
O3 72 37 32 4 -1

The role of urban emissions is equally predominant for NO,, NMVOC and CO

in the NE, SE and center, but in the NW region rural emissions are more important.

Traffic and industrial sources

The simulation with only traffic emissions (fig. 4.8(a), table 4.4) shows that this
type of emissions play the most important role in the NE and SE O3 peaks of the
plume, with 153 and 100 ppb respectively. Only the NW shows a predominance
of other sources of emissions 9 and 29 ppb attributed to Sr and Sor respectively
(the same values are obtained correspondingly for So ;and S 1, see table 4.5). The
negative values observed for S’OTT and 5’0 77 indicate that the combination of indus-
trial and traffic emissions leads to a reduction of Os, that is, only traffic emissions
would lead to higher values of O3. The strong impact of traffic emissions is also

observed for the other pollutants examined, except for NO, in the NW which is
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Figure 4.8: Contribution of traffic and industrial emissions to O3 formation (ppb) at the
time of the maximum (IQOOLT). (a) ST, (b) Sr, (C) SorT, (d) Sorr- Sor and Soy are not
shown

mainly from industrial provenance.

Light and heavy traffic

Since traffic is a crucial source of pollution, it is worthwhile investigating the in-
dividual contributions of light and heavy vehicles. The most important aspect of

this part is related to the positive values of the interactions S’o L and S’o oo (fig.
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4.4 Quantification of pollutants response to hypothetical emission scenarios

Table 4.4: Contribution of traffic and other sources of emissions to pollutant concentra-
tions (ppb) at 1200LT in 4 specific locations of the domain (fig. 4.5), according to the FS
technique.

Stot SO ST SOT SOTT

NE CO 4399 1984 2413 3 0
NO, 39 0 34 0 5
NMVOC 196 84 109 -2 6
O3 177 28 153 24 27

SE  CO 2789 2004 764 22 -1
NO, 9 0 7 1 1
NMVOC 111 87 24 -1 2
O3 139 35 100 15 -11

C CO 3262 2003 1256 2 1
NO, 38 0 34 3 1
NMVOC 149 87 61 0 1
O3 100 35 65 15 -15

NW  CO 2040 1998 44 -2 0
NO, 11 0 0 11 0
NMVOC 86 87 1 -2 0
O3 72 37 9 29 -3

4.9, tables 4.6 and 4.7), obtained for the NE and SE regions. This demonstrates
that it is the combination of both light and heavy traffic which leads to high levels
of Os. Additionally, a slightly stronger influence of heavy traffic emissions is per-
ceived in the SE as compared to the NE. This is related to the temporal repartition
attributed to light and heavy traffic. Higher values of the heavy traffic split are
found before 0600LT with respect to those attributed after this hour, when the
light traffic becomes more important. This means that heavy traffic emissions have
more time to go southwards before the wind direction changes (see section 4.3),
resulting in a larger contribution of this source in the SE. As for CO and NO,,
heavy traffic emissions appear to have the major contribution in all the regions
(except for NO, in the NW which is essentially from industrial origin). In the case

of NMVOC, light traffic denotes the most significant source of emissions.
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Table 4.5: Contribution of industries and other sources of emissions to pollutant concen-
trations (ppb) at 1200LT in 4 specific locations of the domain (fig. 4.5), according to the
F'S technique.

Stot SO SI SOI SOII

NE CO 4399 1984 2 2413 O
NO, 39 0 0 34 )
NMVOC 196 84 -5 -111 6
O3 177 28 24 153  -27

SE  CO 2789 2004 22 764 -1
NO, 9 0 1 7 1
NMVOC 111 87 -2 25 2
O3 139 35 15 100  -11

C CO 3262 2003 2 1256 1
NO, 38 0 3 34 1
NMVOC 149 87 -2 62 2
O3 100 35 15 65 -15

NW CO 2040 1998 -2 44 0
NO, 11 0 11 0 0
NMVOC 86 87 -2 1 0
O3 72 3729 9 -1

4.5 Feasible emission scenarios

Since traffic plays the most important role in terms of levels of pollution in Bo-
gota, this section is devoted to the study of three emission scenarios which aim to
mitigate emissions from this source. They are all focused to heavy duty vehicles,
and they are called feasible because they could be applied in the short or medium

term to the city.

The first scenario has been recently implemented in Bogota (El Tiempo, 2006).
It concerns the partial restriction of the circulation between 0600LT and 1000LT
of the heavy traffic fleet (heavier than 5 tons) which does not comply with the
city’s regulation program (DAMA, 2006). It means that if a given vehicle does
not have an approved regulation certificate, it is not allowed to run one day out of
ten. This restriction is applied according to the last number of the plate. Thus,

if no vehicle complies the regulation, 10% of the total heavy traffic is not running
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Figure 4.9: Contribution of light and heavy traffic emissions to O3 formation (ppb) at
the time of the maximum (1200LT). (a) Sz, (b) Su, (¢) Sorr, (d) Sorn. Sor and Sog
are not shown.

in the city. To simulate this scenario, we assume that 10% of the total amount of

heavy vehicles is not circulating. From now on this scenario will be denoted as Sc-1.

The second scenario involves the complete elimination of 20% of the buses cir-
culating in the city. This scenario stands for the fact that at the moment there is an
oversupply of buses in Bogota, calculated in around 20% (Giraldo, 2005). One of
the reasons for this oversupply is attributed to a relatively recent implementation of

a new bus system in the city (Skinner, 2004). We will refer to this scenario as Sc-2.
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Table 4.6: Contribution of light vehicles and other sources of emissions to pollutant
concentrations (ppb) at 1200LT in 4 specific locations of the domain (fig. 4.5), according
to the FS technique.

Stot SO SL SOL SOLL

NE CO 4399 1984 372 2035 9
NO, 39 0 0 68 -30
NMVOC 196 84 119 7 -13
O3 177 28 13 48 88

SE  CO 2789 2004 117 664 4
NO, 9 0 0 13 -9
NMVOC 111 87 33 - -4
Os 139 35 6 83 15

C CO 3262 2003 191 1065 3
NO, 38 0 1 41 -4
NMVOC 149 87 61 2 -1
O3 100 35 5 45 15

NW CO 2040 1998 7 35 0
NO, 11 0 0 11 0
NMVOC 86 87 2 -3 0
O3 72 37 0 35 0

The third scenario (Sc-3) represents an attempt to evaluate the impact of a
combined measure consisting in the renewal of the fleet of buses and the improve-
ment of the diesel’s quality (for details about the fleet in Bogota and its emission
factors (EF), see Zarate et al. (2006a)). It is expected that these two measures
will take place within a few years in Bogota. To recalculate emissions for this sce-
nario, standard CORINAIR EF proposed by EEA (1999) are assumed to be valid
and thus applied. Nevertheless, such kind of scenarios should be more accurately

simulated in the future using real-world EF.

Table 4.8 presents the maximum percentages of reduction attained for each of
the scenarios simulated, as well as the time when they take place. Positive reduc-
tion percentages are observed for all the primary pollutants. Whereas Sc-1 and
Sc-2 have relatively less impact (maximum reduction percentage = 12 %), Sc-3
shows important reductions in the simulated concentrations (maximum reduction

percentage = 72 %). The reductions for CO and NO, can be better observed in
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Table 4.7: Contribution of heavy vehicles and other sources of emissions to pollutant
concentrations (ppb) in 4 specific locations of the domain (fig. 4.5), according to the FS
technique.

Stot SO SH SOH SOHH

NE CO 4399 1984 2032 377 6
NO, 39 0 63 0 -25
NMVOC 196 84 4 117 -9
O3 177 28 ol 30 69

SE  CO 2789 2004 642 140 3
NO, 9 0 11 1 -3
NMVOC 111 87 -6 32 1
O; 139 35 82 18 4

C CO 3262 2003 1062 194 3
NO, 38 0 36 4 -2
NMVOC 149 87 1 61 0
O3 100 35 47 20 -2

NW CO 2040 1998 37 5 0
NO, 11 0 0 11 0
NMVOC 86 87 -1 0 0
O3 72 37 8 29 -2

Table 4.8: Maximum percentages of reduction in concentrations obtained for the simula-
tion of emission scenarios (the hour of the day when this reduction takes place is presented
in parenthesis). In the case of Sc-3, the production of Oz starts earlier, hence the peak in
town appears two hours earlier (fig. 4.12(a)). This generates the high percentages of O3
increase at 1000LT (98 %).

Sc-1 Sc-2 Sc-3
CO 3 (0900LT) 7 (1000LT) 72 (0900LT)
NMVOC 1 (0900LT) 1 (1000LT) 6 (1000LT)
NO, 5 (1100LT) 12 (0900LT) 55 (0900LT)
O3 -4 (1200LT) -10 (1000LT) -98 (1000LT)

fig. 4.10. For all the three scenarios, the most important reductions of primary
pollutants are observed in the morning, in the central and eastern part of the city.
Another important reduction is observed at 2200LT, towards the western part of

the city. An example of the NO, reductions attained for Sc-2 is presented in fig.
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4.11.

Figure 4.10: Comparison of TAPOM simulated concentrations obtained in one of the
measuring stations downtown (Nacional), for the base case (solid line) and different emis-
sion scenarios: Sc-1 (dotted line), Sc-2 (dashed dotted line) and Sc-3 (dashed line). (a)
CO, ppm. (b) NO,, ppb.

Due to the non-linearity of Os, results are not as straightforward as primary
pollutants. For all the scenarios, maximum simulated O3 concentrations are bigger
than the corresponding ones obtained in the base case. In the case of Sc-3, the
production of Og starts earlier, hence the peak in town appears two hours earlier
(fig. 4.12(a)). This generates the high percentages of O3 increase at 1000LT (98
%). As for the O3 maximum, Sc-3 produces 20 ppb more than the base case (fig.
4.12(b)). This peak appears at 1100LT (one hour earlier than the peak in the
base case), which implies that it is closer to the city core (the wind starts blowing
towards the east after 1000LT).

4.6 Conclusions and outlook

In this study, a deeper understanding of the air pollution problem in Bogota has
been attained throughout the use of modelling tools. The evolution of the chemical
regimes of the plume has been characterized for the particular pollution episode

which occurred during 6 and 7 March 2002 in Bogota. In the early morning, the
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Figure 4.11: Geographical localization of maximum NO, reductions attained for the
simulation of emission scenarios. This figure presents the example of Sc-2 (reductions
of primary pollutants are attained at the same places for the three scenarios evaluated).
The map plots NO, (Base case) — NO,(Sc-2). (a) 0900LT. (b) 2200LT. For all the
three scenarios, the most important reductions of primary pollutants are observed in the
morning, in the central and eastern part of the city. Another important reduction is
observed at 2200LT, towards the western part of the city. Measuring stations: Nacional
(NA) and Merck (ME) are located in the central part of the city, Corpas (CO) in its
northern border and Monserrate (MO) on the top of one of the eastern mountains bordering
the plateau.

VOC-sensitive zone encompasses nearly all the city, and then this zone shrinks and
moves eastwards. At 1300LT, when the air masses have aged, the plume becomes
entirely NO,-sensitive. This implies that an increase in the O3 levels might be ex-
pected in the morning hours when applying abatement strategies focused mainly

on the mitigation of NO,.

The main agents leading to high levels of pollution in the city have been iden-
tified using the factor separation technique proposed by Stein and Alpert (1993).
Hypothetical scenarios were used to analyze the impact of nighttime and daytime,
urban and rural, traffic and industrial, and light and heavy traffic emissions. From
this analysis, we conclude that pollution in Bogota comes mainly from emissions
released before 0900LT in the city itself, and the main source of pollution is on-
road traffic. Moreover, heavy duty traffic contributes with the most important
proportions of all the pollutants except VOCs, whose principal source are the light
vehicles. This means that Oz levels in Bogota are produced by a combination of

NO, from heavy vehicles and VOCs from light vehicles.
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Figure 4.12: Comparison of simulated O3 concentrations for the base case (solid line)
and different emission scenarios: Sc-1 (dotted line), Sc-2 (dashed dotted line) and Sc-3
(dashed line). (a) Time series at Nacional station. (b) Map of simulated Oz for Sc-3,
1100LT. The black squares illustrate some measuring stations (see fig. 4.3).

Three viable abatement strategies having as target the heavy duty vehicles,
have also been evaluated. Simulated concentrations of primary pollutants de-
crease proportionally with the decrease of emissions, whereas O3 reacts differently
due to the non-linear processes governing its production and destruction. For all
the abatement strategies evaluated, higher Oz levels were achieved in town. The
biggest challenge when evaluating abatement strategies for Bogota, is related to
the lack of validated real-world traffic EFs. Sc-1 and Sc-2 propose a restriction in
the circulation of heavy vehicles of the current fleet. The reduction percentages
obtained for these two scenarios may be underestimated due to the fact that we
count on average validated EFs for only two classes of vehicles (light and heavy,
Zarate et al. (2006a)). Restricted vehicles (old buses for example) surely con-
tribute more to emissions than those vehicles allowed to circulate. In Sc-3, a
renewed fleet running with a high quality fuel is assumed and thus CORINAIR
traffic EF's were applied. A drastic reduction of levels of primary pollutants was
hence obtained, whereas Og levels increased considerably. The abatement of Og
is therefore bounded to a decrease in the levels of VOC in the city, whose main
contributors are the light traffic. Further research is needed in order to accurately

estimate real emissions in the city for such scenario. Furthermore, this work shows
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4.6 Conclusions and outlook

that different abatement strategies can be formulated depending on the region of
the city to be treated or the pollutant to be tackled. Additionally, in order to mit-

igate pollution it is necessary to take actions on different types of emission sources.

Finally, an integrated assessment of pollution abatement strategies in Bogota
should comprise the analysis of emission scenarios under other meteorological and
dispersion conditions. Though care must be taken before generalizing conclusions
about the efficiency of abatement strategies tested for a particular episode, these

results contribute to reinforce the knowledge about air quality in the city of Bogota.
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Chapter 5

Modelling particulate matter
with an heterogeneous-phase
model in Bogota.

Abstract

Aiming to understand the transport and formation of aerosols during a typical
2-day air pollution episode in Bogota, a mesoscale air quality model is applied
and evaluated. The formation of secondary aerosols is studied, as well as the
interactions between the gas and aerosol phases. 3 abatement strategies which
concern the mitigation of heavy traffic emissions are evaluated in terms of PMjg.
This work is a preliminary approach to the simulation of PMjg in Bogota and is
useful to widen the understanding of the problem and to outline future research
fronts.

117



5. Simulation of PM10

5.1 Introduction

Studies of long-term exposure to airborne particulate matter (PM) suggest an in-
creased mortality, increased risk of chronic respiratory illness and of developing
various types of cancer, at levels of exposure that are currently experienced by
urban populations in both developed and developing countries (Moussiopoulos,
2003; WHO, 2005). PM;( (particles smaller than 10 pm) represents the particle
mass that enters the respiratory track and it includes both the coarse (particle size
between 2.5 and 10 pm) and the fine particles (less than 2.5 pm, PMs 5). The for-
mer is primarily produced by mechanical processes such as construction activities,
road dust re-suspension and wind, whereas the latter originates primarily from
combustion sources. In most urban areas, both coarse and fine mode particles
are present, but the proportion of particles in these two side ranges is likely to
vary substantially between cities around the world, depending on local geography,

meteorology and specific PM sources.

The chemical and physical properties of PM are important for assessing envi-
ronmental impact as well as adverse health effects (Moussiopoulos, 2003). These
properties also need to be taken into account in selecting methods for PM emission
regulation and control. Moreover, the determination of the best control strategy
is not straightforward since PM results from primary particle-phase emissions and
from their gas-phase precursor substances; the later leading to the formation of

secondary PM.

PMjg is one of the most serious air pollution problems in Bogota. Between
1998 and 2002, Bogota’s air quality network showed an increase of 12% in levels of
this pollutant (Molina and Molina, 2004). Around half of the measuring stations
do not comply the annual local standard (65 pg m—3), and the 24-h standard (170
ng m~3) is also frequently exceeded (about 10% of the daily average data exceed
this standard, UNTANDES/EPFL (2001); DAMA (2006)).

Chapter 2 indicates values of PM1g emissions for mobile and industrial sources
in Bogota, with mobile sources including only car exhaust emissions. Nonetheless,
other sources must be taken into account when simulating urban aerosols. First,

natural sources such as soil and rock debris (fugitive windblown dust), biomass
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5.2 Model description

burning, etc. Second, other anthropogenic sources namely fugitive sources (road-
way dust from paved and unpaved roads, construction, farming operations, etc)
and non-exhaust traffic emissions (tyre and brake wear). The calculation of such
emissions is difficult and in many cases it is not yet clear which compounds, what
magnitude and under which conditions they move in the atmosphere (Friedrich
and Reis, 2004). The exact estimation of the contribution of these sources is out

of the limits of this work.

Yet, applying an air quality model helps to the understanding of the processes
taking place and allows to prioritize lines of work. The aim of this contribution
is to simulate PMyq for a given pollution episode which took place in the region
of Bogota in 6 and 7 March 2002, and to evaluate the impact of some abatement
strategies when applied for the same episode. For this purpose, a mesoscale air
quality model capable of simulating both the gas and the aerosol phase as well as
their interactions is used. Sections 5.2 and 5.3 present the description of the model
and the way PM emissions are prepared respectively. The results of the simula-
tions are described in section 5.4. Section 5.5 evaluates some feasible abatement

strategies to reduce PMg.

5.2 Model description

TAPOM (Transport and Air POllution Model, Martilli et al. (2003); Junier et al.
(2005)), developed at LPAS, is a transport and photochemistry three dimensional
Eulerian model. It uses a terrain following grid with finite volume discretization.
It includes the RACM lumped species mechanism (Stockwell et al., 1997), the
Gong and Cho (1993) chemical solver for the gaseous phase, the transport algo-
rithm developed by Collela and Woodward (1984), and Clappier (1998), as well as
the solar radiation module TUV developed by Madronich (1998) to calculate the

photolysis rate constants.

The module simulating aerosols in TAPOM includes 10 chemical species (table
5.1) and deals with 4 size ranges: (i) 0 - 0.125 pm, (ii) 0.125 - 0.625 pm, (iii) 0.625
- 2.5 um, and (iv) 2.5 - 10 pm. The model simulates heterogeneous dynamic pro-

cesses such as “gas-to-particle conversion”. This process consists in the diffusion
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5. Simulation of PM10

of vapor molecules of a given gas-phase substance over the surface of the particle,
reaction and further incorporation to it. It is thus possible to calculate the change
in the particle size if the rates of diffusion and reaction are known. The gas-phase
chemical species that interact with aerosols in TAPOM are: HNO3 (Nitric Acid),
HCI (Chlorhydric Acid), VOCs (Volatile Organic Compounds) and NH3 (Ammo-
nia). In the presence of clouds or water vapor, SOy (Sulfur Dioxide) also interacts
with aerosols. After each iteration of the numerical simulation, aerosols are re-

classified in their corresponding size range according to the values described above.

Table 5.1: Chemical species of Aerosols simulated by TAPOM

Name in TAPOM Chemical species
aSOD Na*
aHYD H*
aAMN NH,*
aNIT NO3;~
aHCl Cl~

aSUL SO,~
aWAT H,O
aCAR Elemental or black carbon
aORG Organic carbon
aCRU Crustal material

TAPOM deals with inorganic and organic aerosols in different ways. To treat
the multiphase multicomponent thermodynamics and kinetics of inorganic aerosols,
the ISORROPIA module (Nenens et al., 1998) has been incorporated to TAPOM.
On the other hand, organic aerosols are produced from the gas-phase VOCs, but

once created, they are treated as passive substances.

The grid of 55 km x 55 km with a resolution of 1-km in both x and y directions,
described in chapter 3, is run with TAPOM. The obtention of the meteorological
data used for the simulations is also presented in 3. Initial and boundary condi-
tions are primarily set at the same values for each chemical species, and a pre-run
of one day with the same emissions and wind fields is conducted, in order to pro-
vide more realistic initial conditions for the simulation. Data provided by the
monitoring network (DAMA, 2006) is used to establish the initial and boundary
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5.8 Preparation of the Emissions

conditions of total PM;jg.

5.3 Preparation of the Emissions

Mobile and industrial sources in Bogota emit 4.5 and 8.1 ton day ! of PM;( respec-
tively (see chapter 2, with mobile sources including only car exhaust emissions. To
the knowledge of the author, there is no information concerning the chemical speci-
ation or the size distribution of such emissions. Missing data can thus be resumed
in three main points: (i) contributions from other sources, (ii) size distribution
of all the emissions, and (iii) chemical speciation for each source, each size range.
To fulfill this information, a number of assumptions have to be made. Though
geographical distribution of particle sources, sizes and speciation is highly non-
uniform, the ground of such assumptions is based on a detailed analysis of data
collected for other urban agglomerations around the world (Hien et al. (2001);
Querol et al. (2001); Molina and Molina (2002); Samara et al. (2003); Salvador et
al. (2004); Held et al. (2004); Mathis et al. (2005) and many others). They are

summarized here:

e 25% of the total PMj( emissions correspond to both car exhaust and indus-
trial emissions. 50% correspond to fugitive sources such as resuspension and
construction, and 25% to other sources (windblown dust, fires, agriculture,
aircrafts, etc.). This emission distribution is used for the size range 2.5 -
10.0 pm simulated by TAPOM.

e 45% of the total mass of PMy emissions is attributed to particles with a size
smaller that 2.5 pm. 50% of these particles are attributed to car exhaust and
industrial emissions, 25% to fugitive sources and 25% to other sources. The
same emission distribution is used for the smaller 3 size ranges simulated by
TAPOM (0 - 0.125 pm, 0.125 - 0-625 pm and 0.625 - 2.5).

e Spatial and temporal distributions of car exhaust and industrial PMy emis-
sions are known (2). 80% of the daily fugitive sources are assumed to take
place between 0600 and 2200LT, and 20% in the rest of the hours (evenly
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5. Simulation of PM10

distributed each hour). On the other hand, 80% of the “other” sources (wind-
blown dust, fires, agriculture, aircrafts, etc.) is equally distributed between
0600 and 1800LT, and 20% in the rest of the hours. Both fugitive and other

sources are distributed homogeneously in the city.

e The chemical speciation used for the emissions is presented in tables 5.2 and
5.3. Their values are based on data presented by Harrison et al. (2004); Held
et al. (2004).

Table 5.2: Chemical speciation of aerosols by source as used for the simulations over
Bogota, for particle sizes between 2.5 and 10 pm, % of mass

Species Traffic Industries Fugitive Others

aSOD 8 0 0 0
aHYD 0 0 0 0
aAMN 1 10 2 3
aNIT 8 18 2 13
aHCl 8 5 2 2
aSUL 8 12 2 13
aWAT 4 5 2 )
aCAR 7 12 0 14
aORG 14 16 0 14
aCRU 42 22 90 36

5.4 PM,, numerical simulations and results

5.4.1 Comparison with measurements

Both simulated and measured concentrations of PMjo (fig. 5.1 and 5.2) show an
important morning peak, with high values, and a smaller peak at night. The
morning peak is related to high emissions from traffic circulation in the morning
rush hour and a low mixing height, whereas the nightly peak is associated with
the nightly rush hour. The intensities of the peaks are in good agreement with
observations for stations like CADE, Merck, MMA, Nacional and Santo Tomas.
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5.4 PMyig numerical simulations and results

Table 5.3: Chemical speciation of aerosols by source as used for the simulations over
Bogota, for particle sizes <2.5 pm, % of mass

Species Traffic Industries Fugitive Others

aSOD 0 0 0 1
aHYD 0 0 0 0
aAMN 4 20 10 7
aNIT 8 13 5t 12
aHCl 1 1 15 1
aSUL 13 18 3 19
aWAT 6 7 10 10
aCAR 35 20 0 14
aORG 28 18 0 25
aCRU 7 3 25 11

The simulation underestimates values for stations like Cazucd, Corpas, Escuela

and Fontibén, which might be due to an underestimation in localized emissions.

Observed PM;y morning peaks are in general bigger for 6 March than for 7
March. Three aspects might explain that difference: emissions, dispersion (wind
speed and turbulence) and/or chemistry. Since observed peak morning values for
CO, NO, and wind speed do not indicate a particularly important difference be-
tween the two days, differences cannot be attributed to the dispersion effects. The
difference can perhaps be attributed to a change in the chemical composition of
emitted aerosols between the two days which in turn generates less secondary par-

ticles. Nevertheless, this cannot be proved at the moment.

5.4.2 Plume of PM;;, and secondary particles

The plume of PMj indicates its highest values at 0900LT (fig. 5.3(a)), in the
center of the city. Since PMjg is mainly a primary pollutant, concentrations de-
crease afterwards due to dispersion. When the slope winds develop thanks to the
effect of the sun, the plume moves towards the northeast as the day passes by.
At 1300LT (fig. 5.3(b)), a maximum is observed in the same region where the

maximum of Ozone is presented (fig. 3.10). This value illustrates the production
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Figure 5.1: Simulated (solid line) and observed (stars) PMjo (pg m~2, normal conditions)

time series for different stations: Bosque, Cade, Cazuca, Corpas, Escuela and Fontibon.
See chapter 3 for localization of the monitoring stations.

of secondary particles from emissions in the morning, that are transported with
the wind. At 1600LT the production has decreased (fig. 5.3(c)) and particles are
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Figure 5.2: Simulated (solid line) and observed (stars) PMiq (1g m 2, normal conditions)

time series for different stations: Merck, MMA, Nacional and Santo Tom&s. Monserrate

station presents simulated (solid line) and measured (stars) values of elemental carbon at

the conditions of Bogota. See chapter 3 for localization of the monitoring stations.
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dispersed. A new peak appears in the center of the city at 1900LT, corresponding
to the emissions from the nightly rush hour (fig. 5.3(d)).

Mar 6/2002 0900LT Mar 6/2002 1300LT

375

375

Figure 5.3: Map of PM;q concentrations simulated by TAPOM in the domain used for
the air quality simulations (55km x 55 km). Some measuring stations are presented for
reference: CO:Corpas, ME:Merck, NA:Nacional, MO:Monserrate. Values are presented in
ng m~2 at normal conditions. (a) 0900LT, (b) 1300LT, (c) 1600LT, (d) 1900LT.

In order to better understand the production of secondary aerosols, a simula-
tion in which emitted aerosols are treated as passive tracers is run (from now on

this simulation is called “passive aerosol” case). In this simulation, the chemistry
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5.4 PMyig numerical simulations and results

is switched off. The difference in concentrations between the base case (when both
gas and aerosol chemistry are active) and the passive aerosol case is presented in
fig. 5.4, for some of the chemical species that react with gas-phase species (Sul-
fate, Organic Carbon, Nitrate and Ammonium). This difference indicates thus the
amount of secondary particles produced. aSUL, aORG and aNIT reflect mostly
positive values (fig. 5.4(a), (b) and (c)), corroborating the formation of secondary
aerosols produced from the chemical species in the gas-phase. Results confirm the
fact that the reaction to produce aNIT is about 10 times faster than the one to
produce aSUL (Seinfeld and Pandis, 1998). When the gas-phase chemistry is ac-
tivated, values of aAMN are smaller than in the passive aerosol case (fig. 5.4(d)),
due to the conversion of this aerosol to gaseous NHs. As for aCRU and aCAR, the
difference between the two cases is zero (not shown) since they are not a secondary

product.

The plume of total secondary PMyg is represented in fig. 5.5 (the PM;q dif-
ference between the base case and the passive aerosol case). Negative values of
this difference are observed in the center of the city, at 0900LT (5.5(a)). It indi-
cates that aerosols sink in the gas-phase, reacting with the freshly emitted gaseous
species. Aerosols, as the gaseous pollutants, are also pushed towards the south-
west in the early morning. At 1100LT (fig. 5.5(b)), two plumes are formed over
the city, one towards the northeast and the other one towards the southeast. The
maximum value of secondary aerosols is reached at this time (about 80 pg m=3).
At 1600LT (fig. 5.5(c)), the plume has expanded towards the north and south,
trapped in the converge front created by winds blowing from the east and the west

(see chapter 3).

To observe the effects of aerosols over the gas-phase, a simulation in which
only gaseous compounds are emitted is run (the aerosols are not activated). Gas-
phase concentrations of this simulation are compared to gas-phase concentrations
of the base case simulation (both gas-phase and aerosol chemistry are activated).
A production of HCl and NHgs in the gas-phase is observed when aerosols are
activated in the simulation (base case, fig. 5.6(a) and (b)). aHCL and aAMN act
as sources for these two gaseous compounds. The production of aNIT represents a
sink of gaseous HNQOj3, which is reflected in the decreased concentrations found for

the base case when compared to those for the case when aerosols are not activated
(fig. 5.6(c)).
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Figure 5.4: Simulation of the production of secondary aerosols (< 10 pm) by chemical
species. The difference between simulated concentrations of the base case (both gas-phase
and aerosol chemistry are active) and the “passive aerosols” case (the chemistry of the gas-
phase is inactivated) is presented. Values are presented in 1g m~—3 at normal conditions,
for the hours of maximum differences. (a) aSUL (Sulfate), (b) aORG (Organic Carbon),

(c) aNIT (Nitrate), (d) aAMN (Ammonium).

5.5 Evaluation of Emission scenarios

The same abatement scenarios assessed in chapter 4 have been evaluated for par-

ticles. The first scenario concerns the partial restriction of the circulation between
0600LT and 1000LT of the heavy traffic fleet (> 5 ton) which does not comply with
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Figure 5.5: Simulation of the production of total secondary PM;. The difference between
simulated concentrations of the base case (both gas-phase and aerosol chemistry are active)
and the “passive aerosols” case (the chemistry of the gas-phase is inactivated) is presented.
Values are presented in 1g m~2 at normal conditions. (a) 0900LT, (b) 1100LT, (c) 1600LT,
(d) 2200LT.

the city’s regulation program (DAMA, 2006). It means that if a given vehicle does
not have an approved regulation certificate, it is not allowed to run one day out of
ten. This restriction is applied according to the last number of the plate. Thus,
if no vehicle complies the regulation, 10% of the total heavy traffic is not running

in the city. To simulate this scenario, we assume that 10% of the total amount of
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Figure 5.6: Simulated gas-phase concentrations of HCl, NH3 and HNOj3 (ppb), using the
heterogeneous-phase model TAPOM. (a) and (b) show values obtained for the base case
simulation (heterogeneous chemistry activated). The production of HCL and NHj is zero
when the aerosols are not included in the simulation. (¢) Concentrations of HNO3 for the
simulation incorporating the heterogeneous chemistry (dashed line) and the simulation
incorporating gas-phase chemistry only (solid line).

heavy vehicles is not circulating. From now on this scenario will be denoted as Sc-1.

The second scenario involves the complete elimination of 20% of the buses cir-
culating in the city. This scenario stands for the fact that at the moment there is

an oversupply of buses in Bogota, calculated in around 20%. One of the reasons
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for this oversupply is attributed to a relatively recent implementation of a new bus

system in the city. We will refer to this scenario as Sc-2.

The third scenario (Sc-3) represents an attempt to evaluate the impact of a
combined measure consisting in the renewal of the fleet of buses and the improve-
ment of the diesel’s quality (for details about the fleet in Bogota and its emission
factors (EF), see chapter 2). It is expected that these two measures will take place
within a few years in Bogota. To recalculate emissions for this scenario, CORI-
NAIR EF (EEA, 1999) are assumed to be valid and thus applied. Nevertheless,
such kind of scenarios should be more accurately simulated in the future using
real-world EF.

Results of the simulation of these scenarios are presented for four of the main
monitoring stations in the central part of Bogota (fig. 5.7). Sc-1 and Sc-2 do
not have an important repercussion over the simulated concentrations of PMyg. A
decrease in PMj( concentrations is perceived only for Sc-3. This implies that only
a renewal in Bogota’s fleet and a change in the fuel quality will truly contribute to
the decrease of levels of particles in Bogota. Nevertheless, decreases shown by the
model for Sc-1 and Sc-2 might be underestimated for two reasons: (i) we count on
average emission factors for all the heavy traffic in Bogota, and vehicles put out of
service or not complying the regulation might be those which contribute the most
to emissions. Further research is needed in order to obtain more accurate and
detailed real-world emission factors in the city. (ii) total traffic PMjo emissions
might be underestimated in this work, giving too much weigh to other emissions
as it is explained in section 5.3. This would not reflect adequately the effect of

traffic PMj reductions.

5.6 Conclusions and outlook

PM ¢ have been simulated for a pollution episode in Bogota using an heterogeneous-
phase air quality model. A reliable assessment of urban PM pollution is crucial
in terms of the promotion of public health, and modelling is a necessary step in
understanding the effects of changes in emissions on ambient concentrations. Nev-
ertheless, the modelling approach requires good measurements and most of all, a

good and complete emission inventory. Results presented in this work should be
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Figure 5.7: Comparison of simulated PM;o concentrations (ng m~2) for the base case
(solid line) and different emission scenarios: Sc-1 (dotted line), Sc-2 (dashed dotted line)
and Sc-3 (dashed line), for different measuring stations, using the heterogeneous-phase
model TAPOM.

regarded thus as a preliminary contribution in the simulation of aerosols in Bogota.
Further research is needed in several fields such as the evaluation of the contri-
bution of other sources apart from car-exhaust (traffic) and industries, the size
distribution of PM1g by source, the chemical composition, and real-world detailed

traffic emission factors.
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Chapter 6

Conclusions and Outlook.

This work was devoted to the investigation of the sources, dispersion patterns and
chemical transformations of air pollutants in Bogota. For this purpose, an emission
inventory (EI) was generated and meteorological and air quality tools were applied
to the city. The analysis presented was based on the study of a particular air
pollution episode which took place in the region on 6 and 7 March 2002. The results
of the present thesis mark the starting point to a full understanding of the dynamics
of the atmosphere on Bogota’s plateau, and open a new possibility to manage air
quality through a scientifically-based approach. The following items summarize
the main conclusions and the answers to the questions for which this thesis was
conceived. Future perspectives are many and they stand for the questions that
have emerged throughout the development of the present work. They represent

the ground to a very interesting and useful future field of research.

e The first part of this thesis treats the topic of emissions (chapter 2). Three
main issues can be concluded for this part: (i) On-road traffic plays the most
important role in terms of contributions of air pollutants to the atmosphere
in the city, (ii) In the case of Bogota, a significant difference is found between
real-world in-situ traffic emission factors (EFs) and those proposed by stan-
dard bottom-up methodologies. This difference is so important that calls
for further research in order to better quantify the individual contribution
per type of vehicle and for different travelling speeds. It is definitely worth
to deepen in this aspect of the research, not only for the sake of the city of
Bogota, but also for many cities which undergo similar pollution problems

and do not count on sufficient data to fulfill the requirements of the standard
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EI methodologies. The first step to act on air pollution mitigation consists
in accurately quantifying the amounts of pollutants released to the atmo-
sphere. (iii) Since evaluating uncertainties is an impractical task when there
are not enough data, different options should be investigated in order to
estimate the accuracy of Els. In this work, air quality models are proposed
as an alternative to evaluate the proximity of an EI to reality. This method
demands extreme care in the analysis of the results because many factors are
involved (for example meteorology), but it is an inexpensive and rapid way
to obtain a first notion of the degree of approximation of the EI to reality.
Hence, the method is not a one-time task. A continuous recalculation of the
emissions by source and consecutive evaluation with the model is required.
Furthermore, the simulation of several episodes or even long-time runs are

strongly advised to obtain a comprehensive analysis.

Aiming to generate a better EI, future versions of it should include other
sources which have not been taken into account in the present work. Namely,
in the case of on-road traffic, motorcycles and non-exhaust traffic emissions
(tyre and brake wear). Some improvements are also needed for other sources:
obtaining an adequate hourly repartition of industrial emissions and recal-
culation of biogenic emissions. For the later, three types of information are
required: (i) type of vegetal species in the region, (ii) geographical distribu-
tion of them, and (iii), appropriate biogenic EFs. Future efforts should be

made with the purpose of collecting these data.

The second field of study in this thesis comprises the application of meteoro-
logical and air quality models over the region of Bogota (chapter 3). Results
were validated with measurements taken during a specific pollution episode
which took place in the region during March 2002. The use of the models
allowed to obtain a broader vision of the air pollution problem in Bogota.
Bogota’s wind pattern is not only influenced by the configuration of the
plateau and the surrounding mountains, but also by topographical accidents
such as the Magdalena valley, the central Andean mountain range crossing
the country, and the Eastern Plains. The models indicated that these fea-

tures play a significant role on the atmospheric circulations perceived over



the plateau. Under given circumstances such as the episode chosen for simu-
lation, the morning pollution is flushed downwind towards the southwest of
the city, to be transported again over it due to the development of a strong
slope wind which penetrates the plateau from the Magdalena valley. Ozone,
apart from being a critical pollutant, is a very good tracer of the plume
of pollutants for this particular case, since it is photochemically produced
along the day. Sharp peaks of this compound are observed in the center of
the city at midday, indicating the transport of the plume from side to side
of the city. Moreover, pollutants remain trapped not far from the city as
a result of the convergence front created between the slope winds coming
from the Magdalena valley and the Eastern Plains. Hence, pollutants re-
turn over the city during nighttime pushed by the descending nightly slope
wind. Though the simulation of other episodes or long term simulations are
recommended, the episode investigated along this study represents a com-

mon critical situation found during the first dry season of the year in Bogota.

Concentrations of volatile organic compounds (VOCs) and their chemical
speciation, in and outside the city, would increase the understanding of the
photochemical processes taking place. What is more, knowledge about VOC
levels in the city is crucial as a public health issue. This aspect is proposed
as a future branch of research in order to acquire a comprehensive under-

standing of the problem.

The third section of this dissertation encompasses the use of modelling tools
to deepen in the analysis of the composition of Bogota’s air pollution plume
(chapter 4). Traffic emissions released between 0500LT (local time) and
0900LT contribute significantly to the high levels of pollution in the city
which are observed mainly in the morning hours. Moreover, the Ozone
peaks, whose maximum values appear at midday, can be mainly attributed
to the summed contribution of VOCs from light traffic and NO, from heavy
traffic. In the morning the city is in the VOC-sensitive chemical regime (for
the particular conditions of this study) implying that abatement strategies
focused to mitigate NO,, will cause an increase in the levels of Ozone. Short-

term feasible abatement strategies in Bogota concern the reductions of heavy
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traffic emissions. Three of them have been evaluated with the model and
plausible reductions of primary pollutants concentrations and increases of
Ozone levels are confirmed. Abatement strategies focused on heavy traffic
produce an increase in the Ozone levels since they are the most important
contributors of NO,. The simulated reductions obtained for primary pollu-
tants are probably underestimated due to the lack of more detailed real-world
EFs, since old buses (contributing the most to emissions) are sensed to be
restricted or put out of service. Supplementary simulations should be per-
formed in the future aiming to evaluate abatement strategies targeting the
light traffic. Additionally, abatement strategies should be examined under
different meteorological conditions in order to formulate definitive conclu-

sions.

The forth contribution of this thesis covers the simulation of PM;g (chapter
5). The highest concentrations are obtained downtown in the morning hours.
A maximal production of secondary aerosols is observed around 1100LT to-
wards the northeastern part of the city. In order to perform the simulations,
a number of assumptions had to be made due to lack of data. There is a
major need to improve the EI of particles for the city: sources are missing, as
well as size distribution and chemical speciation. Three scenarios addressed
to the control of heavy traffic emissions were applied. Results indicate that
only a change in both the fleet and the quality of the fuel used generate
important repercussions over the levels of PM;y achieved in the city. Nev-
ertheless, this result is only partial until improving the emission inventory
input to the model. A more precise quantification of PM;y emissions is pro-

posed as an essential branch of research in Bogota.

The air quality model indicates that abatement strategies directed to miti-
gate air pollution might have contradictory effects depending on the pollu-
tant to be tackled. The emission scenario which attains the most important
reductions in PMjg, generates the largest increase in the levels of O3 in the
city. At this point, the utility of air quality modelling arises. It is a very
useful tool to decompose the problem and prioritize actions of pollution

mitigation. I really hope that the product of this work, the modelling tool,



serves as instrument to the environmental authorities to facilitate the design
of abatement strategies of air pollution. I really hope that this, in turn, will

bring a better quality of life to the citizens of Bogota.
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Chapter 7

Epilogue.

In this part of the thesis I would like to place the discussion from a different
point of view. I use the parallel made between allopathic medicine and preventive
medicine. The Compact Oxford English Dictionary defines allopathic medicine as
“the treatment of disease by conventional means, i.e. with drugs having effects
opposite to the symptoms”. Preventive medicine, or preventive care, is defined as
a set of measures taken in advance of symptoms to prevent illness or injury. This
thesis has been conducted from the point of view of allopathic medicine, applied
to the environment. In other words, I used a scientific approach to understand
the origins of the symptoms and afterwards I formulated recommendations to treat

and if possible vanish them.

The preventive care approach forces us to seriously consider the reasons to de-
velop such symptoms. In medicine, symptoms show a body imbalance. In the case
of air pollution, the imbalance can be attributed to two factors: excessive human
concentration in a relatively small area and a disproportional energy consumption
carried out by this human mass. In the present, the equation is simple: energy

consumption implies fuel burning and thus emissions of pollutants.

Controlling excessive human concentration is a very difficult problem, espe-
cially for a city like Bogota. Many political, social and economical issues take
part, hence it is far too complicated to think of changing such situation. On the
other hand, energy consumption, fuel burning and emissions are linked to many
aspects. They are linked to the technological state of the art. To give just an

example, the vehicle technology has evolved during the last few years to decrease
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the emissions of particles through the use of filters.

Nevertheless, energy consumption is linked to our habits to a large extent. We
grew up in societies whose paradigm is the search for comfort, which is only normal
if we think in terms of a species who wants not only to preserve itself but also to
keep the best possible quality of life. We develop habits in order to maintain such
comfort. One can plead that with the forthcoming scientific improvements, it is
possible to keep a high level of comfort without really increasing energy consump-
tion and emissions of pollutants. In the example of vehicles, an icon of comfort,
one can argue that future scientific developments will allow a positioning in the
market of vehicles which use other types of fuels or energy supplies, less harmful
to the environment. I do not know until what extent it is true and how long it will

take, only time will tell.

In view of that, it is our responsibility to reflect on our habits as they are,
to consider their consequences for us and for future generations. What is more,
to make a step behind and ask ourselves why we have such habits. Do we really
have them because they imply comfort? Perhaps we have them because everybody
does, and we have not taken the time to think about it. Perhaps we have a car
because we have learnt that it is a matter of good social status to have one. Often,
it is the award of several years of study and work. If we live in a society in which
it is not necessarily well seen to use a car, would we use it? - We can plead that
we are obliged to have a vehicle because public means of transportation are of bad
quality, using them takes time, and time is money. It might be true, but, are we
really willing to create a critical mass and to exert pressure in order to improve

the public transport situation?

The issues of energy consumption and pollutant emissions are not only limited
to vehicles. We can widen our reflection in many aspects. We can re-consider
our habits and bear in mind that small changes might bring significant impacts
on the environment. One additional example of an usual situation in Colombia:
plastic grocery bags are commonly used to transport home our purchase. They
are used normally once and thrown away afterwards. Most plastic bags are made

from polyethylene, and not only they take about a 1 000 years to decompose, but
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they are made from crude oil and natural gas, nonrenewable resources.! Perhaps
we can keep the bags and use them a second time in the supermarket, or simply
minimize the amount we consume. This is a simple example between many to
illustrate that we can implement elementary actions that would have an impact

without seriously affecting our comfort.

To sum up, we can ask governments to do something about air pollution. It is
our right and it is their duty to make short and long term decisions which stand
for our common welfare. But we can also contribute if we take the time to think
about our habits and how we can influence the situation. We can implement an
EcolLife with small changes in our habits without detriment to our comfort. This

might be a powerful way to apply preventive medicine to our environment.

"When one ton of plastic bags is reused or recycled, the energy equivalent
of 11 barrels of oil are saved. In New York City alone, one less grocery bag
per person per year would reduce waste by two million kilograms and save US$
250 000 in disposal costs. U.S. Environmental Protection Agency (EPA, 2007).
http://www.epa.gov/regionl/communities/shopbags.html.
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Chapter 8

Tribute.

Since these years have offered me very challenging experiences, I have many people
to thank. I express my deep esteem for all those mentioned below.

This thesis definitely would not exist without the precious impulse of two people:
MSc. Luis Carlos Belalcazar from UNIANDES, who offered me his psychological
support, his scientific advice and his unreserved friendship throughout all these
years; and Dr. Diego Echeverry from UNIANDES, who took the control of the
ship with incredible talent when it was just about to sink, and brought it safely to
the shore.

MSc. Verédnica Manzi and MSc. Angela Castanio from UNTANDES created such
a warm atmosphere around them, that it was sheer fun to work with them. It was
the most transparent work atmosphere I have ever experimented.

Dr. Eugenio Giraldo from UNIANDES is one of the most intelligent men I have
ever met and he showed me how to achieve things through will and dedication.

MSc. Robinsson Rodriguez, Eng. Blanca Oviedo, Eng. Ernesto Romero from
DAMA, and Eng. Luis Barreto from IDEAM, believed in the project since the
beginning and were always ready to help, for the sake of a better Bogota.

I am also very grateful...

To my ex-colleagues at EPFL, Yves-Alain Roulet, Martin Junier and Frank Kirch-
ner. Yves-Alain not only made a very detailed review of the manuscript of this
thesis, enhancing it with his pertinent scientific comments, he also introduced me
to Switzerland, to his culture, and it is thanks to him that I fell in love with this
country and its peoples. Martin was amazingly patient with me and taught me
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a lot about informatics. Frank gave me an important support for the simulation
of aerosols.

To my colleagues at EPFL, Clive Muller for sharing with me his knowledge in
informatics, for being so open to help and for his sense of humor. To Bang Quoc
Ho, for bringing magic to our group, to Andrea Krpo for his kindness and to Gil
Fontannaz for his good vibes. To Oliver Fuhrer for being an exemplary man in
many senses, for spreading happiness all around him and for his relevant comments
to some parts of the manuscript.

To Dr. Petra Seibert from the Institute of Meteorology at the Universitéit fiir
Bodenkultur, Wien, for holding out her hand when I most needed it.

To Dr. Alain Clappier and to Prof. Hubert van den Bergh for accepting me in
their laboratory and finding the adequate financing for the project. To Alain for
teaching me about autonomy and for his support. To Hubert for his witty sense
of humor. To Véronique Bauler for her permanent spirit of collaboration.

To the president of the jury, Dr. Edgar Gnansounou, and to the members of
the jury, Dr. Eduardo Behrentz, Dr. Isabelle Bey and Dr. Rainer Zah, for

demonstrating so much interest in this work and its document, for their questions
and very valuable comments.

Needless to say...
To my parents, Maruja and Alberto, for their teachings and permanent love.
To my brothers, Boris and Yuri, for being always there.

To all the members of my very big family, grandparents, aunts, uncles and cousins,
for their unconditional love and care, and for their cheering smiles.

To Ingrid Hincapié for her sweet friendship, to Nikolay Mihaylov for showing me
the wonders of planet Earth when I could not see, to Marion Auvray for showing

me what is important in life.

To Paloma Coronado, Leyla Cardenas and Federico Toboén for introducing me
to the warrior’s path.

To Manuel Herndndez, my literature professor, for telling me some truths about
science.
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They lived by principles of nature, as part of nature. They
paid great respect to Mother Earth and related to the wild ani-
mals around them. They worshipped the natural forces and the
seasons. Most of all, they understood the forces of nature and
tried to gain knowledge about the secrets the universe holds.

It was a people that believed in a balance between the ele-
ments, a harmony between the gods and the goddesses, male and
female, light and dark, positive and negative. They did not sep-
arate the day from the night or the spirit from the body. Nature
15 an endless cycle and we need all the elements that are around
us, and also within us.

Andrea Haugen, Hagalaz Runedance, 1996.
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