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Abstract 
 
The aim of this research is to develop and to evaluate devices and circuits performances based on ultra-

thin nanograin polysilicon wire (polySiNW) dedicated to room temperature operated hybrid CMOS-

“nano” integrated circuits. The proposed polySiNW device is a field effect transistor, where the 

transistor channel is a nanograin polysilicon wire, and its operation (programmation) is controlled by 

a silicon buried gate bias. The nanograin material is expected to offer interesting properties for single 

electron memory applications.  

The second main objective of the research is to realize and qualify a CMOS-polySiNW hybrid circuit, 

which offers novel functionalities and/or outperforming characteristics compared with state-of-the-art 

CMOS. Original approach consisting in hybridization, allows to bring out new functionalities (using 

polySiNW original characteristics), as well as much higher current level (provided by CMOS high 

current drive) than traditional nanoelectronic devices. 

Fabrication of the polySiNW device involves extensive technological developments for the deposition 

and the implantation of the ultra-thin 10nm nanograin polysilicon film. With the two-step deposition 

process consisting of an aSi deposition followed by a crystallization, a 6nm polysilicon film with grain 

sizes ranging from 5 to 20nm is realized. An original implantation process at 500°C is validated. 

Electrical characterization of the polySiNW devices shows ambipolar conduction (due to the Schottky 

nature of the source/drain contacts), and hysteresis effects linked to effective and reproducible 

electrical field assisted charge trapping in the polySiNW, at room temperature. Based on those two 

effects, a novel constant current bias scheme is proposed and applied to: low current measurement 

with less than 1pA resolution, new ultra-low power (few pWs) logic family, and memory. 

Finally, the nMOS-polySiNW technological hybridization opens the new field of the interfacing of 

polySiNW devices with other CMOS circuits or systems, but also the design of a hybrid negative 

differential resistance (NDR) circuit cell with some record performances. The fabrication of a hybrid 

NDR shows a peak-to-valley current ratio of more than seven decades, with a negative subthreshold 

slope of less than -10mV/decade, at room temperature. 

 

 

Keywords: polysilicon, ultra-thin film, hot ion implantation, nanograin, nanowire, charge trapping, 

stochastic Coulomb oscillations, hybrid circuits, negative differential resistance, logic family, ultra-

low power, memory, low current measurement. 



 



Résumé 
 
Le but de cette recherche est de développer, puis évaluer, les performances de dispositifs et de circuits 

basés sur l’utilisation de fils ultra-minces de polysilicium nanogranulaire (polySiNW) dédiés aux 

circuits intégrés hybrides CMOS-"nano" fonctionnant à température ambiante. Le dispositif polySiNW 

proposé est un transistor à effet de champ, pour lequel le canal du transistor est un fil de polysilicium 

nanogranulaire, et sa programmation est contrôlée par une grille enterrée. Le matériau nanogranulaire 

pourrait offrir des propriétés intéressantes pour des applications de mémoires à électron unique. 

Le second but de cette recherche est de réaliser, puis qualifier, un circuit hybride CMOS-polySiNW 

offrant de nouvelles fonctionnalités et/ou de meilleures performances que le CMOS actuel. Cette 

approche originale permet de créer de nouvelles fonctionnalités (en utilisant les caractéristiques 

originales des polySiNW), combinées avec des niveaux de courants plus élevés que les dispositifs 

nanoélectronique traditionnels (le courant élevé venant du CMOS). 

La fabrication des dispositifs polySiNW implique un développement technologique approfondi pour la 

déposition et l’implantation du film ultra-mince de polysilicium nanogranulaire. Un film de 

polysilicium de 6nm avec des tailles de grains variant de 5 à 20nm est réalisé à l’aide d’un procédé de 

déposition en deux étapes : déposition de silicium amorphe puis cristallisation. Un procédé 

d’implantation ionique à 500°C est également validé. 

La caractérisation électrique des dispositifs polySiNW montre une conduction ambipolaire (due aux 

contacts Schottky source/drain), et un effet d’hystérésis lié au piégeage reproductible de charges dans 

les dispositifs polySiNW, à température ambiante. Un schéma de polarisation à courant constant se 

basant sur ces deux effets est proposé et appliqué à : une mesure de très bas courant avec une 

résolution inférieure à 1pA, une nouvelle famille logique à très faible consommation (quelques 

picoWs), et divers types de mémoires. 

Finalement, l’hybridation technologique nMOS-polySiNW ouvre des perspectives pour l’interfaçage 

des dispositifs polySiNW avec d’autres circuits ou systèmes CMOS, mais permet aussi la conception 

d’une cellule hybride à résistance différentielle négative (NDR) avec des performances records. La 

cellule hybride NDR fabriquée a un rapport de courant pic/vallée de plus de sept décades, et une pente 

sous seuil négative de moins de –10mV/décade à température ambiante. 

 

Mots clés: polysilicium, film ultra-mince, implantation à chaud, nano-grain, nano-fil, piégeage de 

charges, oscillations de Coulomb stochastiques, circuits hybrides, résistance différentielle négative, 

famille logique, ultra-faible consommation, mémoire, mesure faible courant. 
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Moore’s law 1
Chapter 1: Introduction

1.1. Moore’s law

In 1947, three researchers of Bell Labs, John Bardeen, Walter Brattain and Robert Shockley, discovered

the transistor (see Fig. 1.1.).  Their invention was based on the selective control of the electron flow in

silicon by making certain zones conducting and other ones insulating. The first transistors were hand

made under rustic conditions compared to actual clean room conditions where integrated circuits (IC)

are built. The outputs were low and the performances were very variable.

During the Fifties, the semiconductor technology made significant progress in terms of diffusion

process, photographic techniques and deposition methods. Fairchild produced the first planar transistor

in 1959, and the first integrated circuit using this technique in 1961 (see Fig. 1.1.). In the following years,

the photographic methods became increasingly precise, in particular by the mean of photolithography

techniques  initially conceived for printing works.

Figure 1.1. Picture of the first transistor ever assembled, invented in Bell Labs in 1947 (a) and first planar
integrated circuit produced at Fairchild Semiconductor in 1961 (b). Pictures are extracted from [2] and [3].

(a) (b)



2 Introduction
Gordon Moore was the research and development (R&D) director of Fairchild Semiconductor.

Preparing a graph for a talk on the evolution of memories performances, he noted a striking tendency:

the capacity of the chips has doubled about each year from 1959 to 1965.  He deduced : "The complexity

for minimum components costs has increased at a rate of roughly a factor of two per year. Certainly over

the short term this rate can be expected to continue, if not to increase. Over the long term, the rate of

increase is a bit more uncertain, although there is no reason to believe it will not remain nearly constant

for at least 10 years. That means by 1975, the number of components per integrated circuit for minimal

cost will be 65,000." [1].

The reasoning of Moore is subtile.  He considered the relation between average cost of production per

component and complexity of the circuit.  This function is initially decreasing and then increasing. There

is thus a level of complexity for which the average cost of a component integrated on the circuit is

minimal (see Fig. 1.2. (a)). Then, Moore noted that this optimal level of complexity is multiplied each

year by two what is also depicted on Fig. 1.2. (b).

Figure 1.2. (a) Relative manufacturing cost per component vs the number of components in the circuits estimated
for various times, and (b) first Moore’s law plot [1].

In 1975, Moore revalued the growth rate [4]. Till this moment he considered that three factors are

responsible for the increase of the number of components per chip: (i) the area of the integrated

structures; (ii) the use of finer lithography techniques; and (iii) the device and circuit clever design. From

now on, he said, the latter will have less significant contribution, and the complexity of integrated

circuits would double every two years only and not every year;  nevertheless it will remain exponential.

What is astonishing is that in 1995 [5] and 2003 [7], Moore checked that the progression envisaged had

indeed been respected. It is even more obvious when looking at the very last INTEL processor

commercialized at the time of redaction (July 2006), the dual core Itanium 2 "Montecito" which counts

1.72 billion transistors per chip [8] (see dark square on the upper right part of Fig. 1.3.). Fig. 1.3.

describes the evolution of the INTEL processors in terms of number of transistors per processors vs time

and shows this evolution being now exponential over more than fourty years. Furthermore, as the leaping

(a) (b)



Scaling limits of planar bulk CMOS 3
from 90nm to 65nm technology has been predicted for the end of the third quarter of 2006, 45nm and

32nm technologies defined to maintain Moore’s law are currently under development at several

companies. However, Moore’s law progression, which was mainly related to the transistor size

reduction, has already reached its limits for classical complementary metal-oxide-semiconductor

(CMOS) using bulk silicon wafers, polycrystalline silicon (polysilicon or polySi) as a gate material,

silicon oxide as a gate dielectric, and ion implantation for both the gate and source/drain doping. 

Figure 1.3. Moore’s law depicted in terms of the number of transistors per processor generation vs time [9].

It is also widely admitted, that ultimate CMOS devices will reach their limits around 2015 with the 22nm

node which corresponds to a 9nm physical gate length. Even Gordon Moore declared, at the time of the

INTEL developers forum in 1997, that the increase in the density of the microprocessor could reach a

physical limit in 2017: the size of the atoms [6]. He reconsidered this limit in 2003, and claimed that this

limit still exists but can be delayed [7].

1.2. Scaling limits of planar bulk CMOS

In this sub-chapter, planar bulk CMOS scaling issues are described. For clarity, schematic cross-sections

of planar bulk metal oxide semiconductor field effect transistors (MOSFET) are given on Fig. 1.4. A

standard MOSFET structure is represented on Fig. 1.4. (a), whereas an advanced MOSFET device, with

a schematic description of some of the technology process that will be described in the following, is

shown on Fig. 1.4. (b). 

It should be mentioned that the scaling limits given in this chapter do not represent an exhaustive list of

all the limits that have been reached or could be reached in a near future. It rather is a description of some

major physical and technological limitations which illustrates the tremendous challenges that the



4 Introduction
semiconductor industry is facing. This short description has also been intentionally focused on the

transistor limits, mainly device and front end limitations. Other issues like design, back end, power

limitations, and fab costs are not discussed here.

Figure 1.4. Cross-section schematic of a planar bulk MOSFET device: (a) standard structure (more than 1µm gate
length), (b) advanced planar device (less than 100nm gate length).

Gate oxide scaling limits

Equivalent electrical oxide thickness (EOT) becomes increasingly thinner for each transistor generation

due to the requirement for CV/I improvement. The EOT corresponds to the equivalent thickness of SiO2

needed to obtain the same gate capacitance as the one obtained with other gate dielectric material.

Reduction of the EOT has emerged as the most difficult challenge associated with future device scaling

[10]. The actual 90nm and 65nm CMOS technologies developped by INTEL are using 1.2nm silicon

dioxide as the gate insulator. This represents about five to six atomic layers, where at least two of those

five atoms will be at the silicon-oxide interface [11]. The effects on the transistor performances due to

increased direct tunneling through the ultra-thin gate oxide can be as follows: Idsat degradation [12],

channel mobility reduction [13], increased stressed induced leakage currents (SILC) [14], threshold

voltage fluctuations [15], and/or early oxide breakdown [16].  The need for a new dielectric material with

higher dielectric constant becomes obvious.

Polysilicon gate depletion

Another strong effect of the reduction of the EOT is the polysilicon gate depletion. Indeed, due to the

limited number of carriers in the doped polysilicon gate, when the transistor is working in strong

inversion, there is a small gate region near the polysilicon/gate oxide interface of about a few Angstrom,

which is fully depleted. As a result, the equivalent electrical oxide thickness is increased, and so the

threshold voltage [17]. To avoid poly gate depletion a very high concentration doping is needed, at least

1020 at/cm-3, which may be very difficult due to dopant diffusion through the oxide and delicate

annealing procedures. Therefore mid-gap metal gate stack are envisaged to replace traditionnal

polysilicon gates [10].

(a) (b)
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Parasitic resistances

The ideal scaling theory [18] predicts that the channel resistance, Rchan, should remain constant as the

device, i.e. the channel length, dimensions are reduced. However, due to the higher performances

required for each new technology generation, the ideal scaling theory has not been followed in the last

fourty years and will not likely be followed in the future [16]. Higher performance is achieved by higher

current drive capability and, therefore, Rchan has been dramatically decreased as the technology has been

scaled. Furthermore, the decreasing of the junction depth [19], and the use of smaller contacts [20] has

lead to a large increase of the parasitic resistances. Because of those two parrallel effects, the parasitic

resistances are now becoming comparable, and on course of being even larger than the intrinsic device

resistance. As a result the ON current characteristic of the transistor, Ion, can be brutally degradated [21].

Short channel effects

Short channel effects (SCE) is an important feature of MOSFET with gate lengths shorter than 0.1µm

working at small drain voltages, Vds. At such dimensions the electrostatic potential along the channel

becomes two dimensionnal (2D), instead of 1D for longer channels [22]. Source and drain are standing

at each side of the channel, just few tenth of nanometer from each other, having a strong influence on the

electrostatic potential distribution in the channel . The consequences of un-controlled SCE is a lack of

control on the threshold voltage, Vt : decrease of Vt , and increase of the OFF state current, Ioff. The

retrograde channel doping can not control SCEs and therefore non uniform lateral doping called

superhalo doping is used [23]. Nevertheless, as the channel length Lg, is further reduced very abrupt

doping concentrations are needed [17], which dictates critical and absolutely minimum thermal cycles

after ion implantation [24].

Drain induced barrier lowering

Drain induced barrier lowering (DIBL) is another physical effect due to the short Lg and the 2D

electrostatic potential in small devices, but it appears at higher Vds value than those involved in SCE.

When a bias is applied to the drain, the barrier between source and drain is lowered because of the 2D

eletrostatic potential distribution leading to a lack of control, a decrease of  Vt and so, an increase of Ioff.

Nevertheless, DIBL seems to be less important issue than SCE [25].

Channel engineering

High channel doping 

The maintenance of acceptable off-state leakage current and SCEs with continually decreasing channel

lenghts will require channel doping levels for planar CMOS transistors to increase for extremely small

devices. The key of doping and annealing are maintaining shallow junction profiles, junction abruptness,
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obtaining high dopant activation, ensuring thermal compatibility of materials, and controlling the impact

of these issues on device electrical performance. This leads to the use, development and even research

of innovative technologies, like: super-steep retrograde and steep halo doping, spike, msec and µsec

anneal, and/or solid phase epitaxy [10].

Dopant fluctuation

With the channel length being today shorter than 50nm, the traditionnal way of describing

semiconductor devices assuming continuous ionised dopant charge and smooth boundaries and

interfaces, is no longer valid. Indeed, the variation in number and position of dopant atoms in the active

region of transistors makes each device microscopically different, and already introduces significant

variations from device to device [26]. Threshold voltage variations as high as 20 to 40mV can appear in

devices with Lg varying from 50 to 10nm respectively [27]. The granularity of electric charge and

atomicity of matter (a 50x50nm MOSFET with channel doping of 5x1018 cm-3 has, on average, 170

atoms in the channel depletion region [28])  should then be introduced as they create substantial variation

in individual device characteristics.

Lithography limits

Three main constituents of the technology improvements that have allowed the semiconductor industry

to follow Moore’s law for more than fourty years are: increased wafer size, smart design, and

lithography. Roughly half of the density improvements can be attributed to improvements in lithography

[29], making it one of the major driver of the semiconductor industry, at least for the last four decades.

ArF scanners (193nm) with a numerical aperture (NA) larger than 0.85 are used in most of the actual

65nm technologies [30]. Nevertheless, as 193nm immersion lithography (with water or other fluids), and

Extreme UV lithography (EUV) developments are underway for the 45nm technology node, there is still

important research needed for the 32, 22 and 16nm nodes. The most probable candidates given by the

ITRS for the post 45nm node being innovative immersion lithography, innovative EUV lithography,

maskless lithography, nanoimprint or other innovative technology [10].

Furthermore, with channel lenghts being shorter than 50nm the lithography must satisfy some key

requirements [10]: i) the size of many features in a design needs to be precisely controlled (CD control);

ii) the placement of the image with respect to underlying layers needs to be accurate on each integrated

circuit in all locations to achieve adequate yield; iii) the desired pattern should present in all locations,

and no additional patterns should be present (defect control); iv) the cost of tools, resist and masks needs

to be as low as possible. One can easely understand that lithography is facing massive challenges, and

while lithography has long helped significantly reduce cost per function of integrated circuits,

maintaining historical levels of cost control and return-on-investment are becoming increasingly

difficult.
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1.3. More Moore

Even though all limitations to further scaling of standard planar bulk CMOS have not been described in

the previous chapter it is obvious that the semiconductor industry will have to solve major challenges in

a very near future. In order to be able to follow the same exponential growth of the last four decades, the

leading manufacturers as well as academic communities are pursuing two directions:  (i) evolutionary

CMOS that addresses nanoscale challenges by new materials and device engineering, and (ii) non-

classical CMOS which includes multi-gate devices, ultra-thin body (UTB) silicon on insulator (SOI) and

vertical transistors. This leads to alternative single-gate nonclassical devices using innovative materials

like high-K dielectrics, metal gates and/or strained silicon, but also alternative multiple-gate nonclassical

MOSFET devices with innovative architectures like double, triple gate and/or vertical MOSFETs. This

so-called "more Moore" orientation of research is described below.

1.3.1. Single-gate nonclassical CMOS

Single-gate nonclassical CMOS main research and developments are focused on novel front-end

materials for gate (better electrostatic control of the channel), gate dielectric (improved gate leakage),

channel (improved carrier transport), and source/drain contacts (reduced resistance and improved carrier

injection).

Channel engineered MOSFETS

Agressively scaled CMOS suffer from lack of current drive (Ion) due to mobility degradation induced by

charge scattering in nanometer scaled gate length devices. A powerfull technique to improve MOSFET

performances is to increase the device current drive (the average velocity of the carriers in the channel)

using mechanically strained Si, Ge or SiGE layers. The two principal techniques in strained silicon

technology are descibed on Fig. 1.5. 

The first one is the biaxial tensile strain technique using graded SiGe layer (Fig. 1.5. (a)). This traditional

method can be used for both electron and hole mobility enhancement [32]-[38]. Biaxially strained Si

channels standing upon a stack of buried SiGe layers with variable stochiometry and strain conditions,

can improve mobility for both electrons [32], [38] and holes [34] by 85%. The drawback of biaxial stress

is that PMOS shows very low hole mobility enhancement at large vertical electric fields, similar to those

encountered for commercial MOSFETs [39]. 

The second technique is the uniaxial stress. With this method, n-type and p-type MOSFETs are not using

the same process as shown on Fig. 1.5. (b) and (c).  Nevertheless, this technology is already used in

INTEL’s 90nm [40]-[41], and 65nm [42] logic technology, and is foreboded by Fujitsu [43] and Toshiba
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[44] for the 45nm generation. Compressive uniaxial strain is introduced into the p-type MOSFET by

inserting an Si recess etch followed by selective epitaxial Si1-xGex post-spacer deposition formation into

a standard logic technology process flow (see Fig. 1.5. (b)), whereas longitudinal uniaxial tensile strain

is introduced in the n-type MOSFET by a silicon nitride capping layer (see Fig. 1.5. (c)).

Figure 1.5. Cross section wiews of strained silicon MOSFETs: (a) graded SiGe layer for biaxial tensile strained
devices, (b) selective SiGe source/drain for uniaxial compressive strained PMOS devices, and (c) Si3N4 cap layer
for uniaxial tensile strained NMOS devices [31].

Other processes are used to increase carrier mobility: (i) wafer bonding techniques to obtain an ultra-thin

(<20nm) strained Si directly on SOI structure and with no SiGe layer under the channel [45]; (ii) high

mobility strained SiGe surface channel which is directly sandwiched by gate oxide and buried oxide

layer [46]; and (iii) judicious choice of the crystal orientation and current transport direction [47].

Gate stack engineering

Constant scaling of the EOT of successive transistor generation to another has lead to SiO2 or SiON gate

dielectrics of five to six molecular layers thick, what induces an increase of gate leakage current.

Recently some groups proposed to prolong the conventional SiON platform up to 45nm node [48]-[49].

However,  high-K gate dielectrics and metal gates have been investigated extensively and are predicted

to replace SiO2/polySi in the 2008 commercial gate stacks [10].

Because of their higher dielectric constant compared to silicon dioxide, high-K dielectrics can be thicker

than SiO2 for equivalent EOT. There is no unique dominant high-K material for the replacement of

silicon oxide till now. Nevertheless, hafnium (Hf) and all its derivatives are attracting the highest interest

[10], [50], [51], and show the most promising properties associated with polySi [52], or metal gates [53].

At the last International Electron Devices Meeting IEDM 2005, 16 out of 19 papers, presented either in

the "Process Technology - High-k Metal Gate Stacks" or the "CMOS Devices - Advanced Gate Stacks"

sessions, were dealing with Hf based materials such as HfO2 [54], HfSiON [55], HfTaON/SiO2 [56], or

HfZrOx [57]. But other high-k dielectrics present interesting results, as for example, ZrO2 [58], a-ZrSiO

[59], or LaAlO3 [60]. 

(a) (b) (c)
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The metal gate technology has also been intensively investigated for the further improvement of CMOS

performance. The metal should have the appropriate workfunction (WF) for both n-type and p-type FETs

with respect to the gate dielectric. Therefore, many different metals can replace polySi in future

advanced devices, among them are: (i) pure metals like Pt [58] and Mo [59]-[60]; (ii) binary metals such

as TiNx [53]-[55], TaN [56], TaxCy [57],[61]; and (iii) silicided metals (FUSI, FUGESI) like HfSix [62],

TaSix [63], NiSix [64]-[67], YbSix and IrSix [68], NixTa1-xSi and NixPt1-xSi [69], which WF can easily

tuned by a controlled doping. It appears obvious that research, but also development of new gate stack

technologies are still going on today, as no highly stable and performant solutions have yet been found

to replace neither polySi, nor SiON.

Ultra-thin body MOSFETs

To scale bulk MOSFETs down to 10nm gate lengths without excessive SCE , both gate dielectric and

depletion width in silicon must be reduced in proportion with Lg. As shown before, the gate dielectric

reduction can be controlled thanks to new high-k materials, however narrowing down the depletion

width in silicon would require an increased and difficult to control doping of the channel (dopant

fluctuation, decreased mobility). UTB SOI MOSFETs have the potential to bring the semiconductor

industry down to less than 10nm gate lenghts [71].

UTB SOI MOSFETs consists of a very thin (tSi<10nm) fully depleted (FD) transistor body that lies on

thicker buried silicon dioxide called BOX (see Fig. 1.6.(a)). The BOX and the control tSi allows to reduce

SCE [72] and impove the subthreshold slope (SS) [73], whereas the use of lightly doped or undoped

channel provides  immunity to Vt variations due to statistical dopant fluctuations [74], as well as

enhanced carrier mobilities for higher drive currents [75]. With such technology, functional transistors

with Lg of 6nm [72] and 8nm [73] have already been demonstrated. Nevertheless, the major drawbacks

of UTB SOI MOSFETs with a thick BOX are the difficult control of uniform ultra-thin body thickness,

parasitic series resistances, fringing fields, and increased self-heating (SHE) compared to bulk silicon

devices.

Figure 1.6. Cross section wiews of UTB SOI MOSFETs: (a) fully depleted SOI with body thinner than 10nm, (b)
ultra-thin Si channel on localized ultra-thin BOX [70].

(a) (b)
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The localized and ultra-thin BOX MOSFET also called the silicon-on-nothing (SON) MOSFET is an

UTB SOI-like field effect transistor (FET) in which the thin silicon channel is locally isolated from the

bulk-Si substrate by a 10-30nm buried dielectric layer or void as shown on Fig. 1.6. (b). This device has

the same advantages of  FD UTB SOI transistor: excellent SS and carrier mobility, reduced SCEs, no

floating body effects; but combined with those of bulk silicon devices: lower series resistances, better

heat dissipation. In addition, SON provides a good control of the silicon film thickness, fringing fields,

and halo profiles [76]-[78]. Very recently, a novel nanoscaled device concept, which also combines both

the advantages of UTB SOI and bulk transistors, named Quasi-SOI MOSFET, has been proposed [79],

[80].

Source/Drain engineered MOSFETS

As seen previously, when the device gate length is scaled down to sub-65nm and further, parasitic source

and drain (S/D) resistances become an increasingly serious issue. Schottky barrier silicide S/D (SSDT)

structure (see Fig. 1.7. (a)) has been suggested as a potential solution, due to sharp silicide/silicon

interface and low sheet resistance of silicide. SSDT is particularly attractive when a metal-gate/high-k

gate stack is employed, as it avoids the use of a high temperature annealing process required for

implanted S/D junctions and poly gate. Hence, it eliminates the thermal stability issues associated with

high-k gate stack [81], [82].

Figure 1.7. Cross section wiews of Source/Drain engineered MOSFETs: (a) Schottky source/drain MOSFET, and
(b) non-overlapped source/drain extension MOSFET [70].

Silicides with a low barrier height for both type of carriers are required. Unfortunately, if a silicide

lowers the barrier for electrons, it increases the barriers for holes, and inversely [83]. Platinum silicide

is most often used as a low barrier pMOS junction [84], while nickel [85] or erbium [86] silicides provide

a low barrier for nMOS junction. Complementary silicide devices have already been demonstrated

using: (i) single metal together with modified cobalt silicide process for both n- and p-type devices [87];

or (ii) dual metal process for the two types of transistors [81]. SSDT structures with Lg down to 15nm

have already been shown [86].

(b)
(a)
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Fig. 1.7. (b) shows the second type of structures (non-overlapped S/D extension MOSFET) that allows

a reduction of the series parasitic resistances, but also parasitic capacitances (fringing and overlap

capacitances). MOSFETs with non-overlapped S/D to gate structure show good SS and SCE/DIBL [88]

compared to those of overlapped structures. By controling the non-overlap distance, the device also

shows reasonable speed [89], and on-current characteristics [90]. 

1.3.2. Multiple-gate nonclassical CMOS

Compared with single-gate nonclassical CMOS, multiple-gate nonclassical CMOS research is focalized

on innovative device architectures like double gate (DG), triple gate (Tri-gate), and gate all-around

(GAA) MOSFETs. The use of multiple gates for very short channel devices allows a better electrostatic

control of the channel which leads to higher current drive, improved SCE and SS without high impurity

concentration doping [91]. In the last roadmap edition of 2005 [10], the ITRS predicts that UTB FD SOI

and multiple gate MOSFETs will be implemented in 2008 (or later) in parallel with extedend planar bulk

CMOS. This multiple parallel path scenario reflects the fact that some companies will choose to extend

planar bulk CMOS as long as possible, while others will switch to UTB FD SOI and multiple gates

MOSFETs sooner.

Double gate MOSFETs

DG MOSFETs include four different family of devices which can be classified according to the

orientation of the current flow and the type of gate control: (i) the tied gates with planar conduction

device, (ii) the indepedently switched gates with planar conduction transistor, (iii) the vertical

conduction MOSFETs and finally, (iv) the tied gates with side-wall conduction structure, also called

FinFET. All those devices are illustrated on Fig. 1.8.

In planar architectures (Fig. 1.8. (a), (b)), the current flows horizontally between source and drain,

parallel to the plane of the substrate. The fabrication of such devices can be difficult, therefore many

different technologies have been proposed. Among the well known are: the DG realized with SON

process [92], the wafer bonded DG [94], and the so-called PAGODA triple-self-aligned DG [95].

Depending on the technology the top and bottom gate can be self-aligned or not, and NMOS [96], PMOS

[97], and CMOS [98] architectures can be fabricated. The main advantages of DG architectures are

higher current drive, improved SCE and SS. Nevertheless, planar architectures can also show improved

speed [99], better control of the Si channel thickness due to epitaxy [96], and when using asymetric n+/

p+ gates, one can also meliorate the gate induced drain lowering (GIDL) [98], and have better control of

the threshold voltage [100]. Like asymetric DG architectures, DG MOSFETs with independently

controled gates allow dynamic control of Vt leading to lower off currents [101], [102].

In the vertical MOSFET, also called IMOSFET (Fig. 1.8. (c)), the current flows between source and

drain in the vertical direction, orthogonally to the plane of the substrate. The two gates are parallel to the
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plane of the substrate, whereas source and drain stand perpendicularly to it. The main advantage of the

IMOSFET is the control of the gate width (channel length), that is determined by the accuracy of ion

implantation or epitaxial growth (the gate width is not controlled by lithography). It is then recognized

that vertical transistors can be a credible candidate for sub-100nm devices [103].  Various type of

innovative device (process) have been proposed: 50nm vertical MOSFET incorporating a dielectric

pocket [104]; heterogeneous Si0.70Ge0.30/Si0.85Ge0.15 pMOSFET [105]; 50nm Vertical Replacement-

Gate (VRG) MOSFET using high-k gate dielectrics [106]; vertical sidewall device [107]; and Ultrathin

Vertical Channel (UTVC) MOSFET [108]. It is obvious that there is yet no leading vertical MOSFET

technology because of challenging process requirements, and most of the time state-of-the-art vertical

structures underperform advanced planar CMOS. However, 15nm Lg vertical MOSFETs have already

been demonstrated [109], and improved Ion/Ioff performances compared with advanced planar transistors

have been shown for the VRG MOSFET [110].

Figure 1.8. DG MOSFETs using: (a)  tied gates (planar conduction) [92], (b) indepedently switched gates (planar
conduction)[31], (c) side gates (vertical conduction) [10], (d)(e)(f) tied gates (side-wall conduction)[93].

The concept of FinFET has been first introduced at IEDM in1999 by Hitachi Ltd. in collaboration with

the Berkeley University of California [111]. They showed a p-type transistor with a 45nm gate length

and a less than 20nm fin width. One year later, the same group demonstrated a 30nm gate length with

20nm fin width n-type device [112]. Since then, FinFET has been considered as one of the most

promising candidates for the channel length below 30nm as it combines the critical elements of superior

scalability and very good channel electrostatic control of DG structures, with the manufacturability of

conventional transistors [113]. The body of a FinFET consists of a vertical silicon wall called a fin (Fig.

1.8. (a)). The gate (Fig. 1.8. (b)) wraps around both sides of the fin, creating a channel on each side. The

(b)(a) (c)

(d) (e) (f)
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main advantage of the FinFET structure (Fig. 1.8. (c)) is that the two self-aligned gates can be fabricated

using a single lithography and etch step [114]. Contrary to the DG planar devices, the conduction in a

FinFET takes place on the vertical sidewalls of the fin. The major challenge is the fabrication of thin fins

that need to be one third to one half of the gate length in order to have an adequate control of SCEs. Many

devices have been fabricated combining electron beam (e-beam) lithography, and photoresist ashing

techniques followed by oxide hard mask trimming, allowing to reach fin widths of 20nm [115].

Moreover, adapted spacer technology can decrease the fin width down to 10nm and double the fin

density [116]. The fabrication cost is also a big issue of FinFET because most of the fabricated devices

uses complicated process and SOI substrate. Nevertheless, CMOS FinFET fabricated on bulk Si

substrate has already been shown [117]-[118], and many new devices are presented every day: 20nm

gate bulk-FinFET SONOS Flash [119], 10nm gate length FinFET [120], 5nm gate Nanowire FinFET

[121], and high-performance CMOS compatible Vt asymmetric-gate  devices [93].

Triple gate MOSFETs

With a Si fin width of a FinFET (WSi on Fig. 1.9.(a)) comparable to the fin height (TSi on Fig. 1.9. (a)),

the electrostatic control of the channel is operated by three different gates, the structure being then called

tri-gate. In such device, the current flows horizontally between the source and drain along vertical

channel surfaces, parallel to the plane of the substrate. The larger number of gates compared to UTB SOI

and DG FET devices provides improved electrostatic operation of the channel, leading to near-ideal SS,

excellent DIBL control, and high current drive [122]. The principal advantage of the Tri-gate structure

arises from the relaxed constraints in body dimensions over other FD transistor options.

Figure 1.9. (a) Schematic of  tri-gate structure [122], and (b) tri-gate transistor, with (c) Scanning Electron
Microscopy (SEM) picture of a fabricated tri-gate transistor [123]. 

Recently, Intel achieved to combine the benefits of FD Tri-gate transistor geometry with high-k

dielectrics, metal gates, and strained Si channel [124]. Compared to 65nm MOSFETs, integrated tri-gate

transistors showed 45% increase in Ion, 50 times reduction in Ioff, and 35% reduction in transistor

switching power [125]. Oxide-Nitride-Oxide (ONO) Memory [126], and Dynamic Random Access

Memory (DRAM) [127] applications using Tri-gate architectures have also been already fabricated.

(c)(b)(a)
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Ω- and Π-Gate devices described in [128] and [129] respectively, are basically similar to Tri-gate

architectures, but thanks to the extension of the gate below the fin, into the buried oxide, their channel

control is more close to the GAA MOSFET depicted in the next paragraph.

Gate all-around MOSFETs

Among multiple-gate nonclassical CMOS, cylindrical GAA MOSFET theoretically offers the best

electrostatic control of the channel since the gate is completely surrounding the channel (see Fig. 1.10.

(a), (c)). The cubical GAA structure showing poorer performances mainly because of corner effects (see

Fig. 1.10. (b)) [130]. Simulation have confirmed that GAA MOSFETs give better performances

compared to DG devices in terms of Ion, Ioff, DIBL, and SS [131]. Fabricated n- and p-type 5nm GAA

Twin Silicon Nanowire MOSFETs (TSNWFET) have sustained the very good performances of

simulated GAA architectures with: Ion=2.64mA/µm,  DIBL ~ 20mV/V, and SS ~ 70mV/dec for n-

TSNWFET [132]. Lately, N. Singh et al, have also shown that a less than 5nm GAA Si Nanowire can

work as a room temperature single electron transistor (SET) at low drain voltages [133], and as high-

perfomance FD CMOS device when biased at higher drain voltages [134]. GAA technology is for sure

very attractive and promising for less than 20nm devices, but suffers from process complexity, costly

integration (SOI, e-beam) [135], and is far less mature than DG technology. 

Figure 1.10. Schematic of a GAA MOSFET structure: (a) bird’s eye view, (b) BB’ cross section view of a cubical
channel, and (c) BB’ cross section view of a cylindrical channel [130].

1.3.3. The end of Moore’s law?

The huge research effort pursued by semiconductor industries, research institutes, and universities has

brought new material and new device structure solutions that could allow to push the CMOS scaling

down to the 22nm node (9nm gate length). Indeed, high gate leakage currents can be reduced using high-

K dielectrics, which also permit to have thicker gate insulator for the same EOT, replacement of

polysilicon gates by metal gates with adequate workfunction can be used to solve the gate depletion

issue, DG  and/or strained channel devices can improve SS, SCE, DIBL, Ion/Ioff ratio, and solve the high

(a) (b) (c)
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channel doping challenges and dopant fluctuations issues; finally, metallic elevated S/D junctions reduce

the access resistance and eliminate the very steep highly doped junction problems. 

Furthermore, 10nm has been predicted to be the fundamental limit for MOSFET operation for many

years [136], however functionnal 5nm Lg planar bulk CMOS devices [137], and 6nm Lg planar SOI

single-gate p-type MOSFETs [72] have been demonstrated, which gives hope for the 16nm node (6nm

gate length). A possible path to reach the 16nm node around 2019, including the introduction of new

materials and device architectures, is given on Fig. 1.11.

Figure 1.11. Approximated timescale for the introduction of material and structural innovation in HP CMOS
technology, based on the 2005 edtion of the ITRS [10], and on [31], [138], and [139].

Remark

It should be taken into account that there cannot be a single "end of Moore’s law" but rather different

endings since there are many different applications which can be divided in High Performance (HP),

Low Standby Power (LSTP), and Low Operation Power (LOP) CMOS technology. All these

applications are dealing with different insulator thicknesses, treshold voltages, gate lengths, device

structures and materials [24]. Nevertheless, the   ultimate limit of CMOS scaling is the distance between

two atoms in silicon (around 0.3nm). We are then not so far from this limit with a 5nm Lg MOSFET

which gate is only 18 Si atoms long [139]!
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1.4. After Moore (beyond CMOS): emerging 
nanoelectronics

1.4.1. Overview

We have seen previously, that present 65nm node MOSFET devices have a physical gate length about

30nm. It is also widely admitted that the introduction of new materials and new device architectures

(more Moore) may extend the roadmap at least to the 22nm node (9nm gate length) by 2016. Beyond

that point, the semiconductor industry will have to find  fundamentaly new approaches to information,

signal processing, and data-storage. This implies the  exploitation of alternative devices, materials, and

process, but also involves systems innovations. These new technologies must satisfy the following [10]:

a) Extend microelectronics orders of magnitude beyond the domain of CMOS, and be capable of 

integration on or with a CMOS platform. This implies:

• Functionally scalable  by several orders of magnitude beyond CMOS devices,

• High information/signal processing rate and throughput,

• Energy dissipation per functional operation substantially less than CMOS,

• Minimum scalable cost per function.

b) Room temperature operation.

Many devices and techniques have been proposed as "after Moore" innovative technologies which may

supplant or complement CMOS as the dominent device technology: SETs, Quantum Cellular Automata

(QCA), Carbon Nanotube (CNT) based devices, Rapid Single Flux Quantum (RSFQ) structures,

Nanoelectromechanical Systems (NEMS), resonant tunneling diodes/devices (RTD), Spintronics,

nanowire (NW) devices, or molecular electronics. Nevertheless, many of those technologies are yet not

mature enough to be considered as real potential candidate for post-CMOS eletronics. Table 1.1.

summarizes the most promising candidates for beyond CMOS alternative emerging logic devices as

defined by the last ITRS in 2005 [10]. The first main row of Table 1.1. presents six different technology

families, together with their device sub-categories in the second row. The third row gives the supported

logic architectures, CNN standing for Cellular Neural (or nonlinear) Networks, whereas the fourth row

defines the operating temperature, and the fifth row the type of material involved in each technology.

Finally, the last row gives an indicative evaluation of the technologies research activity based on the

number of articles in technical journals that appeared in the Science Citation Index (SCI) database from

July 2003 to July 2005. Each device technology is decribed below with a stronger emphasis on (i) 1D

structures, and (ii) SETs as they are the basis of our polySi NWs presented in the following chapters.
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Table 1.1. Emerging research logic devices defined by the 2005 ITRS [10].

Resonant Tunneling Devices

The major advantages of two-terminal RTDs are: (i) a very high switching speed, which can be as low

as 1.5ps [140], and (ii) a Negative Differential Resistance (NDR) region in the I-V characteristic which

can be used to greatly reduce the circuit complexity required for high-speed logic functions [141]. Three

terminal bipolar resonant tunneling transistors (RTT) can be build, with a pair of RTDs and a control

terminal [142], and thanks to their negative transconductance, RTTs can serve as building block for logic

circuits [143]. Theoretical feasibility of Multiple Valued Logic (MVL) circuits based on p- and n-type

Si RTT has even been already shown [144]. 

RTDs are usually fabricated in III-V material systems, but recently, few groups have shown Si

compatible fabrication, like three-terminal Si/SiGe-based NDR [143], or Si-based field-induced band-

to-band tunneling effect transistor [145]. Nevertheless, RTD devices suffer from very poor Ion/Ioff  ratio

and integration complexity, which can limit the circuit design and the dimensional scaling respectively.

Spintronics

The large interest for spin logic devices probably comes from the fact that spin-dependent transport

properties are already integrated on many magnetic storage media like Magnetic Random Access

Memories (MRAM), hard disks, or read heads. Prior to the 2005 edition of the ITRS, spintronic was

mostly related to the Datta-Das FET current modulator concept [146], but in the last ITRS edition [10],

five other type of spin based devices were introduced: (i) the magneto resistive element device [147], (ii)

the spin-gain transistor [148], (iii) the spin-torque transistor [149], (iv) the hybrid hall effect device

[150], and (v) the spin MOSFET [151]. Those proposed new structures, all based on different operating

principles, testify from the great deal of research activity going on in this field.
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However, spintronics is facing non-negligible issues: no viable device has been demonstrated till date;

co-fabrication with CMOS might not be doable as spintronic devices process involve metal alloys like

Cr, Fe, or Mn; increased device density and speed compared to CMOS may not be achieved, since actual

spintronic devices still rely on charge transport.

Molecular electronics

Molecular research might be the youngest and less mature of the six emerging logic research devices

defined by the ITRS. Even so, it attracts the major interests compared to the five other emerging  devices

(see research activity row of Table 1.1). This can be explained by the molecular thrilling properties [10]: 

• the electronic properties of organic molecules may be tailored through the chemical 

synthesis;

• the reproducibility between organic molecular units is perfect;

• the size of complex molecules is in the order of approximately 1nm, which can lead to 

device densities greater than 1012 cm-2;

• organic molecules require few electrons for molecular switching (very low energy);

• and last but not least, molecular switching is a very fast process (THz regime).

Therefore, despite the youth of molecular electronic, many basic devices utilizing molecules such as two

terminal reversible switches [152], tunable resistors with three decade of ohmic range [153],  SETs

[154], or large peak to valley ratio NDR [155], have already been demonstrated. Lately, hybrid Silicon/

Molecular FETs have been proposed and fabricated, showing potential for low-voltage, multiple-state

memory and logic applications [156].

Before the introduction of molecules in nowadays electronic circuits, major problems have to be solved.

This include the realization of efficient and reproducible contacts to molecular building blocks, the

design of suitable interconnects and interfaces to the "outside world", and the stabilization of the organic

molecules through multiple cycles (>1010), and CMOS typical thermal processing. Novel very defect-

tolerant architectures and adapted design of devices and circuits would also be very challenging.

Ferromagnetic logic

Contrary to molecular devices, ferromagnetic logic is the emerging research device which attracts the

less interest as one can see on the last row of Table 1.1. However, Magnetic Quantum Cellular Automata

(MQCA) had shown more than promising results in terms of integration density and power dissipation

in 2000 [157]. Moreover, submicrometer ferromagnetic NOT gate had been demonstrated in 2002 [158].

Nevertheless, the major drawback of ferromagnetic logic is the speed which seems to be limited to a

maximum of 1GHz [159]. 
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1.4.2. 1D structures

In its 2003 edition of the roadmap, the ITRS declared that 1D structures had greater potential impact on

scaled nanoelectronics than any other entries, even though the difficulties associated with their

introduction into high volume manufacturing were still judged to be important [10]. Many researchers

still believe this point of view in 2006, as the journal Nature, based on the research of Michael Banks

[160], has elected CNTs as the hottest topic in physics, followed by nanowires in the second position

[161]. The tremendous investments in terms of money and research made since 2003, has permitted to

identify the critical issues associated with 1D structures: (i) understand the basic physical mechanisms

in quantum-confined transport; (ii) control and predict the characteristics of nanowires and nanotubes

with fabrication; (iii) control the fabrication in terms of devices placement, contacting, doping, and find

adequate materials for the gate stack; and (iv) being able to characterize device electrical behavior with

already known metrics like e.g. SS, DIBL, Ion/Ioff.

The term 1D structures refers to devices in which the current is flowing quasi-unidirectionnaly from

source to drain, and that have a lateral feature size constrained to tens of nanometers or less, together

with unconstrained longitudinal size. 1D structures include NW heterostructures, and crossbar

nanostructures but the main driving forces are CNTs and NWs as illustrated below.

Carbon nanotube technology

The extremely large success of CNTs can be explained by three different reasons. First of all, as this

material has been discovered very recently it benefits from the effect of novelty and fashion. Secondly,

CNTs have uncomparable physical properties, they exhibit extreme strength, unique electrical properties

(a nanotube can be either metallic or semiconducting), and very good thermal conductivity. Thirdly, they

can be used in many applications going from combat jackets to high frequency oscillators, from artificial

muscles to thin high-brightness low-energy low-weight displays, or from light-weight high-strength

bicycle to air pollution filters.

Many reseachers attributed the discovery of CNTs to Ijima in 1991 [162]. However, the first evidence

of multi-walled CNTs (MWCNT) has been published in 1952 by Radushkevich et al [163]. Afterwards,

in 1993, Ijima [164] and Ichiashi [165] reported for the first time the fabrication of single-walled CNTs

(SWCNT). Since then, almost every day a different CNT based device or application is proposed. 

The first fabricated transistors consisting of a nanotube deposited in between two metal pads (source and

drain) and controlled by the bulk Si back gate , were shown in 1998 by IBM [166], and Delft Universisty

[167] (see Fig. 1.12. (a), (b)). Demonstration of CNT logic followed shortly in 2001 with the fabrication

of an inverter (see Fig. 1.12. (c)) [168], a NOR, a SRAM and a ring oscillator cell [169]. Finally, other

electronics applications of CNTs include SETs [170], optics [171], interconnects [172], and NEMS such

as nanorelay [173], or resonators [174].
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Figure 1.12. Schematic and micrograph of first fabricated: (a), (b) CNT transistors [166]-[167], and (c) CNT
inverter [168].

CNT technology is, for sure, a very appealing field for beyond CMOS nanoelectronics. Nevertheless,

before any possible implementation in modern ICs fabrication solutions have to be found in terms of:

• synthesis: production of the desired type of nanotube, semiconducting or metallic, single- or 

multi-walled, with a 100% rate;

• defects: growth of CNTs with very few defects, as they degrade dramatically the 

mechanical, thermal and electrical properties;

• placement: highly accurate placement of billions of CNTs at a desired and pre-defined 

position on the wafer with standard CMOS tools;

• contacting: finding adequate materials and process for low resistivity contact;

• batch processing: processing billions of devices per wafer at the same time;

• reproducibility and yield: as CNT devices are still at the early stage of research level, 

hazardous positioning, and so small number of fabricated devices have not really allowed 

to address this point, which of course will be of great importance.

Nanowire technology

Nanowire technology shares some similarity with CNTs: (i) both are 1D structures; (ii) NWs is the

second hottest topics in physics in 2006, just behind CNTs; (iii) even though NW technology is more

mature than CNTs, it is also a young technology (the first scientific article mentioning the term nanowire

has been published in 1991 [175]); (iv) NWs are also integrated in a wide variety of electronic

(a)

(b) (c)
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applications such as FETs [176], inverters [177], room temperature SETs [133], decoder [178],

nonvolatile memory (NVM) [179], programmable logic (see Fig. 1.13. (a)) [180], but also nanosensors

[181], photodetectors [182], and lasers [183].

However, NW technology has many dominant advantages compared to CNTs, this advantages being

mainly related to the major fabrication challenges of CNT technology. For example, NWs can be

fabricated in a bottom-up approach like CNTs [184], but standard  top-down CMOS process are also

available [185], [133]. Furthermore, as CNT is a single material with different configurations, NWs can

be fabricated in a controlled and pre-defined manner with lots of different materials like Si (2nm SiNWs)

[186], binary group III-V materials (GaAs, GaP, InAs, InP), ternary III-V materials (GaAs/P, InAs/P),

binary II-VI compounds (ZnS, ZnSe, CdS, and CdSe), binary SiGe alloys [187], and metals such as Au)

[188]. Finally, placement of NW is not an issue: using top-down fabrication, circuits of crossed NWs

with a junction density in excess of 1011 per centimeter square have already been shown (see Fig. 1.13.

(b)) [189].

Figure 1.13. (a) Schematic of logic NOR gate constructed from a 1 by 3 crossed NW junction array with SEM
example[180]; (b) SEM of a few hundred Pt nanowire crossbar circuits, the crossbars to the lower left are at a
junction density of 1011 cm2 [189].

Lately, high performance SiNW FETs have been demonstrated with near ideal SS, and low DIBL [134],

[190], while Ge/Si NW heterostructures HP FETs integrated with high-k dielectric have shown scaled

transconductance and on-currents that are three to four times greater than state-of-the-art MOSFETs

[191].  There are some evidences, that NW building blocks are in a more advanced stage than their CNT

counterpart and so may be more readily integrated into silicon processing and fabrication. 

(b)(a)
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1.4.3. Single Electron Transistors

C. Gorter was probably the first to introduce single electron electronics in 1951 when he explained for

the first time the Coulomb blockade (CB) phenomenon. Much later, in 1985, D. Averin and K. Likharev

[192] formulated the orthodox theory of single-electron tunneling that describes the charge transport

under the influence of CB and allows the exploitation of SET [193]. Since then, SETs have gained high

interests mainly because: (i) SETs can be scaled down to the nanometer scale making them good

candidate for Ultra Large Scale Integration (ULSI); (ii) thanks to CB, SETs can control the transfer of

electron from source to drain with a one electron or few electron precision and therefore deal with ultra-

low power consumption; (iii) SETs have a large variety of applications, going from logic to memory,

but also electrometry.

The capacitive SET architecture (see Fig. 1.14.) is quite similar to the MOSFET architecture, with a

source, a drain, and a gate. The main difference is that, in the SET configuration, the channel is replaced

by an ultra-small conductive island (capacitively coupled to the gate), with a gate capacitance CG, and

separated from S/D by two tunnel barriers. The tunnel junctions are then electrically defined by their

capacitance and resitance: CTS and RS respectively for the barrier between the source and the small

island, and CTD and RD respectively for the barrier between the drain and the small island. The operation

of SET exploits the discrete number of charges in the conductive island. In contrast, MOSFET has highly

transparent boundaries between source, drain because of the conductive inversion channel, therefore

single electron charging is not experienced in the majority of CMOS devices [194]. 

Figure 1.14. SET schematics: (a) basic structure of  capacitive SET, and (b) equivalent circuit associated.

In order to work properly, SETs need opaque barriers to localize electrons in the small conductive island,

sometimes also called quantum dot (QD). Application of the Heisenberg energy uncertainty principle

results in a tunnel resistance RT that should satisfy the following: 

(1.1) 

where h is the Planck constant, and e the elementary charge. With eq. 1.1 satisfied, the quantum

mechanical uncertainty of electron location is covered up. 

(a) (b)

RT h e
2⁄ 26≅= kΩ
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In order to have fully functional SET, the charging energy of the island EC must be larger than the

thermal fluctuations:

(1.2) 

This condition can be fulfilled either by working at low temperature, T, and/or with very small island to

ground capacitance, CΣ. SET operation can now be briefly explained  [195]: because of CB, at low drain

voltage, VDS, there is no drain current since any tunneling would lead to an increase in the total energy

(see Fig. 1.15. (a)) (at low enough temperatures tunneling is rather low). There are two ways to overcome

CB: (i) increase VDS up to a certain threshold voltage, VT, where the current starts to rise with VDS; or

(ii) increase the temperature (as one can see on Fig. 1.15. (a) at T2 there is no Coulomb gap, what means

no CB at all). A key property of SET is that VT is a periodic function of the gate voltage, VGS, providing

the specific signature of SET called Coulomb oscillations (CO) (see Fig. 1.15. (b)).They relate to the fact

that at some external biasing:

(1.3) 

one electron can tunnel from source to the island and then to the drain even at negligible VDS.

Figure 1.15. SET electrical characteristic schematic at various temperature: (a) IDS-VDS characteristics
highlighting CB  region, and (b) IDS-VGS characteristics highlighting CB region and periodic COs.

It appears that the SET transconductance, gm=dIDS/dVGS, can have both positive and negative values

(see Fig. 1.16.(a)), depending uniquely on the gate voltage, which is a key difference with respect to

MOSFETs. Moreover, assymetric SETs (CTS=CTS; RD≠RS) can have an increased negative slope

compared to the symetric device (see Fig. 1.16.(b)). This is a real advantage if one aims to mirror CMOS

circuit architectures in SET, because the equivalent SET circuits would require the use of a unique type

of device. On the other hand, the drawback of SET lies on its low voltage gain that is limited by the

capacitance ratio CG/CΣ (lower than few units at room temperature).

EC e
2

2CΣ kBT>⁄=

Q0 CGVGS e n
1
2
---+⎝ ⎠

⎛ ⎞= =

(a)
(b)
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Figure 1.16. (a) Simulated SET transconductance, gm, versus VGS with VDS as a parameter [196], and (b)
simulated IDS-VGS for different  VDS characteristics of assymetric SET (CTS=CTD, RD≠RS) showing increased
negatice slope [197].

One key question for SET logic circuit applications is the efficiency of a CMOS-like circuit approach.

Many successfull logic applications have been reported by mimicking CMOS, but real competing

performances with CMOS still remain to be demonstrated. Fig. 1.17. depicts typical Vout-Vin of realistic

SET inverter as a function of temperature. The crucial advantage of SET is its low power consumption

(10-10-10-8 W/gate) supported by manipulation of single electrons with low voltages/currents (mV/nA). 

Figure 1.17. Simulated SET inverter static characteristic [194].

SET logic circuits can also be a source of surprising behaviour: Fig. 1.17. demonstrates that SET inverter

currents behave totally different than for CMOS: their ''transition'' region has negligible current/

consumption (degrading with T) [198]. It follows that dynamic power of SETs is quasi-negligible and

their ultra-low power consumption is mainly static [197], in contrast with ideal CMOS.

(a) (b)
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1.4.4. Challenges of SET technology

Fabrication of SETs working at room temperature with CMOS compatible materials and cost-effective

tools for batch processing has always been a huge challenge. The first experimental observation of SET

behavior was done with metal/oxide systems in 1987 [199]-[200], and only two years later, in 1989, the

first silicon based SET showing clear COs was demonstrated [201]. Both devices were working at

temperatures around 1K. Since then, many different approaches have been tried to fabricate efficient

SETs, but none has really been able to give devices which can compete or be co-integrated with state-

of-the-art CMOS. The challenges for competitive SETs are given below.

Island dimension

Room temperature operation is possible only with very small total island capacitance CΣ. For

approximate calculation, the island can be considered as spherical, then CΣ can be derived based on

[198],  as follows:

(1.4) 

with ε the permittivity, and r the radius of the small island. The maximum temperature, Tmax, at which

a Si based SET can properly work under CB can then be defined by the Kirihara’s criterias [202]: 

(1.5) 

where k is the Boltzman constant. Thus, island diameters on the order of 2-3nm are needed for

subambient operation, and about 1nm and less is required for proper SET operation at room temperature.

Lithography limitations

Lithography has long been the driving force of CMOS downsizing because it is the most direct way of

forming controlled and reproducible miniaturized structures from the millimeter scale to the deep

submicron range. But the lithography should satisfy some key requirements as defined by the ITRS for

the CMOS industry [10]: i) the size of many features in a design needs to be precisely controlled (CD

control); ii) the placement of the image with respect to underlying layers needs to be accurate on each

integrated circuit in all locations to achieve adequate yield; iii) the desired pattern should present in all

locations, and no additional patterns should be present (defect control); iv) the cost of tools, resist and

masks needs to be as low as possible. Therefore, as lithography could not satisfy those requiremens for

the formation of SET islands (nm feature size and positioning), a mature, cost-effective and reproducible

alternative is needed.

CΣ 4πεr=

Tmax e
2

40k⁄ CΣ=
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CMOS compatibility

As SETs will probably be co-integrated in CMOS based ICs, it is highly recommended that the SET

fabrication process should be compatible with CMOS technology (oxidation, implantation, diffusion,

and so forth). Sharing some technological module has also the advantage of reducing the number of steps

and masks involved, and so the fabrication costs.

Batch processing

To remain competitive with CMOS or other modern technology, SET fabrication should use batch

processing and cost-effective fabrication. It means, that process involving e-beam lithography, and

Atomic Force Microscope (AFM) or Scanning Tunneling Microscope (STM) tools, which are excellent

for device based research, cannot be used for ULSI as they are extremely time consuming.

Background charge effects

The presence of background charges can be dramatic for SET ICs as identical transistors (same

dimensions, physical characteristics, and materials) would have different and not reproducible I-V

characteristics, killing the circuit functions. Hence, all the processing steps and materials used should be

very "clean" in order to avoid any charge trapping. Other possible approaches to control background

charge effects are: (i) build resistive SET with resistance above 1MΩ and nanometer size islands

providing a quasi-continuous transfer of charges at room temperature; (ii) develop new design

techniques that can tolerate device variability due to background charges; or (iii) replace the single-

island by multiple islands, multi-island SETs being insensitive to random background charges.

Quantum confinement and quantization effects

Another issue is how to control the quantum effects (discreteness of energy levels) in ultrasmall silicon

islands. In addition to background charge effects, quantum confinement effects are expected to have a

significant importance in silicon SETs with a dot size smaller than 10 nm. This is because the quantum

confinement energy is inversely proportional to the square of the dot size, while the single-electron

charging energy is inversely proportional to the dot size. Quantization effects could be problematic for

the practical operation of SETs, as they are likely to introduce some unpredictable irregularity to the COs

and eventually break their periodicity. Among possible approaches to avoid such complex features might

be the use of highly doped silicon nanowires, or the use of injection of charge in silicon nanocrystals

deposited on SETs [203].
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Control of tunnel junction

The control of tunnel junction resistances is of great importance because resistances control both the

quantum confinement (RT should be bigger than 26kΩ for proper SET operation), and the level of current

drive in the device (RT should the be as low as possible). A tradeoff has then to be found for adequate

tunnel junction resistance values.

It is obvious that SET fabrication for room temperature, cost-effective, and ultra-dense modern ICs is

very challenging and lots of issues have to be faced. At the time of redaction, a bibliographic research

revealed sixteen Si-based room temperature operated  SET devices [133], [204]-[218]. Among those

sixteen devices, nine were fabricated using at least one e-beam lithography step [204]-[212], one was

using STM and AFM [213], and  one was fabricated with a Focused Ion Beam (FIB) tool [214]. Only

five devices were fabricated with a CMOS compatible process [133], [215]-[218], but among those five

SETs, all are not showing clear and reproducible COs, which again prooves the huge challenge of the

SET fabrication. 

1.4.5. Multi-island SETs

The technological difficulties in fabricating silicon single-island SETs in the nanometer size range have

motivated the emergence of some alternative approaches like CNT [170], and molecular SETs [154].

Those devices are interesting in the sense that they exploit the already very small features defined by the

intrinsic material properties. Another "natural"  type of alternative approach to single-island SETs are

multi-islands SETs where the source and drain terminal of the transistor are separated by several islands

(instead of one), which are connected in series and parallel to each other. Fig. 1.18. (a) shows a 6x10

regular multi-islands system. Each island (dot) is controlled electrostatically by the gate, and is separated

from its neighbour by a tunnel junction with a given tunnel resistance and capacitance as for single-island

SETs. Multi-island devices can be considered as multiple SETs connected to each other in series, or in

parallel.

When a bias is applied between source and drain, electrons are flowing through a preferential way also

called the percolation path, as illustrated by the dark dots on Fig. 1.18. (b). If any grain traps an electron,

it blocks the current flow due to Coulomb repulsion (see Fig. 1.18. (c)). When all other available current

path are also blocked by Coulomb repulsion, CB takes place. Then, as for single-island SETs this CB

can be controlled either by VDS, or VGS. One of the major advantage of multi-island devices comes from

the fact that it requires a much simpler fabrication procedure than single-dot structures. 
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Figure 1.18. Multi-islands schematic showing: (a) a 6x10 array of islands connected together between source and
drain and controlled electrostatically by a gate, (b) the percolation path through such a structure, and (c) CB due
to a stored charge that blocks the current flow.

Lets review the challenges of SETs fabrication listed previously (1.4.4.“Challenges of SET technology”)

for multi-islands devices:

• Island dimension: the size of the island can be determined by specific depostion procedures 

and/or simple technological process (one step etching, oxidation techniques). It does not 

require any time consuming lithography equipment or complicated fabrication process.

• Lithography: as the island dimension is not determined by lithography, standard CMOS 

lithography process can be used.

• CMOS compatibility: not an issue as no time-consuming lithography or exotic process has 

to be used.

• Batch processing: not an issue as no time-consuming lithography or exotic process have to 

be used.

• Background charge effects: multi-islands SETs are insensitive to background charges 

[219]!

• Quantum confinement and quantization effect: same issue and solutions as for single-

island devices.

• Control of tunnel junction: probably simpler than for single-island systems as the tunnel 

resistance and capacitance are determined by the process for each dot and its neighbors.

(a)

(b) (c)
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Obviously, multi-islands SETs have non negligible advantages compared to single-island devices. The

two majors being that the small islands have not to be defined by lithography and that multi-islands

devices are issensitive to background charges. Several multi-islands SETs based on polySi [220], metal

[221], Si QD [216], or monocrystalline Si [218] have already been reported.

1.4.6. Multi-island Single Electron Memory

There are two important issues for the multi-islands SETs, the controllability in positioning precisely the

quantum dots in predefined locations, but also the controllability in the size or size variation of the

quantum dots. Using self-assembly techniques with random deposition like Dutta et al [222], makes

difficult the fabrication of SETs with identical or reproducible parameters such as tunnel capacitance and

resistance, because the positions of the silicon islands strongly affect them. Such SETs can then not be

used for ULSI because the device to device fluctuations would kill the circuit functionnality. Precise

control of the size and size dispersion of the quantum dots is necessary: if the majority of the islands are

not small enough for CB to occur, a preferential current path between bigger islands (too big for charge

trapping) will always be found; and if the island size distribution is too broad, uncontrolled stochastic

CO like in assymetric double-dot [223], or multiple-dot systems [220] will occur. For those reasons,

multi-island devices may be sometime more suitable for memory applications because the control of

size, size dispersion, and position of the islands is less restricting.

For illustrating this point, an excellent example is the first room-temperature Single Electron Memory

(SEMem) reported by Yano et al [224]. The basic device structure is an ultra-thin polySi film transistor

with width and gate lengths of 100 nm, as shown in Fig. 1.19. (a). 

Figure 1.19. Yano et al multi-dots room temperature memory: (a) schematic cross-section with zoom on the
percolation path and storage node, and (b) electrical characteristic of the device biased with various gate voltages
showing increasing hysteresis due to enhanced charge trapping [224].

(b)
(a)
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The poly-Si channel is as thin as 3.4 nm on average, but the film thickness varies from one position to

another, ranging from 1 to 5 nm, which is important for electron transport. The gate oxide is 150nm thick,

reducing capacitance between the gate and the channel. The drain current is measured as the gate voltage

is swept up and down between 10V and VGmax (>10V), the maximum gate voltage, as shown in Fig.

1.19. (b). When VGmax is less than 40V, the current is almost independent of the sweeping direction.

However, suddenly, when the maximum gate voltage is 44V, clear hysteresis is observed. The threshold

shifts by about 10V. A similar second threshold jump is observed at about 56V. It is confirmed that the

individual carrier trapping in the fabricated channel (storage node on Fig. 1.19. (a)) causes the hysteresis,

and the associated memory effect is very stable, lasting more than 1 hour, which makes it suitable for

memory applications.

1.5. Summary

In this chapter, we have first recalled CMOS evolution driven by scaling and cost over the last fourty

years. The agressive scaling of CMOS has lead to transistor limitations that have been detailled in terms

of gate oxide thickness, poly gate depletion, parasitic resistances, SCE, DIBL channel doping control,

and lithography. We have then described the "more Moore" orientation of research that should allow to

extend CMOS till the 16nm node in 2019. Leading manufacturers, but also academic communities are

pursuing two avenues to meet these "more Moore" challenges: (i) evolutionary CMOS that addresses

nanoscale challenges by new materials and device engineering, and (ii) non-classical CMOS which

includes multi-gate devices, UTB SOI and vertical transistors. This results in alternative single-gate

nonclassical MOSFETs devices using innovative materials like high-k dielectrics, metal gates and/or

strained silicon, but also alternative multiple-gate nonclassical MOSFET devices with innovative

architectures like double, triple gate and/or vertical MOSFETS. A possible path to reach the 16nm is

finally proposed.

In the second part of the detailled discussion of CMOS future evolution, we have focused on the beyond

CMOS ("after Moore") orientation of research. Indeed, beyond the 16nm node, the semiconductor

industry will have to find  fundamentaly new approaches to information, signal processing, and data-

storage, which implies the  exploitation of alternative devices, materials, and process, but also involves

systems innovations. The discussion has been deliberately limited to the most promising emerging logic

devices, as defined by the 2005 ITRS. A stronger emphasis has been put on 1D structures. SE devices

are also described in more detail because of their higher relevance for this work. Finally, we have

highlighted the SET fabrication challenges and introduced the concept of multi-island devices as an

interesting alternative to lithoraphically defined SETs or SEMems.
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Considering the challenges of "more Moore" and "after Moore" research in nanoelectronics, we have

decided to focus our work on polysilicon nanowire transistors that can be used either in logic, memory,

SET, SEMem, or hybrid CMOS-"nano" applications. Polysilicon nanowires also combine the

advantages of both 1D structures and multi-islands devices, in which the main device is lithographically

defined but the intrinsic properties depends on the nanomaterial features. Finally, as it will be described

in the next chapter, polysilicon is a low-cost, and relatively easy to handle material.
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Chapter 2:  Material
challenges for SETs and

SEMems

2.1. Materials for Single Electronics

2.1.1. Overview

SETs and SEMems can be fabricated mainly in four different types of materials: metals, semiconductors,

carbon nanotubes, and molecules. Most of the semiconductor devices are made out of silicon and will

be discussed in the next sub-chapter, while metallic, CNT, and molecular devices will be briefly

described here.

Metallic devices

Metallic SETs are principally Multiple Tunnel Junctions (MTJ) devices, which are pretty similar to the

first fabricated SET reported by Fulton and Dolan in 1987 [1]. Small islands are separated from S/D by

tunnel junctions (oxides) using different techniques like: e-beam lithography and sputtering [2], STM

nano-oxidation process [3], or self-assembly of QDs combined with e-beam lithography and shadow

evaporation [4]. Basically, most of the metallic SETs relie on extremely time-comsuming processes. A

brief description of the SET fabricated with STM is given below.

Matsumoto et al [3] have proposed a new artificial pattern formation method based on STM nano-

oxidation. The principle consists of creating a TiOx pattern (tunnel barrier) on a 3nm evaporated Ti layer

as illustrated on Fig. 2.1. (a) and (b). The STM tip is used as a cathode, and the Ti surface is oxidized

through the water that adhered from the atmosphere to the surface. The relative permittivity of the
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formed TiOx is about εr=24, while the measured TiOx /Ti barrier height is of 285meV. The SET device

is then fabricated using TiOx /Ti system (see Fig. 2.1. (b)). The center part of the device is a 30x35nm2

Ti island, that is separated from S/D by two parallel narrow (2-3nm) TiOx lines, which play the role of

tunnel junctions for SET. A typical drain current-voltage characteristics of the fabricated SET is given

on Fig. 2.1. (c). The measurement was realized at room temperature, and the gate bias was applied to the

aluminum contacted backside of the n-Si substrate. In the figure, the thick line shows the SET current,

while the fine line represents the SET conductance. Four clear Coulomb staircases with  approximately

150mV period are clearly visible in both the current and conductance plot.

Figure 2.1. (a) Principle of nano-oxidation process using STM tip as a cathode. (b) AFM image of the island region
of fabricated SET. (c) Drain current-voltage characteristics and conductance of SET at room temperature [3].

Molecular devices

Molecular electronics has been proposed as a potential solution of CMOS scaling issues mainly because

it is a self-organized material and the size of complex molecules is in the order of approximately 1nm.

This can lead to quantum confinement and device densities of ICs greater than 1012 cm-2. Molecular

single electron devices (SED) are three terminal structures with one or more molecules standing in

between two metal electrodes, and a third terminal which is capacitively coupled to the molecule and is

acting as a gate (see e.g. Fig. 2.2.(c)) [5],[6]. 

Park et al [6] have built molecular transistors using two molecules containing a Co ion bonded to

polypyridyl ligands, attached to insulating tethers of different lengths (see Fig. 2.2.(a) and (b)). The

source and drain of the transistor are ebeam defined gold wires, which have been separated from a single

wire by electromigration. The gate (bulk Si) is capactively coupled to the molecule through a 30nm

thermally grown oxide. The molecular channel is a self-assembled monolayer obtained from a dilute

solution of the molecules in acetonitrile.

(a)

(b)
(c)
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Figure 2.2.  Structure of the molecules used by Park et al: (a) [Co(tpy-(CH2)5-SH)2]2+, and (b) [Co(tpy-SH)2]2+,
with (c) I-V characteristics at 100mK of the long molecule (upper inset shows a topographic AFM image of the
electrodes with a gap (scale bar, 100 nm), while lower inset represent a schematic of the device) [6].

Fig. 2.2. (c) shows the I-V characteristics of the longer molecule device measured at 100mK. This plot

demonstrate that the molecular pseudo-transistor is similar to a SET device: the cobalt ion acts as the

small island and allows to trap charges, while the long organic barriers are the high resistance tunneling

junctions. Due to stronger coupling, when measuring the smaller molecule, Park et al did not observe

CB effect anymore (no more highly resistive junctions).

CNT devices

A CNT is a carbon-based tube-like molecule that is a rolled-up graphene sheet (see Fig. 2.3.). As seen

previously, CNT can be single- or mutli-walled, and semiconducting or metallic depending on how the

graphene sheet is rolled up. For SET applications most of the CNTs used are single-walled. One unique

property of SWCNT is its dimension, most SWCNTs have a diameter of less than several nanometers,

but they can be as long as several hundreds of micrometers. Therefore, SWCNTs can be considered as

1D structures in which the electron are confined in two directions. SWCNT based SET would then

require process steps in only one direction for effective 3D quantum confinement. Kurokawa et al have

fabricated a 80nm MWCNT based SET using FIB etching for defining the tunnel barriers in the third

dimension, but the device does not show clear COs even at 23K [8].

Postma et al. [9] have prototyped room temperature SETs from metallic SWCNTs. The devices feature

a short nanotube section down to ~20nm that is created by inducing local barriers using an AFM, as

shown in Fig. 2.4. (a) and (b). The CNT stands between two gold electrodes on top of a Si/SiO2 substrate

which acts as a back gate. AFM dragging is then used twice for bending the nanotube. Coulomb charging

is reported at room temperature (see Fig. 2.4. (c)), with an additional energy of 120 meV that

substantially exceeds the thermal energy.

(a)
(c)

(b)



50 Material challenges for SETs and SEMems
Figure 2.3. Schematic representation of: (a) graphene sheets, and (b) SWCNT [7].

Figure 2.4. AFM image of (a) a double-buckle nanotube device (Au electrode at top and bottom of the picture),
with (b) zoom on the active part of double-buckle device (scale bar is 20nm); (c) device COs as a function of gate
voltage at 260 K, with inset showing a dI/dV intensity plot [9].

More recently, a simpler room temperature SWCNT based device has been shown [10]. Using controlled

patterned chemical catalyst Matsumoto et al have been able to grow 1-2nm nanotubes on top of 100nm

silicon dioxide and between two metal electrodes separated from each other by 4µm. The substrate is

used as a back gate. The defects in the CNT then formed spontaneously quantum dots with the size of 1

nm. The single electron transistor showed the room-temperature Coulomb diamond characteristics with

an ultra-high Coulomb energy of 400meV. With this technology, electron device with the feature size of

1–2 nm could be easily realized using only the conventional photolithography process, ‘‘without any

nano-technology process’’. This means the future possibility of the mass-production of nanodevices

using CNTs.

(a) (b)

(a) (b)
(c)
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2.1.2. Silicon for Single Electronics

Silicon has two major advantages for integration of SEDs compared to the other material detailled

previously: first it is a very mature technology that benefits from the huge investment and knowledge

that has been gained since more than fourty years, and  secondly it can be very easily integrated in a

CMOS compatible process. However, compared to molecules and CNTs, silicon substrates need

lithographic based processing in order to achieve devices with nanometer-scale dimensions, and so

quantum confinement. Two different approaches can be used to achieve quantum confinement in Si: (i)

reduce the silicon island feature size down to few nanometers, and/or (ii) create tunnel barriers in order

to isolate a small silicon island. Table 2.1. illustrates technological processes based on those two

different approaches. 

Table 2.1. List of the principal quantum confinement methods used for silicon SEDs with references.
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Quantum confinement through island dimension reduction is mainly achieved using extremely well

controlled thermal oxidation of monocrystalline silicon, high resolution lithographic tools like ebeam,

or a combination of both methods [11], [13]. Another technique that has been succesfully demonstrated

by Uchida et al [16] is a combination of silicon oxidation for the reduction of the silicon thickness (SOI

substrate), combined with wet chemical etching using an alkaline-based solution (choline) for undulated

silicon channel. The nanoscale undulation in the ultrathin film results in the formation of nanoscale

potential fluctuations and CB effects. Finally, Si nanoscale dimensions can be obtained naturally through

adapted deposition methods like for Si quantum dots [15] and ultra-thin polySi [14].

Tunnel barrier confinement can be achieved either through fabricated tunnel barriers like SiO2 [17], or

through electrostatically defined tunnel barries due to: impurity fluctuations in a very narrow device

(potential wells along the channel) [18], controlled gate induced depletion at both ends of the channel

[20], or nonoverlapped S/D contacts giving high potential barriers at the S/D-channel interfaces [21].

2.1.3. Nanograin polysilicon

Polycrystalline silicon is a widely used material in the semiconductor industry, as poly-gate for CMOS

devices, NVM, and DRAM, as the active layer of thin-film transistors (TFT), as passive resistors, local

interconnects, or microelectromechanical systems (MEMS). This success is a combination between a

low cost material and a large range of deposition temperatures, together with a tunability of  the structural

and physical properties of polySi. Indeed, polySi properties can be tuned during deposition, but also after

with annealing sequences and/or doping. Finally, polySi is a very mature material as it has been used in

semiconductors for more than three decades.

PolySi can be considered as a natural multi-islands material (see 1.4.5.“Multi-island SETs”) composed

of monocrystalline silicon grain islands separated by grain boundaries. PolySi grain size can be

adequatly controlled thermally and reduced to few nanometers. Consequently, each island or at least the

majority of the islands can be considered as QDs. These QDs may behave as excellent traps for one or

few electrons as it has already been demonstrated in SET [23], and SEMem applications (see

1.4.6.“Multi-island Single Electron Memory”) [14], [24]. Hence, optimized grain size polySi is an

excellent candidate for future nanoelectronics, and this is why we choose it for our research.
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2.2. Technology developments for ultra-thin 
sub-10nm polysilicon film

The target of this technological part is to achieve the realization of a 10nm or less thin polySi film with

equivalent grain sizes. For this purpose, two radically different approaches have been evaluated: the first

one consists in a deposition of this layer by standard low pressure chemical vapour deposition (LPCVD),

whereas the second approach consists in a thinning of deposited amorphous silicon (aSi), or polySi film

(e.g. 100nm). The restrictions on this technological part are twofold: achievement of nanograin ultra-thin

10nm polySi film with fully CMOS compatible process, and realization of the devices with equipments

that are mainly available at the Centre of Micro/Nanotechnology (CMI) of EPFL. 

Three different deposition process have been evaluated for the realization of LPCVD deposited polySi

film: (i) a direct LPCVD polySi deposition; (ii) a two-steps Hemispherical Silicon Grain (HSG)

deposition; and finally (iii) a two-steps aSi deposition followed by  crystallization annealing. For the

thinning process, four different solutions have been tested: (i) sacrificial oxidation; (ii) dry  Reactive Ion

Etching (RIE); wet chemical etching using (iv) SECCO, or (v) poly-etch based solutions.

The implantation of the ultra-thin polysilicon film was also pretty challenging. Grain size specifiactions

(~10nm) has prevented the use of a standard implantation process followed by high temperature anneal.

Indeed, high temperature activation anneal would induce an unacceptable polySi grain growth. Hence,

a novel method of implantation has been developed together with Ion Beam Services (IBS) [25]: a "hot"

implantation at 500°C providing a combinated implantation and activation. 

2.2.1. LPCVD technology

Introduction

PolySi LPCVD involves the thermal decomposition of silane (SiH4) to form elementary silicon and

molecular hydrogen:

(2.1) 

In a standard LPCVD reactor, gases are continuously introduced into the reactor and unused gases and

reaction products are also continuously removed. The deposition process is influenced by both the

kinetic factors and the thermodynamics of the decomposition. Hence, the main parameters that governs

the deposition rate, but also the physical properties of the deposited Si layers are: (i) the deposition

temperature, (ii) the pressure in the reactor chamber, and (iii) the flux of silane through the reactor. Fig.

SiH4 g( ) Si s( ) 2H+ 2 g( )→
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2.5. gives the crystalline structure of the deposited silicon as a function of the deposition temperature and

the LPCVD chamber pressure (all the results are extracted from litterature). The straight black lines A

and B represent the limits between aSi, polySi and an in-between transition region of rugged surface

polySi as-defined by [26]. The black squarred markers stand for amorphous deposited Si films [27]-[31],

whereas the gray triangular markers correspond to polySi layers [32]-[36]. 

Figure 2.5. Crystalline structure of deposited Si films as a fuction of temperature and silane pressure. Black
squarred markers correspond to aSi, while gray triangular makers stand for polySi.

One can see that a combination of high temperature and low silane pressure leads to the formation of

completely polycrystalline Si, while lower temperature combined with higher pressure gives a fully

amorphous Si layer. Between those two regimes, the deposited films are either partially crystallized or

totally crystallized with well separated grains and a rugged surface. This transition region is between

560°C and 590°C for a chamber pressure of 150mT [37]. Under those conditions, an increase of the

silane pressure increases the amorphization level of the layer [38]. It has already been shown that aSi can

be deposited at 580°C and 200mT, and when the deposition temperature is decreased, the layer

uniformity but also the surface roughness is improved [39].

Experimental specifications

The substrates used for the deposition tests were 100mm ‹100› oriented, boron-doped p-type silicon

wafers. A silicon oxide layer has been grown by thermal oxidation prior to any Si deposition. All the

silicon layers have been carried out by thermal decomposition of pure silane (SiH4) in a

CENTROTHERM conventional horizontal hot-wall type LPCVD reactor [40]. The experimental

conditions tested for either amorphous or polycrystalline silicon are represented on Fig. 2.6. Amorphous

silicon has been deposited at temperatures between 475°C and 525°C, for silane pressure ranging from

100mT up to 400mT, while polySi has been deposited between 580°C and 640°C, for silane pressure

ranging from 60mT up to 200mT. 
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Figure 2.6. Experimental conditions used for the deposition of aSi (black squares) and polySi (grey triangles). The
black A’ and B’ lines show extrapolated limits between amorphous and polycrystalline Si structure [26].

For each experiments the silane flux has been maintained at 30sccm in the back of the reactor, but

different depostion time have been used in order to determine the adequate deposition rate and so to

achieve the minimum thickness goal of less than 10nm layers. The film thicknesses have been measured

by spectro-reflectometry. The surface morphology was observed by SEM and AFM. The microstructure

of the films was investigated by transmission electron microscopy (TEM).

Direct polySi LPCVD 

Table 2.1. summarizes some of the results obtained for the direct polySi deposition. Three different

processes at constant pressure but different temperatures are presented. The deposition rates were

calculated from the slope of the calibration curves based on multiple deposition times under similar

temperature and pressure conditions. The continuous surface at (-) represents the minimum film

thickness needed to get a continuous polySi layer fully recovering the wafer (without porosity). 

Table 2.1. Characteristics summary of three polySi processes. 

We can see that the deposition rate tends to be important for less than 100Å films. Even with a

temperature as low as 600°C, the deposition rate is about 36Å/min. In this case, our application would

require a less than three minutes process, which is not controllable in a conventional reactor. It also

appears that the temperature affects the surface recovery: the higher the temperature, the thicker the
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polySi layer must be to fully recover the surface. Indeed, at 640°C a 330Å thick layer is required for a

continuous film, whereas a 200Å layer is enough at 600°C. This can be easily explained by the fact that

at the beginning of the LPCVD process, the number of stable nuclei, ns, and their size for a given surface

and fixed arrival rate is inversely proportionnal to the temperature, T, as expressed in eq. 2.1

(2.1) 

where i is the number of atoms in the critical cluster, n1 is the adsorbed atom concentration, n0 is the total

number of surface sites per unit area, Ei is the energy of formation of the cluster consisting of i atoms,

Em is the activation energy for surface diffusion of mobile clusters, and Ed is the activation energy for

diffusion of a single adsorbed atom [41]. Hence, as the temperature increases, the number of stable nuclei

decreases and one needs thicker polySi layer to fully recover the substrate. As a conclusion, no

continuous film (see Fig. 2.7.) can be obtained with a deposited thickness lower than 200Å.

Figure 2.7.  SEM picture of a 32nm thick polySi layer deposited at 640°C and a silane pressure of 100mT.

Two-step Hemispherical Silicon Grain LPCVD

HSG deposition has been investigated as a two-step process. The first step consists in a simple aSi

deposition, whereas the second step is an in-situ anneal leading to the formation of crystalline silicon

hemispheres by Si atoms migration on the surface [42]-[43] as illustrated on Fig. 2.8. The final size and

density of HSGs can be controled by the reactor temperature and pressure for both step of the process,

the initial aSi thickness (limited amount of Si atoms available),  and the annealing time [44].

ns
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Figure 2.8. Schematic representation of the HSG growth mechanism by Si atoms migration on the surface.

Heating ramp being limited in a LPCVD hot wall reactor, the only parameter we have been able to

modify in order to decrease the HSGs diameter was the initial aSi thickness. Fig. 2.9. shows a SEM

micrograph of a sample with the minimum HSG sizes we have achieved. Those HSGs have been

obtained with a 15 min a-Si deposition at 500°C and 150mT, followed by an in-situ anneal at 545°C

during 20 min. Grain radius from 10 to 50nm are obtained. The height of those grains, which have been

measured with AFM, stands between 10 to 20nm. 

Figure 2.9. SEM picture of HSGs with aSi deposition at 500°C for 15min, followed by anneal at 545°C for 20min.

Two-step aSi/crystallization process

The aSi/crystallization process is also a two-step process. It consists of aSi deposition followed by Solid

Phase Crystallization (SPC) at higher temperature. As described earlier, the deposition temperature of

the amorphous phase should be less than 560 °C, while the SPC could not be done in situ in order to

avoid surface diffusion of silicon atoms leading to HSG formation. The wafer has to be in contact with
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ambient in order to passivate the surface with a native oxide. Deposition temperatures for the amorphous

phase ranged from 475 to 525 °C with  reactor pressure varying from 100mT to 400mT, ass illustrated

by black squares on Fig. 2.6. The SPC was carried out in a classical hot wall reactor under a nitrogen

atmosphere. The annealing temperatures evaluated ranges from 700 to 950 °C.

The wide range of deposition temperatures investigated for the first step of the a-Si/crystallization

process shows that, with a silane pressure of 100mT, the adequate temperature to carry out a 10nm aSi

layer is 500°C. Below this temperature, 475°C and 490°C, the incubation time (total deposition time that

elapsed before effective deposition of Si [45]) has increased dramatically to 72min and 21min

respectively, with a constant deposition rate for both temperatures that is about 3Å/min. Moreover, the

films deposited present a granular structure (see Fig. 2.10. (a) and (b)) that causes an increase in the

density and size of the porosity compared to a deposition at 500°C under the same conditions.

Figure 2.10. SEM pictures of: (a) a 10nm thick aSi layer deposited at 475°C for 107min and a silane pressure of
150mT, and (b) a 8nm thick aSi layer deposited at 490°C for 47min and a silane pressure of 150mT. Both picutres
illustrate the granularity of the deposited layers.

Depositions at 525°C have lead to the growth of HSGs (see Fig. 2.11. (a)) during the reactor purge

necessary to eliminate silane residue. During purge, the reactor is brought several times under vacuum

conditions, what promote, at this temperature, the silicon atom surface diffusion. In order to avoid such

phenomena, the aSi deposition temperature is decreased to 500°C and the purge cycles have been made

at 475°C, cancelling almost completely the HSG growth. However, aSi film deposited at 500°C presents

the same non-continuous surface when the film thickness is reduced under 100Å (see Fig. 2.11. (b)), as

seen previously with polySi.

(a) (b)



Technology developments for ultra-thin sub-10nm polysilicon film 59
Figure 2.11. SEM pictures of: (a) a 14nm thick aSi layer deposited at 525°C for 20min and a silane pressure of
150mT illustrating HSG formation during reactor purge cycles, and (b) a 8nm thick aSi layer deposited at 500°C
for 30min and a silane pressure of 150mT, illustrating porosity and cancellation of HSG formation at 475°C.

By working on the nucleation at the early stage of the deposition it is possible to increase the number of

nucleation site and thus to favor the coalescence at lower thicknesses. Researches done by Baron et al

[34] and Miyazaki et al [35] demonstrate that there are three different ways to increase the density of Si

QDs deposited by LPCVD: dip the wafer in a HF solution or in water before deposition, do the

deposition on silicon nitride instead of silicon oxide, or increase the silane pressure. With these methods

we  increased significantly the density of nuclei in our process and so, achieved deposition of continuous

amorphous films of 100Å and less. Fig. 2.12. (a) depicts a continuous 60Å aSi layer deposited at 500 °C

and a silane pressure of 300mT, while Fig. 2.12. (b) illustrates the apparition of porosity for aSi films

thinner than 5nm (4nm in the precise case). 

Figure 2.12. SEM pictures of: (a) a 6nm thick aSi layer deposited at 500°C for 12min and a silane pressure of
300mT, and (b) a 4nm thick aSi layer deposited at 500°C for 8min and a silane pressure of 300mT, illustrating
porosity apparition for layer thinner than 5nm (dust and HSG on the pictures ensures quality of focus).

(a) (b)

(a) (b)
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The SPC of the deposited aSi films has been studied through various annealing times and temperatures.

Evaluation of the granularity of the annealed polySi film has been performed with extensive TEM

measurements using plane view and cross-section. For the SPC of a-Si deposited by LPCVD, Hatalis et

al [29] have proven that for short annealing periods, the grain size decreases when the anneal

temperature increases. Our clean room center being not equiped with rapid thermal process (RTP) tool,

but only with conventional furnaces, a SPC at 700 °C during 10 minutes has shown the best

performances for small grain sizes. Observations performed on those polySi films show average grain

size between 5nm and 20 nm, with very limited number of grain sizes larger than 20nm (see Fig. 2.13.). 

Figure 2.13. Dark field TEM pictures of 10nm polySi film annealed 10min at 700°C: cross-section (left), and plan-
view (two right).

2.2.2. Thinning technology

Compared to the LPCVD process where the film thickness is mainly controlled through the deposition

rate, the thinning technology might be a little bit more difficult to control as the process starts with a thick

layer and has to stop leaving only few nanometers of polySi. However, the thinning method has two

interesting advantages in comparison with the LPCVD technique. The first one comes from the fact, that

contacting a 10nm polySi layer can be difficult because of metal spiking, poor interfaces, and/or to

agressive contact opening process. Therefore, starting from a thick layer and using resist or oxide masks,

we can fabricate an ultra-thin polySi layer with thicker regions. This regions can then be used for the S/

D contacts (see Fig. 2.14. (a)). The second advantage is that when using an adequate dry or wet etching

technique, it is possible to end with a rough or undulated polysilicon surface with well-defined

nanometric granular structure where grains are charge trapping sites, as already demonstrated by Uchida

et al [46] and illustrated on Fig. 2.14. (b).
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Figure 2.14. Schematic cross-section representing the ultra-thin polySi film after the thinning process, with
elevated S/D pads (a), and undulated polySi layer after etching (b).

Five different methods have been tested in order to obtain less than 10nm undulated polySi films: (i) a

sacrificial oxidation process with high temperature oxidation followed by HF etching; two dry etching

techniques using (ii) a pure physical etching plasma tool using Argon, or (iii) a chlorine based RIE

plasma; and two wet chemical etching using diluted (iv) SECCO solution, or (v) polyetch solution.

Sacrificial oxidation

The sacrificial oxidation process can be divided in two steps, the first step is a high temperature dry

oxidation under oxygen or mixed oxygen/nitrogen atmosphere, whereas the second step is a standard

(very selective on polySi) HF wet chemical etch used to remove the grown oxide. The dry oxidation is

a very stable and adjustable process where the oxidation rate can be easily controled by means of

oxidation temperature, reactor chamber pressure, oxygen flux, and oxygen/nitrogen ratio [47].

Polysilicon is composed of mutliple small crystallites joined together by grain boundaries (see Fig. 2.15.

(a)). The high concentration of defects and dangling bonds at the grain boundaries make these regions

weaker than the monocrystalline grains. Thus, under thermal oxidation, the oxygen diffuses very rapidly

through the grain boundaries, resulting in an enhanced oxidation rate in these areas, that accentuates the

asperities of the polySi (see Fig. 2.15. (b)). As a consequence, the interface between a polysilicon layer

and the thermal oxide is very rough, and after the HF removal, an "undulated" polySi surface is obtained

as illustrated on Fig. 2.15. (c).

Figure 2.15. Schematic representing cross-section of: (a) polySi grains on top of an oxide layer, (b) the same
polySi film after high temperature oxidation, and (c) the oxidized polySi film after etching.

(a) (b)

(a) (b) (c)
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One drawback of polySi comes from the morphology changes with high temperatures. Some grain

boundaries migrate, and grain growth is occurring. This phenomenon is enhanced in materials with a

high number of lattice defects or natural disorder. This is why at high temperatures, the polysilicon grains

may become much larger depending on the process specifications (mainly time and  temperature).

Since the final polySi target thickness is less than 10nm, the starting point for the experiment was a

relatively low oxidation temperature of 900°C  (low oxidation rate) with a gas flux ratio O2/N2 of 1/20

(0.5slm O2 vs 10slm N2). Fig. 2.16. represents the consumed silicon thickness as a function of time for

p-type <100> bulk silicon and 20nm aSi film deposited on thick oxide. It should be mentioned first that

aSi becomes polycrystalline in few seconds, and secondly that during the ramp up, a small amount of

oxygen is added to the nitrogen atmosphere in order to avoid nitridation of silicon during this stage. This

explains why the consumed Si thickness at the beginning of the oxidation (time 0) is already about 19Å

for bulk Si, and 33Å for polySi. 

Figure 2.16. Dry oxidation characteristics at 900°C with a O2/N2 gas ratio of 1/20, for p-type <100> bulk silicon
(triangular dots), and polySi (squared dots).

The oxidation consumation rate for bulk Si is of 0.29Å/min, whereas the rate for polySi is twice

faster, 0.60Å/min, as predicted by previous experiments [48]. However, when the polySi

oxidation time is increased to 45min (see gray dot on Fig. 2.16.) the oxidation rate decreases drastically.

This asymptotic behavior can be explained by the fact that the stress is increasing in the polySi as the

thickness of the film is reduced. The oxidation rate being inversely proportionnal to the stress, the

oxidation rate slowly  decreases until the stress becomes to high and the oxidation stops (similarly to the

Pattern Dependent Oxidation (PADOX) [49]).

This result has been confirmed by the oxidations performed on 10nm deposited aSi films. When the O2/

N2 ratio has been increased by a factor ten (1/2), a 10min process has consumed 28Å of bulk Si,

leading to a consumation rate of 0.90Å/min. Considering that unstressed polySi layer have
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twice the oxidation rate of bulk Si, the same 10min process should have consumed

approximately 51Å of polySi, while it has effectively consumed only 34Å because of the

increased stress in the 10nm layer compared to 20nm layer.  Finally, the O2/N2 gas mixture has

been increased to a ratio of 10/0 for improved oxidation rate and thus decreased polySi thickness.

Nevertheless, even with such gas ratio and process time of 15 and 25min the oxidation of 10nm polySi

film has been stopped after having consumed approximately 50Å of polySi. 

Sacrificial oxidation combined with the deposition of 10nm aSi film can lead to 5nm thin polySi layer.

Nevertheless, due to the high oxidation temperatures, TEM measurements performed on ultra-thin

oxidized polySi layers have shown grain sizes ranging from 100nm to 200nm even when the thickness

of the film was reduced to less than 10nm.

Wet chemical SECCO etching

Secco etching is a technique developped in 1972 [50], based on mixed solutions of K2Cr2O7/HF for

revealing the crystal defects like dislocation, slips, or stacking faults, in <100> silicon substrate. It has

also been frequently employed to delineate grain boundaries in polySi [51], as the etching rate along the

grain boundaries and defects is faster than for monocrystalline silicon (the polySi grains). Secco has a

linear etch rate, what is an advantage in comparison with other silicon chemical etchants used for

revealing the crystal defects [52].

The basic Secco solution is composed of 1 part of K2Cr2O7 (0.15M) and 2 parts of HF 49%. The etch

rate, in this case, is approximately 1.5µm/min [50]. In order to decrease the etch rate, the experimental

solution used in this work was diluted according to 1 volume of Secco solution for 4 volumes of water.

The etch rate then decreases to about 40nm/min. Fig. 2.17. shows SEM pictures of 400nm LPCVD

deposited polySi film at 640°C before treatment and after 10, 30 and 120secs of etching. We can clearly

see that the solution etches preferentially the grain boundaries but also the defects inside the grains (e.g.

stacking faults), and as the etching time is increased the grain size is decreasing. 

Further tests with the same solution composition have been performed on 20nm and 10nm polySi film

obtained through the aSi/crystallization process detailled previously. Ellipsometry measurements

performed on those layers after 3, 5 and 7 seconds of etching have shown that the slow etching rate has

been preserved, and so 4nm thin polySi layers have been obtained. Nevertheless, as it is illustrated on

Fig. 2.18., after the Secco treatment the polySi film contains unwanted circular holes of two different

size. The origin of these holes has not been precisely determined, but may be be attributed to remaining

droplets of solution on the wafer surface, and/or inside the defect region (holes). When the wafer is

brought from the etching bath to the water rinsing and cleaning bath the etch process continues in those

precise regions. 
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Figure 2.17. SEM pictures of a 400nm polySi film before etching (upper right corner), and after 10, 30, 120secs
of SECCO etching.

Figure 2.18. SEM picture of a 4nm ploySi film after 5secs of Secco treatment. The inset shows a zoom on holes
attributed to Secco droplets overetch.
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Wet chemical polyetch

One of the most used solution for etching Si and polySi, is a solution that contains nitric acid, HNO3, for

the redox reaction, hydrofluoric acid, HF, for removing the oxide, and a diluent like water or acetic acid

in some cases. The overall reaction is the following: 

(2.2) 

The etch rate of this solution is a function of the chemicals concentrations in the mixture, as shown in

Fig. 2.19. Depending on the chemicals concentration in the solution, two important regions on the

isoetch diagram can be observed: (1) for high HF concentrations the etch rate is controlled by nitric acid,

and (2) for high HNO3 concentrations, the etch rate is controlled by hydrofluoric acid (used in this region

the solution leaves a 30-50Å layer of SiO2 on the surface).

The first experiments were carried out from a standard poly-etch solution available at CMI which

corresponds to the arrow at the extreme right of the graphic on Fig. 2.20. (enlarged version of the isoetch

curve). This solution has a etch rate of approximately 1µm/min which is absolutely not designed for thin

polySi layer. Therefore, a much slower etching speed, about 100Å/min, is searched by changing the

concentration of water in the mix. The black dots on Fig. 2.20. represents the solutions with added water

that have been evaluated.

The polySi etch rate is changing rapidly from very fast, approximately 1µm/min (zone 1 on Fig. 2.20.),

to zero (zone 2 on Fig. 2.20.). Between those two extremes, there is a small region where the etching

speed is about 50Å/min (zone 3 on Fig. 2.20.). Nevertheless, ellipsometry measurements and visual

analyses (see Fig. 2.21. (b)) clearly showed that the etching rate, even when lowered to the minimum, is

not uniform at the wafer level. Moreover, the reproducibility of the experiments from wafer to wafer

proved to be bad, mainly due to the highly sensitive solution properties regarding the concentrations of

mixed chemicals (evaporation, increasing concentration of by-products in the solution).

The poor uniformity and reproducibility of the process could have been attributed to the small volume

of the recipient used for experiment (see Fig. 2.21. (a)), but experiments carried out in a larger recipient

with a magnetic bar for agitation have shown the same ultra sensitive behavior. Even a change of the

magnetic bar rotation speed can have a drastic change on the etching speed.

Si HNO3 3HF+ + H2SiF6 HNO2 H2O H2+ + +→
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Figure 2.19.  Isoecth curve of HNO3:HF:H2O on silicon [53].

Figure 2.20. Enlarged isoetch curve with black dots representing some of the etching solutions evaluated.
Rectangles show solution zones with drastically different etching speeds.

Figure 2.21. Pictures of (a) the setup used for the poly-etch process, and (b) one wafer after etching illustrating
the poor uniformity of the process.

(a) (b)



Technology developments for ultra-thin sub-10nm polysilicon film 67
Deep Reactive Ion Etching

PolySi thinning through a dry etching process has been evaluated with an inductively coupled plasma

(ICP)-RIE equipment. The ICP-RIE machine employs two RF power generator in order to control the

plasma density and ion energy separately. The added RF generator, compared to RIE tools, is

capacitively coupled to the wafer chuck and thus allows to independently bias the substrate and control

the etch rate. 

A 5mT chlorine based plasma, combined with low substrate biase (low etch rates) have been chosen for

this project. The etch tests have been performed on 100nm LPCVD polySi. Fig. 2.22. gives the ICP-RIE

polySi etch rate as a function of the substrate bias. When the chuck bias is decreased from 60 to 20W,

the etch rate decreases quasi linearly and is in good agreement with the etch rate aimed for the thinning

process. However, etching tests performed on multiple wafers at 20W (at the limit of the equipment)

have shown that the reproducibility from wafer to wafer is very poor. Etch rates varying almost from

simple to double have been measured, therefore higher substrate bias should be used. 

Figure 2.22. ICP-RIE polySi etch rate as a function of the substrate bias.

Fig. 2.23. shows a SEM cross-section of a polySi layer etched for 30secs at 60W with a removed

masking layer for the thicker elevated contact regions. The zoom on the etched layer reveals a promising

15nm thick polySi film. Nevertheless, because of the relatively high etch rates, short process times and

the final thickness of the layer, the uniformity at the wafer level is not controllable within reasonable

range. Indeed, the film thickness is ranging from approximately 10 to 20nm. 
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Figure 2.23. SEM cross-section picture of a  polySi layer etched for 30secs with a substrate bias of 60W and a
removed masking layer for thicker contact regions. The zoom on the etched film reveals a 15nm polySi layer.

2.2.3. Ultra-thin polysilicon film implantation

Simulation based study

The lack of litterature references on implantation of ultra-thin polySi film have made mandatory an ion

implantation simulation based study. For this purpose, ATHENA, a 2D process simulation software

from Silvaco International has been exploited. Two models have been used for this study: SIMS Verified

Dual Pearson (SDVP), and Monte Carlo (MC) model. Simulations have been focused on implantations

with low energies (5 to 25keV), in order to prevent the degradation of the polysilicon ultra-thin film and

the underlying layer. Phosphorous and boron have been chosen for implantation as they are the most

common impurities used for n- and p-type doping. The test structure used for the simulation is

represented on Fig. 2.24. It consists of a low temperature oxide (LTO) cap layer deposited on the 10nm

ultra-thin polysilicon film, and the dry oxide layer. The cap oxide acts as an ultra-thin film protection

and is essential for the calibration of the appropriate energy and dose of implantation for a given impurity

concentration.
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Figure 2.24. Schematic of the basic structure used for implantation simulation.

Fig. 2.25. shows a SVDP simulated doping profile of an ultra-thin polysilicon layer implanted at three

different energies: 22, 24 and 26keV. We can see that, for a given cap oxide thickness (80nm), a small

variation of the implantation energy causes drastic changes of the simulated doping profile. At 22keV

the ultra-thin film is very lightly doped, whereas at 26keV it is doped around 5x1019cm-3 and the

underlying dry oxide is weakened by the presence of phosphorous impurity. 24keV seems then to be the

appropriate energy for an 80nm cap oxide layer. This energy sensitivity is essentially due to the minimal

thickness (few tenth of nanometers) of the layers involved in this process. Therefore, the cap oxide film

is an essential parameter, equivalent to the energy and dose, for the calibration of the doping profile in

the polysilicon film. This results also highlights some limits of simulation. Indeed, the physical

properties (crystalline orientation, density, stochiometry, and granularity) of the materials involved in

the implantation process are not exactly known and can even not be calibrated in the simulation

commands.Thus, simulation results should be considered as qualitative information of the final doping

profile in the polySi, and a calibration of the simulation is requested.

Figure 2.25. SVDP doping profile of a phosphorous ion implantation at 22, 24, 26keV, and 2.0x1015cm-2.
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Therefore, test structures with four different implant conditions but same 10nm polySi layer thickness

have been prepared for secondary ion mass spectroscopy (SIMS) measurements. The polySi film has

been LPCVD deposited using the aSi/crystallization process described previously  (“Two-step aSi/

crystallization process”). The implantation energies have been fixed to 10 and 25keV for phosphorous

and boron doping species. The implant dose and cap oxide layer have then been calibrated for a final

simulated dopant concentration of 5x1017cm-3.

Two of the four SIMS profile of the four implantations described above are presented in Fig. 2.26. The

SIMS measurements have been carried out by EVANS Technologies [54] using a PHI Quadrupole SIMS

instrument for boron, and a Cameca Magnetic Sector SIMS instrument for phosphorous. The precision,

(or sample to sample variation), of concentration measurement in the SIMS analysis is about 10-20%,

and the detection limits for the analysis are of 1e17at/cm3 for phosphorous and 1e16at/cm3 for boron.

Finally, the position (depth) of the interfaces has been precisely determined through the spectrometry of

the silicon atoms (Si counts) as a function of time.

Figure 2.26. Measured SIMS doping profile on boron implanted samples at (a) 25 keV, and phosphorous
implanted wafers at (b) 10keV.

The measured SIMS profiles show a final and physical concentration of approximately 4.0x1018at/cm3

for the boron doped wafers and about 1.5x1018at/cm3 for the phosphorous doped samples. As the

simulated concentrations were of 5x1017at/cm3, there is a difference of a factor 8 for boron and a factor

2 for phosphorous. This difference can of course be only partially explained by the limitations of the

simulation tool as explained previously. The oxide caping layer is the second cause of this issue. Indeed,

the sputtered oxide layer used for this experiment has appeared to be very porous after analysis, and thus

its screening property was pretty poor. The sputtered cap layer will then be replaced by LTO for further

implantations.

(a) (b)
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Hot ion implantation process

Our thermal budget limitation (grain sizes around 10nm) make a standard implantation/annealing

process not acceptable because high temperature activation anneal would led to unacceptable grain sizes.

Hence, a novel method of implantation developped in collaboration with IBS [25] is proposed here: a

"hot" implantation where a part of the dopants are already activated during implantation. This method

allows lower-temperature activation anneals.

The temperature effect of hot ion implantation has also been evaluated. Fig. 2.27. presents a MC

simulated doping profile of a l5keV phosphorous implantation (2.0x1015cm-2) in the stack LTO/polySi/

dryox (42nm/10nm/20nm). We can see that even at high temperature (800°C) the concentration in the

thin film (5.6x1019at/cm3) is only 10% higher than an implantation at room temperature (5.1x1019at/

cm3). We can conclude that, the temperatures involved in the "hot" implantation process have no

influence on the impurity diffusion, especially for such thicknesses and energies of implantation. As a

conclusion, 500°C has been chosen as the temperature for future implantations in order to avoid the

crystallization of the film that occurs mainly above 550°C.

Figure 2.27. MC simulated doping profile of a phosphorous "hot" ion implanted polysilicon film.
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2.3. Material characterization

2.3.1. Test structures

In order to evaluate the resistivity of the ultra-thin polysilicon film, different type of structures with

varying geometries and dimensions have been designed: 

• Van der Pauw (VdP) structures (circles, squares and crosses),

• 4-contact lines,

• 4-contact serpentines. 

For the VdP structures, the sheet resistance, RS, is given by the following formulation, where V34 is

voltage measured between the electrodes 3 and 4, and I12 is the current forced between the electrodes 1

and 2 (see Fig. 2.28. (a) and (b)):

(2.3) 

where R is the average resistance and I, V the measured currents and voltages respectively. The resistivity

ρ, is obtained by multiplying the sheet resistance, RS, by the thickness, t, of the film:

(2.4) 

For the wires, the resistance R is given by dividing the voltage measured between the two internal probes

by the current forced between the two external probes (see Fig. 2.28. (c), (d)). The resisitivity then is:

(2.5) 

where l is the length between the internal probes, w and t the width and thickness of the wire respectively.

Figure 2.28. Electrical test structures: (a) schematic, and (b) optical microscope pictures of a 240x100µm cross
VdP structure, with (c) schematic, and (d) optical microscope pictures of  of a 100x10µm wire.
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2.3.2. Ultra-thin film resistivity

The electrical measurements have been carried out with a HP4156C analyser from Agilent Technologies

on phosphorous doped 10nm ultra-thin polySi layer implanted at 500°C (25keV, 2x1015cm-2, 71nm

LTO). The MC simulated equivalent phosphorous concentration after implantation is about 5x1018at/

cm3 (see Fig. 2.27.). Only 50 to 60% of the dopants are activated, thus the final activated dopant

concentration is about 2.5x1018at/cm3. This final dopant concentration has been chosen in order to have

a good compromise between a low polysilicon film resistivity (high dopant concentration), and a high

enough barrier height at the polySi grain boundaries for possible SE behavior (low dopant

concentration). Corresponding calculations and estimations have been done according to [41].

Table 2.2. gives the measured resistances and resistivities for this film. We can see that the resistivity of

the 10nm ultra-thin polySi layer is about 1Ωcm. Litterature reports that the resistivity of "thick"

polysilicon film with a phosphorous concentration between 1x1018cm-3 and 1x1019cm-3 varies from few

Ωcm to 0.01Ωcm respectively  [55], [56]. Our results are then in good agreement with published data.

Table 2.2. Measured resistances and resistivities for a phosphorous doped sample at 500°C with an energy of
25keV and a dose of 2e15at/cm2 (Nequiv=2.5e18at/cm3).
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2.3.3. TEM measurements

A second set of TEM observations has been performed on the ion implanted samples in order to check

that the polySi nanograins still have a size ranging from 10 to 20nm. TEM characterization has been

performed using plan-view measurements, and has confirmed the previous extensive study, showing

average grain size between 5 and 20 nm with very limited number of grain sizes larger than 20nm (see

Fig. 2.29.)

Figure 2.29. Bright field (upper left corner), and dark field (three others) TEM pictures of 10nm polySi film
phosphorous ion implanted and annealed 10min at 700°C.
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2.4. Summary

A brief description of the materials available for single electronics (metals, molecules, CNTs, Si) has

been given at the beginning of this chapter. After having detailled the different methods to achieve

quantum confinement in silicon, we have focused our discussion on multi-island devices made out of

polySi which is the material used in this work.

Technological processes for the realization of ultra-thin nanograin polySi film have been described and

experimentally explored. Two different approaches, that are a direct LPCVD deposition or a thinning

method (dry or wet etching) have been more precisely developped. With a deposition of aSi at 500°C

followed by a crystallization anneal, we have obtained uniform polySi film as thin as 6nm with grain

sizes ranging from 5 to 20nm. The other deposition processes have lead to porous layers and/or grain

sizes between 10 to 50nm (HSG). Thinning methods show very poor uniformity at the wafer level and

are too hard to control for less than 10nm final thicknesses. The sacrificial oxidation process has shown

promising results (5nm thick polySi film), however due to the increase of grain sizes after oxidation

(100nm to 200nm), its use was considered prohibitive for obtaining a nanograin material. Finally, the

most adapted process has been considered as the two-step aSi deposition followed by crystallization

anneal.

A simulation based study has then been carried out in order to define the most adequate way of doping

a 10nm polySi film. The result of this study combined with SIMS measurements have shown that: (i) the

use of an LTO sacrifical cap oxide layer is mandatory before implantation, (ii) an ion implantation

performed at 500°C would be the most adequate technique if one wants to keep the grain sizes around

10nm and also have the dopants activated, and (iii) due to the extremely small thicknesses involved in

simulations, the predicted doping concentration should be rather considered as an order of magnitude

and not as an absolute value.

Original contributions

At our best knowledge, no precise description of the deposition and implantation techniques for SE ultra-

thin nanograin polySi film have been published before this work. Final results in terms of film thickness

were generally reported by other authors without any technological details. Here we have presented an

original process combining aSi deposition together with a novel hot ion implantation technique followed

by crystallization anneal. Using this process we have been able to fabricate doped polySi layers with

thicknesses less than 10nm, in which the grain sizes are controlled between 5 to 20nm.
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Chapter 3: Nanograin
polysilicon devices

In this chapter, the ion implantated ultra-thin nanograin polySi film is exploited for building pseudo-

MOSFET devices for possible SET or SEMem applications. The aim of the fabrication process is to use

the structured ultra-thin polySi film as the active part (channel) of the device, and try to demonstrate that,

due to the nanograin sizes and channel thickness, charge trapping and/or Coulomb effects are appearing

even at room temperature.

3.1. Fabrication

3.1.1. Design

Fig. 3.1. shows a 3D schematic of an ultra-thin polysilicon nanowire (polySiNW) device as it will be

ideally fabricated in the CMI clean room. It consists of a bottom gate device with a structured and

implanted nanograin polySi channel lying on a gate oxide and in between two highly doped polySi pads.

The two thick pads in the contact regions allows to preserve the underlying gate oxide when contacting

and serves as S/D, while the polySi channel is electrostatically controlled using a buried gate. The all

structure is a field effect transistor.

Two lithography techniques are available at CMI. A laser direct writing with a resolution of 0.8µm with

an alignement precision of 250nm, and an UV mask lithography with a resolution of 1.5µm and an

alignement precision of 500nm (both under optimal process conditions, first mask). Thus, contacts,

polySi pads, metal lines, and buried gate feature sizes are ranging from more than 1µm to 10 or 15µm.

The width, W, of the polySiNW will be reduced in some processes by sub-contracting 300nm deepUV

lithography to Vectron [1], while the polySiNW lenght, L, is defined by CMI lithography.
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Figure 3.1. 3D schematic of an ultra-thin polySiNW acting as a pseudo-MOSFET.

The final optimized design, has 38 technological processes and 7 masks. It also includes the

technological development described in the previous chapter, that are: i) the ultra-thin nanograin

polysilicon film LPCVD deposition; and ii) the hot ion implantation at 500°C.

Remark: The terms nanowire and polySiNW could be considered as a misuse of langage as the polySi

channel is not a real 1D wire (300nm wire width). Nevertheless, in the precise case, the term nanowire

considers the small dimensions of the polysilicon grains (5 to 20nm), and the ultra-thinness of the polySi

film (10nm).

3.1.2. Process flow

The process flow sequence has been developed considering the materials and tools available at CMI. The

only technological steps done outside EPFL are the ion implantations, and the deepUV lithography used

to define the narrow polySiNW. A simplified schematic description of the optimized process is given on

Fig. 3.2., and partially illustrated on  Fig. 3.3. 

In more details, we start with a 100mm ‹100› oriented boron-doped (0.1 to 0.5Ωcm) silicon substrate.

Silicon gate oxide has been grown at 1000°C under oxygen atmosphere (step1 on Fig. 3.2.). The 100nm

thick polySi pads have been LPCVD deposited at 620°C using pure silane, and dry etched with an

Alcatel 601E plasma etcher using fluorine based chemistry (step2 on Fig. 3.2.). Combined with thick

photoresist, the structured polySi pads act as a masking layer for the ion co-implantation of the self-

aligned buried gate and the S/D of the polySiNW device (step3 on Fig. 3.2.). 
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Figure 3.2. Simplified polySiNW process flow.

The two-step process with an aSi deposition followed by a 700°C thermal crystallization after

implantation is performed for the completion of the 10nm thick polySi film with grain sizes ranging from

10 to 20nm (step4 on Fig. 3.2.). "Hot" ion implantation at 500°C is then used with a deposited and

structured sacrificial LTO layer. The LTO thickness has bee decreased in the contact regions using a low

concentration HF solution (low etching rate), in order to have higher dopant concentraion in that precise

region (step5 on Fig. 3.2.). Then, sacrificial LTO is removed with HF and the ultra-thin polySi film is

structured using  the Alcatel 601E plasma etcher with a high selectivity on oxide fluorine based recipe

(step6 on Fig. 3.2.).

A 500nm LTO oxide is then deposited at 425°C as a passivation layer (step7 on Fig. 3.2.). The contact

opening is achieved in two steps: first, through a DRIE chlorine based plasma etch using a STS ICP

Multiplex machine, and secondly by a final BHF wet etch in order to be highly selective on the 10nm

ultra-thin polySi film (step8 on Fig. 3.2.). An 800nm AlSi 1% has been sputtered at room temperature

for metalization. The structuration of the layer has been achieved with the STS plasma tool followed by

a wet chemical ANP (acetic acid CH3COOH100% : nitric acid HNO370% : phosphoric acid H3PO485%

with 5:3:75 proportions) etch at 35°C in order to avoid trapped charges due to plasma treatment. Finally,

the fabricated devices are annealed at 425°C during 10min for metal densification and contacts (step9

on Fig. 3.2.).
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Figure 3.3. Illustrations of the polySiNW fabrication process: (a) top view optical microscope image of a
fabricated polySiNW device, (b) FIB cross-section of a contact showing metal, LTO and thick polySi layers, (c) top
view SEM of a polySi channel defined by deepUV lithography and fluorine plasma etching.

3.2. Device characterization

All electrical characterization have been carried out using Agilent Technologies HP analysers of the

415X familly. Measurements from room temperature up to 150°C have been done on Karl-Süss (Süss-

Microtech) manual micro-prober, while low temperature measurements have been performed at LETI-

CEA in Grenoble (France) using a helium refrigerated chuck in a vacuum chamber.

The polySiNW devices have a 20nm gate oxide layer, with heavily phosphorous doped buried gate and

S/D (energy = 50keV, dose = 2.0x1015cm-2, simulated Nequiv. = 1.00x1020at/cm3). The ultra-thin polySi

film has been phosphorous implanted at 500°C with an energy of 18keV and a dose of 2.0x1015cm-2,

and then annealed at 700°C for 10min. The simulated concentration of active phosphorous dopants in

the film being of approximately 5.00x1018at/cm3.

3.2.1. Room temperature electrical characterization

A large range of devices have been systematicaly characterized and showed repeatable characteristics.

Fig. 3.4. (a) presents room temperature measurements electrical characteristics of a gated polySiNW at

different drain voltages, VDS. The most interesting feature is its exponential V-shape (log scale), with the

drain current, IDS, first decreasing and then increasing with the gate voltage, VGS. This behavior is

explained by an ambipolar conduction in the wire due to the Schottky nature of the source and drain

contacts. At VDS lower than 3V, the wire is electrically blocked. For low VGS and VDS higher than 3V,

holes conduction takes place, but when VGS is increased at constant drain voltage, the electron current

dominates. Fig. 3.4. (a) also shows that the holes conduction regime has a strong dependence over the

drain voltage, while electron current is weakly influenced by VDS. Fig. 3.4. (b) demonstrates that the V-

shape characteristic is well preserved even if the opertating temperature is increased up to 125°C.

(a) (b) (c)
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Figure 3.4. Measured polySiNW IDS-VGS at various: (a) VDS and (b) temperatures.

This ambipolar characteristic is mainly due to the nature of the S/D contacts, and therefore is very often

encountered in CNT transistors [2]-[4], but also in Schottky barrier TFTs [5], or SOI MOSFETS [6].  The

conduction in the polySiNW devices is controlled by the Schottky barrier (SB) at the S/D contacts. When

no bias, or a small bias is applied to the drain or the gate (see Fig. 3.5. (a)), the Schottky potential barrier

is too high and too wide for charges, and thus no current is flowing. As the drain voltage, VDS,  is

increased to high values (see Fig. 3.5. (b)), the SB is slightly reduced and the drain becomes transparent

to holes (tunneling current). At constant gate voltage, VGS, a further increase of VDS results in an

increasing tunneling current, explaining the strong dependence of the hole current versus the drain

voltage. When the gate voltage is increased to high values at constant drain voltage (see Fig. 3.5. (d)),

the SB at the source contact is reduced, and becomes transparent to electrons which are tunneling to the

drain. A further increase of the gate voltage resulting in an increased electron tunneling current. In

between those two extreme conditions, the flatband regime is characterized by an identical electrons and

holes current and a minimal total current (see Fig. 3.5. (c)). 

The Schottky nature of the contacts and their resistances have been evaluated using contacted thick

polySi wire with different dimensions (see inset of Fig. 3.6. (a)). The 100nm polySi film has been ion

implanted with phosphorous at 50keV, 2.0x1015cm-2 (measured Nequiv. = 1020at/cm3) and contacted

with AlSi1% following the same process sequence as the one described previously and given on Fig. 3.2.

The I-V characteritic of Fig. 3.6. (a) shows clearly that the contacts have a nonlinear behavior due to

residual oxide at the interface between the metal and the highly doped polySi. The extracted resistance,

RC, of a 36µm2 square contact is very high 250Ω, while the polySi resistivity is coherent with reported

measurements (5x10-3Ωcm) [7].
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Figure 3.5. Band diagrams explaining the conduction in the polySiNW: (a) with no applied bias, (b) at high VDS
and low VGS holes are tunneling from drain to source, (c) with increased VGS the electrons and holes current are
identical (flatband conditions), (d) and at high VDS and high VGS  the current is dominated by electrons tunneling
from the source to the drain. 

Fig. 3.6. (b) shows an I-V characteritic of a polySi wire before and after an oxide breakdown procedure

which demonstrates the presence of the oxide film. The oxide breakdown simply consisted in applying

a high voltage, typically 30V, between the two electrodes of the device after the first measurement. The

following I-V characteristic shows linear behavior and increased current. Finally, the presence of this

ultra-thin layer of oxide at the interface has been verified by high-resolution TEM and energy dispersive

X-ray (EDX) analysis.

Figure 3.6. I-V characteristics of thick (100nm) and large (10µm) phosphorous implanted polySi wires
highlighting the Schottky nature of the contacts: (a) I-V measurement with related total resistance, and (b) I-V
characteristic of a polySi wire before and after thin oxide breakdown.
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Finally, beside ambipolar conduction, another  remarkable characteristic of the gated polySiNW device

is its hysteresis effect appearing in the measurement as the gate voltage is swept up and back (see Fig.

3.4. (c)). This hysteresis is due to electrical field assisted charge trapping either in the polySi nanograins,

at the grain boundaries, or at the polySi/SiO2 interface, and can be controlled by the biasing conditions.

Figure 3.7. Measured IDS-VGS of a  polySiNW with gate voltage swept up from 0V and then back.

3.2.2. Low temperature characterization

Theoretical investigation

First, simulations of electrical conduction in large array of connected tunnel junctions (similar to the

intrinsic structure of a lithographically defined polySiNW), carried out using SIMON MC simulator [8]

are presented. The equivalent circuit of the gated polySiNW used for simulations is shown in Fig. 3.8.

The doped polysilicon grains are modeled as conductive islands connected to each other by tunnel

junctions, and sharing a common gate. For the simulations, the polysilicon grains are electrically

modeled as dots connected to their neighbors by four tunnel junction capacitances, CT, of 0.2aF

(corresponding to 10nm grains), and four tunnel junction resistances, RT, of 1MΩ for the same grain size.

A gate capacitance, CG, of 0.2aF is connected to each dot. These values are used only for first order

estimations and have been derived from geometrical assumptions based on [9].
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Figure 3.8. Electrical equivalent schematic of gated polySiNW, with a zoom on 4 islands to illustrate how the gate
bias is applied on each grain.

Fig. 3.9. shows the drain current versus gate voltage (IDS-VGS) characteristic of a 5x20 dot array structure

of 10 nm equivalent approximated grain size at different temperatures calculated by MC simulation

based on the equivalent circuit shown in Fig. 3.8. Since the interconnect capacitances at the drain, source

and gate terminals in a single-dot SET is much larger than its intrinsic device capacitances, the total

island capacitance with respect to the ground (which actually controls the CB voltage) is given by the

summation of tunnel junction capacitances and gate capacitances associated with it. In a multiple-dots

SET the total island capacitance of each island not only depends on the CT and CG associated with it but

also CT and CG attached to the other islands. Therefore analyzing the exact origin of the CB region in a

big array of interconnected islands is a very complex task. 

Figure 3.9. MC simulated CO characteristics of (5x20) array of 10 nm estimated equivalent grains (CG = CT =
0.2aF) at different temperatures: 10, 30, 50, 70 K (solid black line); 250 K (dotted gray line, secondary axis).

0

1

2

3

4

5

6

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7

Gate voltage, VGS (V)

D
ra

in
 c

ur
re

nt
, I

D
S
 (

nA
)

0

2

4

6

8

10

12

D
rain current, ID

S  (nA
)

VDS=200mV

250K

70K

50K

30K

10K



Device characterization 89
Nevertheless, as shown on Fig. 3.9., at low temperatures (up to 70K), each island behaves as single-dot

SET to offer effective CB that results extra valley in IDS-VGS characteristics. Note that in this case the

total island capacitance is approximately given by (4CT+CG). As the temperature increases the thermal

energy becomes higher than e2/((4CT+CG), and number of CB valleys decreases. At higher temperature

(250K), the whole system behaves as a single-dot SET whose total island capacitance becomes less than

(4CT+CG) due to the series and parallel combination of CT, and the number of valleys gets reduced.

A much realistic case corresponding to our gated polySiNW, where grain sizes are not unique and

uniform, is a random mixture of grain sizes. In order to simulate such a device, grain sizes of 5, 10, and

20nm have been taken. The calculated impedances for such grains are shown on Table 3.1. The grains

have been arranged randomly in an array with final dimensions equivalent to the previously presented

5x20 array of 10nm grains. Fig. 3.10. compares simulated IDS-VGS characteristic of two types of

equivalent polySiNW at 10K and 50K: (i) a 5x20 array of 10nm grains (gray dotted lines), and (ii) a 5x20

array of randomly mixed 5, 10, and 20nm grains (black solid lines). This characteristic shows that when

using the same biasing conditions and temperature, the periodicity measured for polySiNWs with grains

of the same size disappears in a wire with variable grain sizes.

Table 3.1. Estimated CG,, CT, and RT for 5, 10, 20 nm equivalent grain sizes.

Fig. 3.11. (a) shows simulation of the 5x20 array of randomly mixed grains at various temperatures. It

demonstrates that for such structure with various grain sizes, the number of oscillations is temperature

dependent and is not maximum at the lowest (10K) but at intermediate range of temperatures (50, 70K).

As the temperature is increased furthermore (250K) oscillations are becoming much more clearly

periodic. This type of stochastic CO has already been observed as being specific to asymmetric double

[10], and multiple-dot systems [11]. For CO to occur, in a multiple dot system at low temperature, the

electrochemical potential of each dot must be equivalent, within the limits forced by thermal smearing:

(3.1) 

where VG is the gate voltage, nm is the number of electrons on the mth dot,  ∆m=e2/Cgm, and kBT is the

thermal energy. Thus, with increasing temperature, the number of VG values where the condition is

fulfilled is also increasing. It is however interesting to note that increasing the temperature up to 250K

(gray dotted line on Fig. 3.11. (a)) could allow a recovery of oscillations periodicity similar to the one

observed in polySiNW with a single dominant dot size.

eVG nm
1
2
---+⎝ ⎠

⎛ ⎞∆m– kBT≤
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Figure 3.10. MC simulated CO characteristics of (5x20) array of (i) 10 nm (gray dotted line), and (ii) randomly
mixed 5, 10, 20 nm (solid black line) estimated equivalent grains. See Table 3.1. for impedances values.

Figure 3.11. MC simulated CO characteristics of (5x20) array of randomly mixed 5, 10, 20nm estimated
equivalent grains at different: (a) temperatures, 10, 30, 50, 70K (solid black line), and 250K (dotted gray line,
secondary axis), and (b) drain voltages, 50, 100, 150, 200 mV.

Wang et al [12], have demonstrated that stochastic COs in asymmetric structures are not only

temperature dependent but also drain voltage dependent. For an asymmetric double dot structure, the

number of stochastic COs are increasing with an increase of the drain voltage due to more effective non

resonant tunneling. This is confirmed on Fig. 3.11. (b) where an IDS-VGS characteristic is represented at
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50K for four different drain voltages. The size and number of Coulomb peaks are maximum for 200mV

whereas at 50mV only four different peaks are visible. For drain voltages in-between intermediate

behavior is observed.

The results presented in this sub-chapter have shown that MC simulations (using SIMON software)

appear to be an adequate tool for the prediction of electrical behavior of multiple-dot systems connected

in arrays of tunnel junctions, like polysilicon. However, grain sizes, gate and tunnel capacitances, tunnel

resistances and dimensions have to be very well known or estimated, in order to have not only qualitative

but also accurate quantitative predictions.

Experimental investigation

Fig. 3.12. (a) presents measured IDS-VGS characteristic of a gated polySiNW at different temperatures

ranging from 300 to 50K, showing that the V-shape of the characteristics is fully preserved while the

current level is decreased. Fig. 3.12. (a) also shows that some oscillations become visible for

temperatures lower than 200K, especially for high values of VGS. 

Fig. 3.12. (b) shows the conductance, G, versus the inverse of temperature extracted from measurements

at constant VDS and low temperatures, from 4.1 to 250K. For a fixed VGS two different thermally

activated conduction mechanisms are shown. Above 150K, conduction is dominated by thermally

activated hopping over the barrier at the polySi grain boundaries. The activation energy Ea1 related to

this mode of conduction is calculated by using the Arrehnius law [11] between conductance and

activation energy, Ea :

(3.2) 

where k is the Boltzmann constant and T the temperature. Below 80K, the thermal carrier energy is too

low to turn on the hopping mechanism. At this range of temperature, the conduction is only controlled

by a thermally assisted tunneling process through the barrier with a second activation energy Ea2 of

~1.3meV. It is worth noting that the extraction of the activation energy has been carried out at VGS=4.5V,

in the electron conduction regime, where the SB to electrons at the contacts is reduced and its effect on

extraction less important.

G
dIDS

dVGS
------------- Ea

kT
-------–⎝ ⎠

⎛ ⎞exp∝=
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Figure 3.12. (a) Measured IDS-VGS of a gated polySiNW at various temperatures, and (b) conductance, G=dIDS/
dVGS, of a gated polySiNW vs 1000/T showing two conduction mechanisms with associated activation energies.

The IDS-VDS characteristics at constant gate voltage, down to a temperature of 4.1K is depicted on Fig.

3.13. (a). The non-ohmic plateau is probably due to the superposition of two phenomenon: (i) the

Schottky contacts, and (ii) CB in the polySiNW. As the temperature is decreased from 75 to 4.1K the

width of the plateau is increasing due a more effective CB in the wire.

Fig. 3.13. (b) represents an IDS-VGS characteristic at 25 and 4.1K. The solid black line shows the

tendency curve after a noise reduction operation consisting of averaging each measured points with the

two previous and two next measured points. It should also be mentioned that this characteristic has been

assessed with a measurement step of 1mV. The two curves show clear oscillations, however, no

systematic period could be extracted from those points. In fact, the choice of the adequate temperature

where eq. 3.1 is fully satisfied for a large number of VGS is difficult due to the dispersion of grain sizes

between 5 and 20nm, and the relatively wide dimensions of the wires (compared to the grains). 

Figure 3.13. Measured gated polySiNW (a) IDS-VDS  showing a temperature dependent Coulomb Gap, and (b) IDS-
VGS at 25 and 4.1K showing stochastic COs (measurement step 1 mV).
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Nevertheless, Fig. 3.13. (b) confirms that the number and size of oscillations increases with the

temperature as predicted by the simulations presented in the previous section. The choice of the adequate

oscillating conditions are even more difficult because adequate drain voltage conditions are needed.

As predicted by MC simulation, the number of stochastic COs should increase with an increase of the

drain voltage. This is verified on Fig. 3.14. where IDS-VGS are represented at 4.1K for four different drain

voltages. The plot has been separated in two different parts for clarity but it is obvious that no CO can

be seen at VDS = 4.5V, whereas more of them are evident at VDS = 6 V. The two drain voltages in-between

showing intermediate behavior.

Figure 3.14. Measured IDS-VGS of a gated polySiNW at 4.1K for different drain voltages (measurement step 1 mV).

Considering Figures 9 to 11, it appears that CB is effective in the gated polySiNW with randomly

distributed grains at low but intermediate temperature range. Despite reproducible level of currents and

stochastic COs behavior observed for many devices, the high irregularity of resulting oscillations make

their exploitation difficult for nanoelectronic integrated circuits applications.
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3.3. Summary

At the beginning of this chapter we have reported the design limitations for building polySiNW devices

at the EPFL CMI. Main limitations are dictated by the optical lithography tool. The fabrication process

(38 steps, 7 masks) has then been described and validated. This process includes the original

technological development that are: i) the ultra-thin nanograin polysilicon film LPCVD deposition; and

ii) the hot ion implantation at 500°C.

Afterwards, the electrical characterization of the fabricated polySiNW devices at room temperature and

above has been shown. The ambipolar conduction mechanism due to the verified Schottky nature of the

contacts has been detailled and appeared to be effective up to at least 125°C. Finally, we have highlighted

the occurence of electrical field assisted charge trapping either in the polySi nanograins, at the nanograin

boundaries, or at the polySi/SiO2 interface.

Investigations of electrical characteristics have then been reported from 4k up to 400K. CB has been

shown at low temperature, and more effective COs have been observed at higher drain voltages. MC

simulations performed on an array of conductive islands connected to each other by tunnel junctions

allow the validation of the experimental observations. However, irregular oscillations in polySiNW

make their exploitation for SET applications impossible. 

Original contributions

We have experimentally confirmed gate controlled charge trapping hysteresis in the polySiNW Id-Vg

over a large range of temperatures (up to 120°C). This hysteresis can be exploited for memory

applications. We have also, for the first time, modelled nanograin polySi by an array of conductive

islands connected to each other by tunnel junctions. Low temperature MC simulations performed on that

type of modelled structure have permitted to validate the experimental observations, and a first order

theory has been proposed. MC simulation appears to be an adequate tool for modelling of conduction

mechanisms in multi-island SE devices.
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Chapter 4: Polysilicon
nanowire applications

In this chapter, a detailled description of possible applications of polySiNW devices is given. Those

applications include low current sensing, ultra-low power memory and original non-conventional logic

family. The proposed demonstrators are not shown in a large scale integration but rather as functionality

of individual simple cells. However, many of the new functionalities are demonstrated at room

temperature, which is promising for future more complex applications. Compared to other classical

approaches using standard CMOS technology, the polySiNWs benefit from highly resistive channel for

low current measurements, controled charge trapping for memory and logic, and ambipolar conduction

which leads to a negative slope in the transfer characteristic. All the applications presented are

characterized by an ultra-low power consumption reduced to few pWs. 

4.1. Low current detection

The aim of this sub-chapter is to present a detailed investigation of electrical characteristics and unique

features that can be offered by gated polySiNWs in the field of low current sensing. The polySiNW

devices used are identical as the one described in the previous chapter, with a 20nm gate oxide layer,

heavily phosphorous doped buried gate and S/D regions (measured Nequiv. = 1.00x1020at/cm3). The

ultra-thin polySi film has been phosphorous implanted at 500°C with an energy of 18keV and a dose of

2.0x1015cm-2 and then annealed at 700°C for 10min. The simulated concentration of active phosphorous

dopants in the film is approximately 5.00x1018at/cm3 (maximal possible concentration value).
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4.1.1. Operation at constant current

As shown in the previous chapter (3.2.1.“Room temperature electrical characterization”) the gated

polySiNW devices have an ambipolar I-V characteristic as the one schematically illustrated on Fig. 4.1.

(b). Therefore, we suggest here an original bias scheme that exploits the distinct drain voltage current

dependence in the two conduction regimes. The operation consists of injecting a constant drain current

in the polySiNW (see Fig. 4.1. (a)) while the gate voltage is varied.  The drain voltage, VDS, is first slowly

increasing versus VGS at constant drain current (holes conduction regime, see points 1,2,3 of Fig. 4.1. (b)

and (c)). The slight positive slope is then followed by an abrupt negative slope in the electron conduction,

which reflects a severe drop of VDS when VGS increases at constant current (see points 4 of Fig. 4.1. (b)

and (c)). 

Figure 4.1. Schematics of: (a) the polySiNW and proposed bias scheme, with (b) the I-V typical characteristics
showing V-shape, and (c) the resulting transfer characteristic at constant current.

Figure 4.2. Measured VDS-VGS transfer characteristics of polySiNW at four different constant currents.
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Moreover, when the gate voltage is swept back to 0V after being increased up to few volts, the hysteresis

due to charge trapping observed in the IDS-VGS is reproduced in the transfer characteristic. As depicted

on Fig. 4.2. both the position of the abrupt negative slope and the hysteresis can be easily tuned by the

level of injected current in the polySiNW. This usual behavior is then directly exploitable for analog,

memory or logic applications.

4.1.2. Current sensing

Conventional techniques developped up to date to measure low current consist in either resistors

designed and fabricated in a CMOS technology (resistor shunt voltmeter or feedback type ammeter), or

capacitor associated with voltage ramp generator1. All those esthablished methods are exhibiting high

precision results but have limitations like complex circuit design, high value resistance needed  (>1Go),

low speed measurement or noise sensitivity. Using polySiNWs as current sensor and reference could be

an attractive alternative in term of surface, consumption and circuit complexity.

Fig. 4.3. (a) shows a transfer characteristic of a polySiNW with an injected current varying from 5pA to

20pA with a step as low as 1pA. Two different techniques have been evaluated to measure a low current

injected in a wire (see Fig. 4.3. (a)): (1) the first method consists in measuring the drain voltage at which

the transfer characteristic abruptly drops, while (2) the second consists in simply measuring the drain

voltage at a constant gate voltage in the holes tunneling region (2.5V in the presented case). A resolution

better than 1pA can be obtained in the proposed current measurement (1pA current variation being

mirrored by tens of mV variation). 

Figure 4.3. (a) Measured transfer characteristics of a nanowire operated at constant injected current with a
measurement step of 1pA, and (b) extracted drain voltage versus injected drain current showing: a logarithmic law
of the current-to-drain voltage conversion at which (1) the transfer characteristic abruptly drops, and (2) at
constant gate voltage (2.5V in the precise case).

1. G.-D. Willenberg et al,  IEEE Trans. on Instr. and Meas., vol. 52 (2), pp. 436-439, 2003.
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The logarithmic fit of the current-to-drain-voltage conversion for the two proposed measurement

techniques are reported on Fig. 4.3. (b). The root mean square fitting parameters, R2, testify the good

quality of the methods, an ideal model having a R2 value equal to one. The second mesurement technique

presents a better fit because the extracted measurements points are given at the exact VGS value

mentionned, while for the first method the value at which the drain voltage abruptly drops can be slightly

different from the one measured.

Fig. 4.4. (a) shows that the transfer characteristic behavior is preserved from 4K up to 100°C and depicts

the influence of the temperature on VDS-VGS transfer characteristics. An increase of the temperature from

30°C to 100°C at constant drain current (20pA) causes a decrease of the gate and drain voltages of the

transfer characteristic which is explained by the increased conduction in polysilicon when raising the

temperature. The temperature shift can then be controlled and compensated by a proper recalibration of

the injected current, as suggested on Fig. 4.4. (b). The drain voltage measured at a constant gate voltage

of 2V (square dots), and the peak value of the drain voltage at which the transfer characteristic abruptly

drops (spherical dots), are extracted from Fig. 4.4. (a) and plotted versus temperature. Using a linear

dependence of the drain voltage versus temperature gives excellent R2 values and allows proper

calibration of the devices for standard operation temperature range.

Figure 4.4. (a) Experimental effect of temperature on the VDS-VGS characteristics of a 0.32µm x 2µm polySiNW,
and (b) associated VDS versus temperature with excellent linear fit for device calibration.
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4.2. A new ultra-low power logic family

4.2.1. Technological basis

A new logic family based on ultra-thin nanograin polySiNW is proposed, validated and studied in this

sub-chapter. This logic family shows ultra low power dissipation in the order of hundreds of pWs, which

is outperforming CMOS technology by orders of magnitude. The polySiNW devices evaluated here have

a 40nm gate oxide layer, together with heavily phosphorous doped buried gate and source/drain regions

(measured Nequiv. = 1.00x1020at/cm3). The ultra-thin polySi film has been phosphorous implanted at

500°C, 21keV and 2.0x1015cm-2 and then annealed at 700°C for 10min. The simulated concentration of

active phosphorous dopants in the film is approximately 3.50x1019at/cm3 (maximal possible value).

Typical widths and lengths of the gated polySiNW are W = 0.3 to 0.5µm and L = 1.5 to 2µm.

Fig. 4.5. (a) shows the IDS-VGS characteristics of the fabricated thin film polySiNW. One can see the V-

shape explained by ambipolar conduction seen before is reproduced despite the use of different oxide

thickness and doping concentration. The second negative slope region of the IDS-VGS characteristic

might be attributed to band-to-band tunneling, but only further experiments with different doping

concentration and oxide thicknesses could validate this hypothesis. Fig. 4.5. (b) represents the operation

of the polySiNW at constant injected current of the order of tens to hundreds of pAs. The VDS-VGS output

characteristic has two negative slopes reproduced from the two positive slopes of the IDS-VGS curve.

When the constant current biased polySiNW gate voltage is swept up and back within a certain range of

voltages (VGS  limited to the first negative and positive slope) a hysteresis appears in the VDS-VGS

characteristic. The positions of the negative slope and hysteresis can be easily tuned with the injected

current in order to have controlled adjacent hysteresis as illustrated on Fig. 4.6.

Figure 4.5. (a) Measured IDS-VGS of a  polySiNW at various VDS, with (b) associated transfer characteristic at
various constant injected current.
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Figure 4.6. Measured adjacent transfer characteristics of the same polySiNW at two different injected currents. 

4.2.2. Non-conventional logic scheme

Large-scale digital systems are based on a layered arrangement of combinatorial logic circuits to be

placed in between register stages. The arrangement of three nanowire devices which is depicted in Fig.

4.7. composes a versatile digital gate taking benefit of the hysteresis behavior to synthesize the basic

range of digital functions (NAND, NOR and Flip-Flop) required to construct complex digital systems.

The proposed gate is composed of a nanowire N1, which is operated in turn as an input precharge device

and subsequently as the first gate input variable A. The nanodevice N2 is operated as two-level current

source. The switching of N2 is dependent on the state of the second gate input variable B. The nanowire

N3 is used as a constant current source biasing the system to its operating point.

Figure 4.7. Versatile digital function generator circuit, and memory cell configuration.
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The proposed circuit operates with a two non-overlapping clock phase scheme consisting of a precharge

followed by a logic evaluation phase. The circuit can be used in several working modes to produce

various Boolean functions. The synthesis of a logic two-input NAND is depicted in Fig. 4.8., where A

and B stand for the input variables, and U the output variable. The possible binary states are Logic 0 and

Logic 1. An output noise margin has been considered, and is represented as a grey portion on the output

axis VDS. The ideal transfer function has been plotted over measurement results in grey.

Figure 4.8. Proposed boolean NAND transfer function. Operation principle corresponds to the black curves, while
measurements are represented by grey curves (extracted from Fig. 4.6.).

The generation of a result is a dynamic process starting with a low-precharge of the circuit input to a

predefined voltage level. Input variable B dictates the limits of the hysteresis loop in the input-output

space, and is applied during precharge. The arrowheads show alternate paths on the hysteresis curves

that are selected with respect to the actual state of B. Input variable A is applied during the evaluation

phase as a biphasic voltage increase of a calibrated amplitude depending on the input variable state. The

proposed versatile gate circuit can be operated in an alternate symmetrical operation mode where high-

precharge is considered in replacement of the described low-precharge phase. The circuit operation

sequence is similar to the previous case and allows synthesizing various NOR operators, as depicted in

Fig. 4.9.

Figure 4.9. Proposed boolean NOR transfer function. Operation principle corresponds to the black curves, while
measurements are represented by grey curves (extracted from Fig. 4.6.).
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Similarly, a flip-flop cell based on the hysteresis property of the nanowire is shown in Fig. 8. Biased with

a steady current the polySiNW can be used to store a binary value, this value is kept indefinitely while

the gate voltage is constant at "store" level. When the gate voltage is moved to set or reset value, the

stored value is changed. It should be mentionned that practical use of the proposed polySiNW logic

involves CMOS co-integration for interfacing that will be discussed in the next chapter.

Figure 4.10. Proposed transfer function of the flip-flop cell. Operation principle corresponds to the black curves,
while measurements are represented by grey curves (extracted from Fig. 4.6.).

Fig. 4.11. represents measured response time of the proposed NAND and NOR transfer functions

respectively. An output noise margin has been considered, and is represented as a grey portion on the

output voltage axis. Effective operation of the logic cells with the given noise margin is possible.

However, due to the low current involved (hundreds of pAs) and the large capacitance due to the

technology used (large dimensions) the switching between logic states is in the order of seconds.

Adequate circuit design and scaled devices using state-of-the-art lithography can be a solution for this

precise issue.

Figure 4.11. Relative response time of (a) NAND, and (b) NOR transfer functions.
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4.3. Alternative memory operation

Using the same device as the one for low current measurement, a DRAM memory cell using two adjacent

transfer characteristic hysteresis (see Fig. 4.2.) is proposed here. Two input variables are used to define

the proposed polySiNW memory cell: the VGS voltage is chosen as the first input variable (x1), while the

bias current IDS is chosen as the second input variable (x2). Two adjacent hysteresis loops are used for

x2=0 and x2=1 (as shown in Fig. 4.12.), by the proper choice of the bias current while the output is the

VDS voltage.   

Figure 4.12. Proposed 1T polySiNW DRAM operation working with two inputs (VGS, IDS) and one output (VDS).

The unique behavior of the polySiNW memory cell is that the output preserves its previous state when

both input variables are identical, i.e. either (x1=0 and x2=0) or (x1=1 and x2=1). If the inputs are (x1=0

and x2=1), the output is forced to logic 1 (set condition). If the inputs are (x1=1 and x2=0), the output is

forced to logic 0 (reset condition). This operation is summarized in the Table 4.1. In contrast with other

DRAM memory cell concepts based on hysteresis behavior, this cell is capable of any transition between

"store", "set" and "reset" states in a single step. This unique feature is related to the tunable position of

the hysteresis loop with respect to VGS, which can be shifted by the second input variable, IDS. The only

transition that is not permitted is between the two "store" states, i.e. the cell cannot be switched from

(x1=0, x2=0) to (x1=1, x2=1) in one step. 

Table 4.1. Summary of DRAM cell operation.
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Fig. 4.13. depicts the experimental output transients towards logic levels 1 and 0, when the initial bias

point is varied on the hysteresis characteristics (shown inset Fig. 4.13.). While a retention time larger

that 100 seconds is experimentally demonstrated for the logic states outside the hysteresis loop, we find

that inside this loop, the transient durations towards stable states (1 and 0) are larger than 1-10 seconds,

which makes the device suitable for DRAM. The proposed memory cell has the advantage of using a

single scalable gated-polySiNW device (the equivalent of 1T-cell) being a capacitor-less memory cell

with power consumption of the order of tens of pWs.

Figure 4.13. Transients of the programmed polySiNW DRAM memory states.

4.4. Summary

A series of possible applications of the gated polySiNW has been proposed in this chapter. We have

shown that the polySiNW can be used as a current sensing device for very low current measurements

with a resolution better than 1pA. We have also depicted a temperature calibration technique that

demonstrates possible use of the current sensing device up to at least 100°C. 

The second application given is an original ultra-low power logic family based on the hysteresis effect

and ambipolar conduction of the gated polySiNW. NAND, NOR and flip-flop memory cell using a novel

dynamic operation scheme have been detailled, and relative measured gate response time has been

shown. 

Finally we have proposed an alternative ultra-low power memory operation that uses two adjacent

hysteresis loops. This pW 1T memory cell using a single scalable polySiNW has the advantage that any

transition between "store", "set" and "reset" states can be done within a single step.
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Original contributions

A new constant current bias scheme that exploits the V-shape (ambipolar) characteristics of the

fabricated polySiNW has been proposed and used for various applications. Major features of this bias

scheme are: (i) the very low constant current used to bias the polySiNW, (ii) the negative slope of the

transfer characteritics due to the ambipolar conduction of the gated polySiNW, and (iii) the controlled

hysteresis effect due to charge trapping in the polySi nanograins and/or at the polySi/SiO2 interface.

Combining all these properties, we have been able to suggest novel device operation for logic, memory

and current sensing together with ultra-low power consumption (few pWs). We think that this technique

is generally applicable for any other devices that present ambipolar (V-shape) characteristics, such as

CNTs or Schottky contact devices.
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Chapter 5: CMOS-"nano"
hybrid devices, circuits and

systems

5.1. Motivation

In the previous chapter, we have presented novel original features of polySiNW devices: (i) the high

resisitivity of the ultra-thin polySi channel serves for very low current sensing with a precision of few

pAs, (ii) the electrostatically controlled charge trapping in the polySiNW combined with (iii) the

ambipolar conduction due to the schottky nature of the contacts allows the building of ultra-low power

memory, and non-conventional logic family. In a more general manner, "after Moore" emerging

nanoelectronics like for example SETs, molecular electronics, CNTs, and/or spintronics have attracted

high interest because of their novel and unique properties. Their main advantages (see Table 5.1.) are the

nanoscale dimensions, the ultra-low power dissipation, and the novel functionalities (e.g. COs in SET

devices). Nevertheless, the price to pay for such properties is a very low current drive (slow devices),

low yield, poor reproducibility, and sometimes a lack of room temperature operation.

Table 5.1. summarizes the advantages and drawbacks of the emerging research devices versus ultimate

CMOS. Unlike "after Moore" research devices, CMOS benefits from high gain, high current drive, and

high speed, combined with good yield and very mature technology. On the counterpart, CMOS suffers

from scaling limitations, SCE, DIBL and increased power density. As a matter of fact, CMOS and

emerging nanoelectronics seems to be rather complementary. For example SET can bring new

functionality like COs and very low power consumption, while CMOS compensates SETs intrinsic

drawbacks with high-speed driving and voltage gain. Moreover, even if a stable and reliable "after

Moore" technology emerges in the near future replacement or competition with CMOS would be very
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difficult. CMOS-NANO hybridization (as it is illustrated on Fig. 5.1.) can therefore bring out new

functionalities that are unmirrored in pure CMOS, and allow a smoother transisition between the various

technologies. 

Fig. 5.1. illustrates the hybrid CMOS-"nano" concept. On the left hand side of the image stands the

"more Moore" research orientation with multiple gate MOSFETS, high-K dielectrics and strained Si

devices, source/drain engineered architectures and UTB FD SOI transistors. The emerging

nanoelectronic devices are then represented in the right part of the diagram. It includes, RTDs, CNTs,

molecular electronics, nanowires, SETs, NEMs, ferromagnetic logic and spintronics. 

Table 5.1. Comparison between advantages and limitations of emerging devices and CMOS.

Figure 5.1. Schematic of the CMOS-"nano" hybridization concept.
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In between those two parts of the diagram, there is a lot of space for combining devices in hybrid type

ICs which can benefit from advantages of both research orientations and thus compensate potential

individual weaknesses and create novel functionalities. The concept of hybridization has already

captivated much consideration both in industry and academia. Fig. 5.1. gives three major examples of

hybrid ICs concept, or fabricated devices that will be described in more detail below. These are the

CMOL concept, a fabricated SET-CMOS circuit working at room temperature, and the integrated CNTs

vias.

CMOL concept

The term CMOL has been dubbed by K. K. Likharev’s group from Stony Brook University [1], and

stands for a combination of CMOS and MOLecular circuits. As illustrated on Fig. 5.2. that hybrid

circuits is a triple combination of: (i) a lower level of advanced CMOS structures, with (ii) a stack of

parallel and perpendicular gold nanowires obtained with nanoimprint lithography, and (iii) finally a level

of self-assembled functional molecules. In this way, CMOL architectures can benefit from the high

flexibilty and fabrication yield of CMOS, combined with molecular nanometer-scale footprint, and low

fabrication costs, plus high density of nano-imprinted gold nanowires crossbar arrays. 

K. K. Likharev and D. B. Strukov claim that: "the density of active devices in CMOL circuits may be as

high as 1012cm-2 and that they may provide an unparalleled information processing performance, up to

1020 operations per cm2 per second, at manageable power consumption" [3]. However, CMOL circuit

architectures need to be highly defect tolerant and the technology development required for

implemenation of such circuits is still at the preliminary phase for both molecular electronics and nano-

imprint lithography. 

Figure 5.2. Illustration of the CMOL concept from [2]. The hybrid CMOS/molecular circuit contains a molecule
that may function as a latching switch controlled by two input signals.
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Nevertheless, CMOL seems to be an excellent candidate for future (mid-term) hybrid ICs, as very

encouraging theoretical results have been obtained for the application of CMOL circuits in terabit-scale

memories [4], field-programmable gate array (FPGA)-like logic [5], and neuromorphic networks [3].

SET-CMOS

As described in the first chapter (1.4.3.“Single Electron Transistors”), SETs have a strong potential

compared to CMOS because of their very low power consumption and novel functionality

(programmability) due to specific COs. However, SET devices have a low current drivability (speed)

and a high output impedance, hence ICs based only on SETs are not practical. Therefore, co-integration

of room temperature operated SETs with CMOS (high driving capability, high impedance) is mandatory

for future ULSI. Researcher from Toshiba Corporation have demonstrated first on-chip SET/CMOS

hybrid logic circuit working at room temperature [6]-[7]. The fabricated circuit include SETs which are

used in programmable and low-power circuit blocks, while CMOSFETs are used in high-speed and I/O

circuit blocks.

Fig. 5.3. (a) and (b) represent a SEM picture and a schematic respectively of the fabricated hybrid SET/

CMOS circuit. The SETs showing NVM function can have both the conventional nMOS-like and

complementary pMOS-like functionality (solid and dashed lines on the plot in the middle of Fig. 5.3.

(c)). Therefore, the combination of COs with NVM function offers high programmability for LSIs.

Finally, it should be noted that the small output voltage of the SET-pMOS circuit is amplified by the

CMOS inverter (see Fig. 5.3. (c), transition from the plot in the middle to the lowest plot).

Figure 5.3. (a) SEM picture of the fabricated circuit with SET device, pMOS load, and a CMOS inverter. (b)
Related circuit schematic, and (c) experimental demonstration of programmable logic [6]. 

(c)
(a)

(b)
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CNT as alternative for advanced on-chip interconnects

The third example given here, is not really an illustration of the hybridization concept in the sense

previously defined. Indeed, the CNT interconnects are more passive elements (material) than active

devices that can bring novel functionalities. Neverheless, it is interesting to highlight the use of CNTs

for interconnects as the idea is probably born from the huge research going on in that field in a hope to

replace CMOS by CNT transistor. Moreover, people from Infineon Technologies AG think that 3D

integration will allow to build full functional circuits based on nanotubes, with CNT lines, vias and

transistors and without any Si element [8]. In that sense, the use of nanotubes for interconnects in CMOS

circuits represents a smoother transition from one world to the other, and goes in the sense of the

hybridization concept.

The high interest for CNT interconnects comes from the fact that, due to the ballistic transport properties

in such materials, current densities in nanotubes can be extremely high (1010A/cm2), and even exceed

those of copper by a factor 100 to 1000 [9]. In terms of resistances, CNTs are favorable in high aspect

ratio structures, like vias, where the highest current densities are expected [10]. Fig. 5.4. (a) illustrates

schematically the process for building unique MWCNT via. A metal catalyst is sputtered on top of the

metal layer, and in a lithographically defined nanometer-scale hole. Depending on the size of the hole,

single (see Fig. 5.4. (a)) or multiple MWCNTs (see Fig. 5.4. (b)) can be grown using a CVD process.

Finally, interconnects can be planarized using chemical mechanical polishing (CMP) [12], and the

following metal layer can be deposited. With this process, people from Infineon measured current

densities of 5x108A/cm2 in a single MWCNT via, which already exceeds the achievable values for

metals. However, a resistance of 7.8kΩ was obtained, and that need to be lowered by two orders of

magnitude for the 20nm node [10]. This high resistance is due to the contacts between the MWCNT and

the metal layers and can be improved using proper contact processes [10]. Therefore, CNTs show great

potential for future (20nm node) CMOS-CNT vias hybrid ICs.

Figure 5.4. (a) Schematic representation of a catalyst mediated CVD-growth of a MWCNT in a nanohole, with
SEM illustration of a single MWCNT grown out of such nanohole [9]. (b) SEM picture of a selective growth of
MWCNTs in a via, without top contact [11].

(a) (b)



114 CMOS-"nano" hybrid devices, circuits and systems
5.2. Hybrid NMOS-polySiNW

Based on the hybridization concept a co-integration process of nMOSFETs with polySiNW is described

and characterized here. MOS transistors can then be used as interfaces to the outside world or in other

word as output for surrounding CMOS circuits and systems, or as an active element in a specific circuit

showing improved or novel performances. MOS interfacing will be illustrated with the current sensing

and non-conventional logic family, while improved hybrid circuits will be demonstrated through a NDR

circuit cell, and single latch memory. 

5.2.1. Co-fabrication process

The process flow for the co-fabrication of nMOS and polySiNW (see Fig. 5.5.) is very similar to the

process used for polySiNW (3.1.“Fabrication”). The grown thermal oxide serves as a gate insulator for

both MOSFETs and polySiNW (step 1 Fig. 5.5.). The 100nm polySi deposited at 620°C and dry etched

with fluorine based chemistry acts as the polySiNW pads and as the MOSFET gate (step 2 Fig. 5.5.). The

self-aligned MOS S/D and gate have been defined by a phosphorous ion implantation together with the

n+ polySiNW buried gate (step 3 Fig. 5.5.). An annealing at 950°C has then been performed to activate

the dopants. The deposition, implantation, annealing and etching of the polySiNW device has no

influence on the MOSFET process (steps 4, 5, 6 of Fig. 5.5.). 

Figure 5.5. Simplified process flow for n-type gated polySiNW co-fabrication with nMOSFET.
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The final metallization consists of a 500nm passive LTO oxide deposited at 425°C, followed by the two

steps contact opening and 800nm AlSi 1% sputtering at room temperature. The structuration of the layer

has been achieved with the STS plasma and finalized by a wet chemical ANP etch at 35°C (step 7 Fig.

5.5.). The metallization process allows to contact the S/D and gate of both the polySiNW and the

MOSFET. Finally, the fabricated hybrid devices/circuits are annealed at 425°C during 10min for metal

densification and contacts. A SEM picture of a fabricated hybrid circuit is given on Fig. 5.6.

Figure 5.6. Fabricated hybrid polySiNW-nMOSFET SEM picture.

MOSFET electrical characteristics

Fig. 5.7. shows the electrical characteristics of a fabricated 4x20µm n-type MOSFET. The S/D junctions

and the polysilicon gate have been phosphorous ion implanted (50keV, 2.0x1015cm-2) and annealed at

950°C. Fig. 5.7. (a) and (b) gives the room temperature IDS-VDS and IDS-VGS characteristics respectively.

Good functionality of the MOSFET device is demonstrated through the I-V plots and with the following

values: a threshold voltage, Vt, of 0.37V, a SS of approximately 80mV/decade, a Ion of 5µA/µm, a Ioff

smaller than 10-12A, and an  Ion/Ioff ratio of more than seven decades. Moreover, Fig. 5.7. (c) shows that

good functionality is preserved, even if the working temperature of the MOSFET device is increased up

to 150°C. Finally, low temperature characterization are presented on Fig. 5.7. (d), where IDS-VGS

characteristics are represented for temperature ranging from 300K down to 4.1K. It is interesting to note

that the SS is increasing, when decreasing the temperature, going from 80mV/decade at 300K down to

8mV/decade at 4.1K.

It should be mentioned, that the polySiNW characteristics of devices fabricated through the hybrid co-

fabrication process are not detailled here, but an exhaustive characterization has been reported in

3.2.1.“Room temperature electrical characterization”. The co-integration of polySiNW and nMOSFET

has no effect on the polySiNW electrical characteritics. This is essentially due to the fact that the process

has been designed from the beginning as hybrid, with technological steps shared between MOS transistor

and NW fabrication (and not with the polySiNW as a pre- or post-CMOS fabrication option).



116 CMOS-"nano" hybrid devices, circuits and systems
Figure 5.7. MOSFET I-V characteristics: (a) IDS-VDS at various gate voltages, (b) IDS-VGS (lin and log scale) at
various drain voltages, (c)IDS-VDS at various increasing temperatures (up to 150°C), and (d) IDS-VGS (log scale)
at various decreasing temperatures (down to 4.1K).

5.2.2. Hybrids for low current sensing

Since low current operation will limit speed performances, a co-integrated MOS stage would be suitable

for buffering output signal. This stage will be necessary only for the high current signals for other

external circuits or systems. The proposed co-fabricated circuit is described on Fig. 5.10. (a). The drain

of the polySiNW is connected to the gate of the MOS and thus when biasing the transistor, the transfer

characteristic of the polySiNW is reproduced and amplified in the µA range as shown on Fig. 5.8. (a).

As the MOSFET is biased under strong inversion (linear dependence of the current versus the applied

gate voltage) the polySiNW characteristic is simply tranfered to the MOSFET  and amplified linearly.

Therefore, the log dependence of the polySiNW drain voltage versus the polySiNW drain current (Fig.

4.3. (b)) is conserved. Thus the drain current of the MOS transistor is a log function of the drain current

of the polySiNW as depicted in Fig. 5.8. (b). It is worth noting that the less than 1pA resolution has not

been lost with the transfer of the polySiNW drain voltage to the MOSFET gate terminal.
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Figure 5.8.  (a) Measured IDSMOS versus VGSNW, with a constant current biased in the polySiNW, and (b)
extracted values at peak and at constant VGSNW showing a log law of the current-to-drain voltage conversion.

A key point of this hybrid circuit is the temperature drift that can be compensated by a proper circuit

calibration. Indeed, with an increasing temperature, the level of current is increasing in the polySiNW

whereas it decreases in the MOS transistor. However, those two effects do not compensate each other

and due to the small range of temperature involved in ICs (from -20°C to 150°C), a linear fit can be used

for the temperature calibration of the circuit (see Fig. 5.9.). 

Figure 5.9. (a) Measured IDSMOS versus VGSNW, with the temperature as a parameter, and (b) extracted values
at peak and at constant VGSNW showing a linear behavior of the current-to-temperature conversion.

0

50

100

150

200

250

300

350

2 2.5 3 3.5 4 4.5

PolySiNW gate voltage, VGSNW (V)

M
O

S
F

E
T

 c
ur

re
nt

, I
D

S
M

O
S
 (
µ

A
)

IDSNW = 5pA
step = 1pA

IDSNW = 20pA

WNW = 0.4um

LNW = 2um

WMOS = 20um

LMOS = 4um

(a) (b)

Log fit

R2 = 0.989

Log fit

R2 = 0.9841

200

225

250

275

300

325

350

0 2 4 6 8 10 12 14 16 18 20 22 24

PolySiNW drain current, IDSNW (pA)

M
O

S
F

E
T

 d
ra

in
 c

ur
re

nt
, I

D
S

M
O

S
 (
µ

A
)

IDSMOS @ peak

IDSMOS@ VGSNW=2.5V

(1)

(2)

(a) (b)

0

50

100

150

200

250

300

350

2.5 2.75 3 3.25 3.5 3.75 4

PolySiNW gate voltage, VGSNW (V)

M
O

S
F

E
T

 d
ra

in
 c

ur
re

nt
, I

D
S

M
O

S
 (
µ

A
)

T = 80°C

T = 30°C
step = 10°C

IDSNW=15pA

WMOS = 20um

LMOS = 4um

WNW = 0.4um

LNW = 2um

Lin fit

R2 = 0.996

Lin fit

R2 = 0.993

170

190

210

230

250

270

290

310

330

20 30 40 50 60 70 80 90

Temperature, T (°C)

M
O

S
F

E
T

 d
ra

in
 c

ur
re

nt
, I

D
S

M
O

S
 (
µ

A
) IDSMOS @ peak

IDSMOS @ VGSNW = 2.5V

(1)

(2)



118 CMOS-"nano" hybrid devices, circuits and systems
5.2.3. New hybrid nMOS-polySiNW logic family

As already said, the practical use of the proposed non-conventional ploySiNW logic described in the

previous chapter involves CMOS co-integration for interfacing. Fig. 5.10. (a) shows a simple common

source amplifier used as a buffer/amplifier. The drain of the polySiNW is short-circuited to the gate of

the MOSFET device. Associated current tunable MOS drain current versus polySiNW gate voltage

characteristics are presented in Fig. 5.10. (b). We can clearly see that, in addition to the reproduced

negative slope at higher currents, the hysteresis effect due to the charge trapping in the polySiNW is also

transfered to the MOSFET characteristic and remains tunable with the level of injected current in the

nanowire.

Figure 5.10. (a) MOSFET output interface for a single polySiNW memory cell, with (b) associated MOSFET drain
current versus polySiNW gate voltage transfer characteristics.

Principle schema of a polySiNW based memory cell is depicted in Fig. 5.11. This memory has a less than

1nW/bit power consumption in the storing state (pAs IDNW current combined with few volts of VGSNW

bias), almost infinite retention time (see Fig. 4.13.), and fast read time (standard CMOS technology). 

Finally, we show that for the proposed polySiNW and architectures using constant current bias scheme,

the temperature does not significantly affect neither NDR slope nor the hysteresis width. Combined with

differential current sensing, an excellent and unique memory capability is preserved even at high

temperature operation. Two hybrid NMOS-polySiNW transfer characteristics are reported over

temperature on Fig. 5.12. Two different biasing conditions are used, illustrating the possibility to

compensate the temperature drift by an adequate current injection and/or biasing conditions. 
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Figure 5.11. PolySiNW based memory cell with CMOS interface.

The abrupt negative slope (-40mV/decade, in excess of the subthreshold slope theoretical limit of a

conventional MOSFET, obtained here due to the transfer of polySiNW characteristic to the MOSFET)

and hysteresis are both well preserved despite the increase of temperature. As a matter of fact, hysteresis

width and associated negative slope are almost insensitive to temperature variation, while the reference

voltage provided by the very abrupt negative slope varies almost linearly with the temperature.

Figure 5.12. Temperature dependence of hybrid MOSFET-polySiNW hysteretic characteristics at constant current
bias.
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5.2.4. Hybrid NDR

Negative differential resistances are interesting candidates for a wide variety of circuit applications such

as oscillators, amplifiers, logic, memory, microwave circuits, or switches. The first diode based device

showing NDR has been shown by Esaki in 1958 [13]. A broad diversity of technologies have then been

exploited in order to obtain such NDR characteristics, the main ones being: diode based structures as

double barrier resonant tunnel diodes (RTDs) [14], and resonant interband tunnel diodes (RITDs) [15]-

[16]; field effect transistors (FETs) like quantum wire FETs [17], and ungated GaAs FET [18]; and

finally heterostructure based devices such as heterostructure bipolar transistors (HBTs) [19]-[20].

For those devices, the NDR peak-to-valley current ratios (PVCR) are usually ranging from unity up to

few tenths [13]-[20]. Remarkable values of PVCRs have already been reported: Wu et al. [21] have

achieved a PVCR of 330 with a SiC/Si heterostructure diode, whereas Lee et al [22] have demonstrated

a PVCR of 960 with an heterostructure resonant tunneling field-effect transistor (HRT-FET) working at

room temperature. The PVCR record of 26000 has been shown by Wang et al. [23] for a n-p-n AlGaAs/

GaAs structure that can be viewed as a modified integration circuit of a bipolar transistor and a junction

field-effect transistor. MOSFETs [24] and Single Electron Tansistors (SET) [25] have also shown their

ability to obtain NDR characteristics for given circuit architectures. The drawback of a full CMOS

technology being the need of at least four MOS transistors in order to obtain NDR effects, whereas the

full SET circuit needs to work at low temperature and drives low current.

In the following, we show a novel hybrid nMOS-polySiNW circuit cell showing NDR effects at room

temperature. Fig. 5.13. (b) presents the electrical characteristic of a hybrid NDR circuit made by a cross-

coupled connection of one n-MOSFET and one polySiNW, using a positive feedback loop (see Fig. 5.13.

(a)). The polySiNW device used for this application has the same technological parameters as the one

described in 4.1.“Low current detection”. When operated at constant current, the polySiNW transfers its

negative slope output characteristic to the I-V characteristics of the MOS transistor that is driving a much

higher output current, as suggested by the previous SETMOS circuit reported [26]. 

The measured peak and valley current of the NDR cell give a PVCR of seven decades. This record

PVCR, which makes this cell extremely attractive compared with any other existing NDR technology,

is obtained only if adequate MOSFET biasing conditions (or design) are taken. The source voltage of the

MOSFET should be chosen in order to shut the transistor off in the valley region of the NDR circuit.

Furthermore, as shown for the polySiNW device, the position of the negative slope along the voltage

axis can easily be controlled by the level of injected current in the device.

Fig. 5.13. (b) also shows a minimal very abrupt negative slope of less than -10mV/decade over 50mV of

applied drain voltage (see secondary axis of Fig. 5.13. (b)). This very sharp decrease of the current versus

voltage, in excess of the subthreshold slope theoretical limit of conventional MOSFET, is explained by

the fact that when the VDSMOS bias is increased (see Fig. 5.13. (a)) the MOSFET is abruptly driven by

the polySiNW positive feedback loop from strong to weak inversion. Detailed investigations shows that

the hybrid circuit can be operated up to 120°C without significant degradation of NDR characteristics.
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Figure 5.13. (a) NDR cell architecture, with associated (b) MOS drain to source current (lin and log scale),
IDSMOS, versus MOS drain to source voltage, VDSMOS, of the hybrid NDR circuit for an injected current of 15pA.

5.2.5. Hybrid single latch memory

A single latch memory can be obtained with the same cross-coupled circuit given on Fig. 5.13. (a).

Indeed, if the polySiNW gate voltage is swept back to zero the hysteresis due to charge trapping is

reproduced in the MOSFET drain current characteritic (see Fig. 5.14.). The main advantage of this

memory is that no storage capacitor is needed, its scalability being dictated practically by the polySiNW.

The STORE state stands in the middle of the hysteresis (~1.2 V). For the SET, VDSMOS must be swept

to 0V and back to ~1.2V whatever the previous states stored. On the contrary, for a RESET, the VDSMOS

must be swept to 1.8V and back to ~1.2V, again whatever the previous states stored.

Figure 5.14. Proposed single latch hybrid polySiNW-NMOS memory based on the output of the MOS transistor.
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5.3. Summary

In this chapter we have first described a hybrid CMOS-"nano" concept. Hybridization of advanced

CMOS devices ("more Moore") together with emerging nanoelectronics structures (beyond CMOS, or

"after Moore") allows to bring out novel functionalities and higher performances that are unmirrored in

pure CMOS technology. Moreover, hybrid integration permits a smoother transition between the "end

of CMOS", and the "beyond CMOS" era.

The hybrid CMOS-"nano" concept has then been illustrated with: (i) the CMOL architecture that shows

density of active devices as high as 1012cm-2 together with unparalleled processing performances, up to

1020 operations per cm2 per second, at manageable power consumption; (ii) the first on-chip SET/CMOS

hybrid logic circuit working at room temperature, which opens a way to ultra-low power LSIs; and (iii)

the use of CNT interconnects in CMOS ICs, for higher achievable current densities in vias from the

20nm node and beyond.

Subsequently, we have applied a similar hybridization scheme to our polySiNW devices. Indeed, co-

fabrication of nMOSFET transistors with gated polySiNWs has been presented, and the good MOSFET

electrical characteristics from low temperature (4.1K) up to 150°C have been demonstrated. Afterwards,

the practical use of fabricated hybrid nMOSFET-polySiNW circuits has been illustrated with four

different applications: (i) low current sensing hybrid circuits using co-integrated MOS stage for

buffering the output signal at higher current; (ii) a new low power hybrid nMOS-polySiNW logic family

where nMOSFETs are used as interfaces; (iii) a hybrid NDR circuit cell showing record performances

in terms of PVCR and negative SS; and (iv) a hybrid nMOS-polySiNW single latch memory. The

functionality of the hybrid circuits has been demonstrated from room temperature up to at least 120°C.

Original contributions

The hybridization of polySiNW devices (ambipolar conduction and hysteresis effect) together with high

current drive nMOSFETs, have permitted the design of original circuit cells having novel functionalities

and/or outperforming characteristics. Indeed, the new logic family proposed in this chapter combines an

original working principle jointly with low power consumption. The fabricated hybrid NDR circuit cell

shows a record PVCR of more than seven decades, with a negative subthreshold slope of less than

-10mV/decade. Finally, the low current sensing hybrid circuit allows to measure very low current with

a precision of at least 1pA and an output of hundreds of µAs.
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Chapter 6: Conclusions and
outlooks

6.1. General conclusions

As a general conclusion, the major contributions of this work have been divided in two distinct levels:

(i) the nanomaterial process and developments, and (ii) the device and circuit achievements. 

Nanomaterial process and developments:

• We have developed a two-step process for the realization of ultra-thin (<10nm) nanograin 

polysilicon film. This process consists in an aSi deposition followed by a crystallization 

anneal and allows the deposition of 6nm thin polysilicon layers with grain sizes ranging 

from 5 to 20nm.

• A novel ion implantation process at 500°C for the doping of the ultra-thin nanograin layer 

has been studied through MC simulation and experimentally validated with SIMS 

measurement.

Device and circuit achievements:

• Extensive electrical characterization has permitted to highlight ambipolar conduction and 

effective field assisted charge trapping in the polySiNW over a large range of temperatures 

(from 4K, up to 120°C).

• We have also, for the first time, modelled nanograin polySi by an array of conductive islands 

connected to each other by tunnel junctions. Low temperature MC simulations have 

permitted to validate the experimental observations of stochastic COs.
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• A new constant current bias scheme has been proposed. Major features of this bias scheme 

are: (i) the very low constant current used to bias the polySiNW, (ii) the negative slope of 

the transfer characteritics, and (iii) the controlled hysteresis effect. Combining all these 

properties, we have been able to suggest novel device operation for logic, memory and 

current sensing, together with ultra-low power consumption (few pWs).

• Hybridization of polySiNW devices together with nMOSFETs, have permitted the design of 

original circuit cells having novel functionalities and/or outperforming characteristics. 

Indeed, we have proposed a new hybrid logic family which has an original working 

principle, and a fabricated hybrid NDR that has some record performances. 

6.2. Perspectives

Demonstration of stochastic COs in relatively large polySiNW, which have been confirmed by MC

simulations, let think that polySiNWs with smaller width and length could show clear oscillations, even

at room temperature. Indeed, with smaller dimensions the dispersion in grain sizes will be much smaller,

and thus stochastic oscillations will be reduced. Moreover, as the channel width is decreased, the CB

becomes more effective due to stronger charges interactions in the nanowire. Therefore, MC simulation

study, together with ebeam (or in the future extreme UV) defined polySiNW, can be used for possible

SET applications, hopefully working at room temperature.

Another interesting feature demonstrated in this work, is the constant current bias scheme which exploits

the ambipolar conduction of the polySiNW devices. The fabricated polySiNW are not the unique type

of devices that show ambipolar conduction. Indeed, CNT transistors, or SB MOSFETs can have the same

type of behavior. The constant bias scheme can then be identically used for those devices. Therefore, a

deeper study of the possible exploitation of this  bias scheme for SB MOSFET can be interesting as

Schottky S/D are predicted by the ITRS in 2008. Moreover, SB MOSFET are scalable similarly to state-

of-the-art CMOS and fabrication of 2T (2 SB MOS) NDR cell could reproduce the high PVCR and

excellent SS demonstrated with our polySiNW-nMOS hybrid cell.

An extensive study of polySiNW electrical characteristics should be performed on devices with a wide

variety of dimensions (from tens of nanometer width, to microns). In this way, the exact conduction

mechanism can be determined: this will help to identify clearly the charge trapping mechanism in the

polySi nanograins, at the grain boundaries, or at the polySi/SiO2 interface, but also solve the question of

the second negative slope of the I-V characteristic for devices with the thicker gate oxide, and higher

channel doping.
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Finally, one should consider the use of polySiNW devices for 3D integration of high density memories.

Indeed, the low thermal budget deposition and ion implantation of polySiNW devices proposed in this

work is adequate for such applications. Nevertheless, the proposed buried gate and thermal oxide of the

polySiNW must be replaced by a deposited oxide and metal gate stack, which can be a challenging

technology.
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