
A new physically based impact model for debris flow
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A new analytical model is proposed to estimate the peak impact pressure of debris flow exerted on
a rigid barrier. The new model consists of two terms, p¼ α1ρ0gh0þ 0·5ρ0u0

2, accounting for static and
dynamic impacting effects, respectively. The static coefficient α1 is determined according to equations
governing the mass and momentum conservation and energy conservation, and the dynamic coefficient
0·5 is adopted on the basis of the Bernoulli equation. The new analytical model is validated for a wide
range of Froude number (Fr) with data collected from past studies on small-scale experiments and field
observations and numerical simulations of debris flow as a particle–fluid mixture performed by coupled
computational fluid dynamics–discrete-element method (CFD–DEM, for wide-range coverage of Fr).
Based on equivalence with the new model, the empirical coefficients involved in conventional pure
hydrostatic (k) and pure hydrodynamic (α) impact models are found positively and negatively correlated
to Fr, respectively. A unique relationship between k and α is further derived: (cos θ/k)þ (1/α)¼ 1, where
θ denotes slope angle. The underlying physics of this relationship is interpreted. According to the
proposed model, a design chart in terms of Fr is further recommended for practical design of debris-
resisting barriers. The new analytical model offers a possible improvement on robust and reliable
estimation of debris flow impact on a rigid barrier.
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INTRODUCTION
Debris flows remain one of the most destructive natural
hazards, causing great annual human fatalities and
property losses across the world. Design and construction
of countermeasures, such as rigid and flexible barriers, rely
crucially on estimation of the impact of a debris flow,
particularly its peak impact pressure, exerted on a debris-
resisting structure. Popular analytical models proposed for
predicting the peak impact pressure include the pure hydro-
static and hydrodynamic models. The hydrostatic model
estimates the peak impact pressure p based on flow density
ρ0 and flow height h0 in conjunction with an empirical
coefficient k according to p¼ kρ0gh0 (Lichtenhahn, 1973;
Armanini, 1997). The hydrodynamic model calculates
the peak impact pressure p by the flow density ρ0 and
flow velocity u0 with an empirical coefficient α, according
to p¼ αρ0u0

2 (Hungr et al., 1984; Scheidl et al., 2013). There
are also hybrid models with combined consideration of
hydrostatic and hydrodynamic factors, by either summing
or multiplying the effects of flow height and flow velocity
(Kherkheulidze, 1969; Arattano & Franzi, 2003; Hübl et al.,
2003). In addition to hydrostatic and hydrodynamic forces,
other components such as drag force have also been con-
sidered in some studies (Vagnon & Segalini, 2016).
These hydraulic models feature simple expressions, easy

inputs of pertinent variables such as basic flow characteristics

(i.e. flow density, flow height and flow velocity) and
convenience for calculation. They have been widely used in
practical design of various debris-resisting barriers (including
flexible barriers). However, major uncertainties that affect
the accuracy of their predictions rest with the selection
of their empirical coefficients (e.g. k and α). Frequently, the
selection of their values lacks rigorous scientific guidelines
for estimation (Cui et al., 2015), and their reported values
vary substantially in the literature, depending on both the
specific debris flow properties and the channel geometries
(Cui et al., 2015; Vagnon & Segalini, 2016). As discussed by
Armanini et al. (2011) and Song et al. (2017), the deter-
mination of these empirical coefficients commonly involves
considerable arbitrariness and subjective judgements and
experience, affecting their consistency and accuracy for
practical engineering design. Moreover, most models have
been validated and fitted by data from limited cases of debris
flows only, and their applicability for cases beyond the fitting
data range remains to be proved.
Herein the authors present a new analytical study to

predict the peak impact pressure of debris flow on a rigid
barrier. In the derivation, the physical nature and funda-
mental governing equations are considered in describing a
typical impact process of a debris flow on a barrier. The
proposed analytical model will be validated by data encom-
passing a wide range of distinct flow regimes, including
those collected from existing studies of small-scale exper-
iments and real-scale observations on debris flows, as well as
new coupled computational fluid dynamics–discrete-element
method (CFD–DEM) simulations performed by the authors.

A NEWANALYTICAL MODEL FOR DEBRIS
FLOW IMPACT
In past studies, the peak impact pressure is commonly

defined as the maximum impact pressure exerted on a barrier
during the impact process (Hübl et al., 2009; Scheidl et al.,
2013). The determination of peak impact pressure, however,
can be complicated, as it may be both spatially and
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temporally dependent. Existing data obtained from both
experiments and numerical simulations (Hübl et al., 2003;
Armanini et al., 2011; Viccione et al., 2015; Song et al., 2017)
indicate that the bottom of a rigid barrier may more often
sustain the maximum impact and thus peak impact pressure.
Experimental data (Cui et al., 2015) also show that the peak
impact pressure is likely to be attained when the flow height
in front of the barrier reaches its highest. Consequently, it is
reasonable to assume that the worst-case scenario refers to
the occurrence of peak impact pressure at the bottom of a
barrier with a maximum run-up height of flow in front of the
barrier (as shown in Fig. 1). The following analysis is based
on a common no overflow case (e.g. the barrier is assumed
to be sufficiently high) (Choi et al., 2015).

Referring to Fig. 1, the peak impact pressure is assumed
to occur at the bottom of the barrier (e.g. point A). It consists
of a hydrostatic part contributed from the run-up and a
dynamic part caused by the dynamic impact of incoming
flow according to the following expression

p ¼ ps þ 0�5ρ0u20 ð1Þ
where ps is the static pressure. If the maximum run-up height
is assumed to be h1 and the static pressure is assumed to
follow a hydrostatic pressure distribution, the peak impact
pressure can be expressed as

p ¼ ρ0gh1 cos θ þ 0�5ρ0u20 ð2Þ
where θ is the slope angle. The dynamic impact part 0·5ρ0u0

2

has been considered on the basis of the Bernoulli equation
(Erhard et al., 2010), where ρ0 and u0 are the density and
velocity of incoming flow, respectively. Herein it is assumed
that the incoming flow with velocity u0 only changes its flow
direction upon the impact, while no energy is lost. Indeed,
experimental analysis of flow trajectory in a flow clearly
demonstrates that the flow near the bottom of the barrier is
dominantly moving upward when reaching the maximum
run-up height (Armanini et al., 2011).

A notable difference of the above new proposal, as
compared to previous combined type impact models (e.g.
Kherkheulidze, 1969; Arattano & Franzi, 2003; Hübl et al.,
2003), is the consideration of the static load from the accu-
mulated flow climbing on the barrier, in addition to the
dynamic impact of the incoming flow from the slope. If the
maximum run-up height h1 is further related to the height of
the incoming flow h0, the peak impact pressure in equation
(2) can be recast into

p ¼ α1ρ0gh0 þ 0�5ρ0u20 ð3Þ
where α1 is a static coefficient

α1 ¼ h1 cos θ

h0
ð4Þ

α1 is introduced here to reflect the ratio of the maximum
run-up height to the height of incoming flow. Its physical
justification and determination in accounting for different flow
regimes and flow conditions are detailed in the following.
When the slope inclination θ is known and the incoming

flow height h0 for a design site/flow is provided or estimated
from the historical data (Lo, 2000), h1/h0 must be determined
to calculate α1. In determining h1/h0 and therefore α1, two
different approaches are considered here. One is based on the
conservation of mass and momentum (Jóhannesson et al.,
2009) and the other on energy conservation (Kwan, 2012).
A conservative solution between the two for different cases
of Froude number is then suggested. Note that both
approaches have been based on an assumption of a steady,
uniform, homogeneous and one-dimensional incoming flow
(Armanini et al., 2011; Iverson et al., 2016).

h1/h0 based on mass and momentum conservation
Mass and momentum conservation laws have been widely

used for estimating the maximum run-up height (Armanini,
1997; Jóhannesson et al., 2009; Armanini et al., 2011;
Iverson et al., 2016). They are employed here to describe
the case of debris flow shown in Fig. 2. The debris mass
shown in the dashed rectangle in the figure is selected as the
control volume for analysis

ρ0h0 u0 þ u1ð Þ ¼ ρ1h1u1

1
2
κ ρ0h

2
0 � ρ1h

2
1

� �
g cos θ ¼ ρ1h1u

2
1 � ρ0h0 u0 þ u1ð Þ2

8<
:

ð5Þ
where ρ0 and ρ1 are the densities of the incoming flow and the
reflected flow at impact, respectively, and h0 and h1 are their
respective heights. u0 and u1 are the velocities of the incoming
flow and the reflected flow, respectively. κ is a pressure coeffi-
cient accounting for converging and diverging flow modes of
debris flow. It is defined as the ratio between the tangential
stress and normal stress in the flowing mass (σ3 and σ1
in Fig. 2), which is equivalent to Rankine’s earth pressure
coefficient (Scheidl et al., 2014). The pressure coefficient κ
was originally proposed for a dry, granular flow and later
extended for debris flows (Hungr, 1995; Iverson & Denlinger,
2001; Iverson et al., 2010, 2016). For regions of converging
flow with a compressional deformation mode, the normal
stress is smaller than the tangential stress, so κ. 1 (i.e. pass-
ive earth pressure coefficient). In regions of diverging flow
with an extensional deformation mode, κ, 1 (i.e. active earth

θ

A

h
1

ρ
0 , u

0

Fig. 1. Flow condition of peak impact pressure and maximum run-up
considered in the new impact model. h1 is the maximum run-up height
on the barrier. θ is slope angle. ρ0 and u0 are the density and velocity of
the incoming flow, respectively
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Fig. 2. Schematic representation of the determination of h1/h0 based
on mass and momentum conservation. The debris mass in the dashed
rectangle is selected as the control volume
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pressure coefficient). For a typical dry debris, the value of the
pressure coefficient is between 0·2 and 5·0 (Hungr, 1995).
The governing mass and momentum equations can be

recast into the following single expression (see the derivation
in Appendix 1)

β
h1
h0

� �3

� h1
h0

� �2

� 1þ 2Fr2

κ

� �
h1
h0

� �
þ 1
β
¼ 0 ð6Þ

where β is the density ratio ρ1/ρ0; Fr is Froude number
defined as the ratio between flow inertia and external field
(gravity here). For a flow over an inclined slope of angle θ, Fr
is defined as follows

Fr ¼ u0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gh0 cos θ

p
ð7Þ

Based on Cardano’s solution of a cubic equation
(Cardano, 1545), h1/h0 can be solved as follows

h1
h0

¼ 2
ffiffi
r3

p
cos ζ þ 1

3β
ð8Þ

where

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� e

3

� �3
r

ð9Þ

e ¼ �3β 1þ 2Fr2=κ
� �� 1

3β2
ð10Þ

ζ ¼ 1
3
arccos

�q
2r

� �
ð11Þ

q ¼ 27β � 9β 1þ 2Fr2=κ
� �� 2

27β3
ð12Þ

Consequently, the analytical solution for h1/h0 in equation
(8) is a function of Froude number, Fr, pressure coefficient, κ,
and density ratio, β.

h1/h0 based on energy conservation
Energy conservation has been used for estimating the

maximum run-up height (Armanini et al., 2011). Consider a
flow point with mass m (the shaded squares shown in Fig. 3)
at the free surface immediately prior to the impact. Assume
its kinetic energy will all be transformed into potential
energy without energy loss after it impacts and climbs up the
barrier to a maximum run-up height. In this process, the
following energy transformation holds

1
2
mu20 ¼ mg h1 � h0ð Þ cos θ ð13Þ

The ratio of the maximum run-up height to the height of
the incoming flow can be readily obtained

h1
h0

¼ 1þ 0�5Fr2 ð14Þ

Conservative selection between the two solutions
As different flow schemes are assumed in the above

two approaches, they may be adopted for flows with dis-
tinct characteristics and regimes. The approach of mass and
momentum conservation does not guarantee conservation
of mechanical energy, and hence potentially underestimates
the run-up height according to the experimental data by
Choi et al. (2015). The approach of energy conservation
assumes zero energy loss, which may be too conservative
for flows with notable energy dissipation (e.g. the frictional
flows in Choi et al. (2015)). Indeed, it was reported by Choi
et al. (2015) that the mass and momentum conservation
approach gives a more accurate prediction on dry sand,
whereas the energy conservation approach performs better
for water. Iverson et al. (2016) suggested use of mass
and momentum conservation for saturated debris flows.
Nevertheless, Armanini et al. (2011) claimed that both flow
schemes in Figs 2 and 3 may occur for a pure fluid and for a
two-phase flow composed of particles and a liquid. As there
are no measured data of the density ratio β and the pressure
coefficient κ for saturated debris flows, the justification on
the applicability of the two approaches has been rather
limited. A conservative solution is therefore suggested here
for safety reasons.
The above two solutions may provide apparently different

predictions on the ratio of the maximum run-up height
and the height of incoming flow h1/h0, as presented in Figs 4
and 5. The plotted Fr from 0 to 12 refers to debris flows in
experiments and real cases (Hübl et al., 2009). The pressure
coefficient κ in Fig. 4 ranges from 0·2 to 5·0, which is typical
for granular flows (Hungr, 1995; Iverson et al., 2016).
Referring to the experimental measurements of dry, granular
flows by Ng et al. (2017), a density ratio β from 1·0 to 2·0 has
been taken into account in Fig. 5. Note theoretical predic-
tions with a density ratio from 1·0 to 3·0 are presented in
Ng et al. (2017). Nevertheless, as no experimental data fall on
the theoretical curve with a density ratio of 3·0, and it is
difficult to have a high density ratio of 3·0 in the saturated
and uniform granular flows assumed in this study, β up to 2·0
has been considered in Fig. 5. In addition, β smaller than 1 is
included in Fig. 5 according to the current authors’ simul-
ation result with β, 1 (see details in the validation part).
For the special case where both β and κ are 1, as considered

for fluid by Armanini et al. (2011) and Choi et al. (2015), it
is interesting to observe that the two solutions indeed have
an intersection point at Fr¼ 2·54. When Fr, 2·54, the

g

h1
h0

u0
θ

θh1 – h0 (h1 – h0)cosθ

m

m

Fig. 3. Schematic representation of the determination of h1/h0 based
on energy conservation
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Fig. 4. Solutions from two sets of governing equations: mass and
momentum conservation (density ratio β=1, pressure coefficient
0·2� κ� 5·0) as well as energy conservation
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mass/momentum conservation solution proves to be more
conservative than the energy conservation solution, and
the latter becomes more conservative when Fr. 2·54. This
observation is consistent with that presented by Choi et al.
(2015). Moreover, the present study clearly shows that the
intersection point may indeed depend on both the pressure
coefficient κ and density ratio β. At lower κ or β, the inter-
section may occur at relatively higher Fr. Notably from
Fig. 5, for the case with κ¼ 1 and β¼ 2·0, the energy solution
is more conservative for the whole range of Fr because there
is no intersection at all. Note also that the case of β¼ 1·5 has
two intersection points between the two solutions, which may
slightly complicate practical selection of a more conservative
solution between the two.

In summary, the following procedures are suggested for the
proposed analytical formula equation (3) to predict the peak
impact pressure.

(a) Obtain the velocity u0, height h0, density ρ0 of the
incoming flow and the slope angle θ. Given a known
design flow/site, the slope angle θ can be estimated.
The other three parameters can be determined from
historical data considering the source material of the
design site, the estimated magnitude (volume) of debris
flow, the super-elevation and the channel property
(Lo, 2000; Rahman & Konagai, 2017).

(b) Estimate the density ratio, β, and pressure
coefficient, κ, based on existing data from laboratory
experiments and real-scale measurements as well
as numerical simulations (such as CFD–DEM
presented below).

(c) Obtain the ratio of maximum run-up height and height
of incoming flow h1/h0 based on mass and momentum
conservation. With a flow velocity u0, flow height h0
and slope angle θ, the Froude number Fr can be
calculated according to equation (7). The h1/h0 can
be obtained based on equations (8)–(12) by plugging
in the Fr, β and κ.

(d ) Calculate the ratio of maximum run-up height and
height of incoming flow h1/h0 based on energy
conservation from equation (14). The Froude number
in equation (14) is calculated in the same way as shown
in step (c).

(e) Compare the values of h1/h0 acquired from steps (c) and
(d ), choose the larger one to calculate α1 based on
equation (4).

( f ) Calculate the peak impact pressure with equation (3) by
plugging in the static coefficient α1, flow density ρ0,
flow height h0 and flow velocity u0.

Linking between conventional pure hydraulic models
The newly proposed model can indeed help to establish a

linking between conventional pure hydraulic models. Recall
the pure hydrostatic model and pure hydrodynamic model in
their definitions of empirical coefficients

k ¼ p
ρ0gh0

ð15Þ

α ¼ p
ρ0u

2
0

ð16Þ

where k and α are the empirical hydrostatic and hydro-
dynamic coefficients in conventional hydraulic models
(Lichtenhahn, 1973; Hungr et al., 1984; Scheidl et al.,
2013). If the peak pressure p is assumed to be identical in
all the three models, the following relationships can be
established between the two conventional hydraulic models
and the authors’ new model in equation (3)

k ¼ p
ρ0gh0

¼ α1 þ 0�5Fr2 cos θ ð17Þ

α ¼ p
ρ0u

2
0

¼ α1
cos θ

Fr�2 þ 0�5 ð18Þ

By eliminating Fr in equations (17) and (18), the following
relationship can be found among the three coefficients, α1 in
the present model, k in the hydrostatic model and the α in the
hydrodynamic model

α1
k
þ 0�5

α
¼ 1 ð19Þ

As demonstrated in Appendix 2, if energy conservation
is considered, substitution of equation (14) in equation (4)
leads to

α1 ¼ ð1þ 0�5Fr2Þ cos θ ð20Þ
If equation (20) is substituted into equations (17) and (18),

the conventional hydraulic impact model coefficients have
the following expressions in terms of Fr

k ¼ ð1þ Fr2Þ cos θ ð21Þ

α ¼ 1þ Fr�2 ð22Þ
From equations (21) and (22), k has a positive correlation

with Fr, whereas α is negatively correlated with Fr. Similar
correlations have been observed in previous studies (Hübl
et al., 2009; Proske et al., 2011; Scheidl et al., 2013), which
will be further verified by the present authors’ numerical
simulation in the next section.
Indeed, based on energy conservation, the following

reciprocal relationship can be further established between
the two conventional impact coefficients k and α if one
combines equations (7), (15), (16), (19) and (20)

cos θ

k
þ 1
α
¼ 1 ð23Þ

Further involvement of Fr leads to the following equation
by combining equations (21) and (22)

Fr2 ¼ k
α

1
cos θ

ð24Þ
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Fig. 5. Solutions from two sets of governing equations: mass and
momentum conservation (pressure coefficient κ=1, density ratio
0·3� β� 2·0) as well as energy conservation
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While equation (23) explicitly exhibits an inversely
proportional relation between k and α, equation (24) presents
itself as a spatially unique curve in the space of Fr–α–k,
which can be illustrated as shown in Fig. 6. The projection of
this curve onto the k–Fr plane is equation (21), and its pro-
jection onto the α–Fr plane is equation (22). The projection
of this curve onto the α–k plane depicts clearly the inversely
proportional relationship between k and α expressed by
equation (23). Given a real flow with velocity u0� 0 and flow
height h0. 0, the general ranges for k and α are: k� cos θ
and α. 1.
If the mass and momentum conservation is considered, a

different, relatively more complicated form of dependence
between k and α can be found, involving terms such as
pressure coefficient κ, density ratio β and slope angle θ. This
is briefly discussed in Appendix 2.

VALIDATION OF THE NEW IMPACT MODEL BY
CFD–DEM SIMULATIONS, FIELD AND
LABORATORY TESTING DATA
The density ratio β and pressure coefficient κ are difficult

to measure from experiments and real debris flows. To vali-
date the analytical model, numerical simulations have been
conducted based on a coupled CFD–DEM approach. All
quantities required for the analytical model can be readily
extracted from the CFD–DEM simulations for comparison,
and the numerical simulations can also be easily conducted
to cover a wide range of flow regimes observed in both
small-scale experiments and real debris flows. Validation of
the proposed analytical model by available field observations
and laboratory testing data will be further presented.

Coupled CFD–DEM of debris flow impacts
A coupled CFD–DEM approach enables realistic model-

ling of debris flow where fluid–particle interactions dictate
its dynamics and impacts (Li & Zhao, 2018a, 2018b). In
the coupled CFD–DEM approach, the CFD (Anderson
& Jackson, 1967) is used to solve the locally averaged
Navier–Stokes equations for the fluid and the DEM (Tsuji
et al., 1992, 1993) is used to solve the Newton’s equation
governing a granular particle system. Two open source

software packages, namely, OpenFoam (Weller et al., 1998)
and LIGGGHTS (Kloss & Goniva, 2010), are employed for
the CFD and DEM engines, respectively. The coupling
between the CFD and DEM is realised by exchanging
interaction forces including drag force, buoyancy and viscous
force, based on an interface program CFDEM originally
developed by Goniva et al. (2010) and later extended by
Zhao & Shan (2013). Details of the numerical schemes can
be found in Zhao & Shan (2013) and Shan & Zhao (2014)
and will not be repeated here.

Model set-up for simulation. To examine the analytical
solution under different flow conditions, three groups of
coupled CFD–DEM simulations on debris flow impact are
conducted as summarised in Table 1. The model set-ups of the
simulations are illustrated in Fig. 7. Group I and group II
share the set-up in Fig. 7(a), and group III uses the set-up in
Fig. 7(b). For all the simulations, a rigid barrier is placed over
a horizontal or inclined channel with a length, Lc. An inlet
with a height h is placed at the left side of the channel to supply
a source of debris mixture, where the debris mixture flows out
of the inlet into the channel at a prescribed initial velocity, u.
For both group I and group II in Fig. 7(a), a prismatic debris
samplewith side length of l, flow height h and flow velocity u is
initially placed on top of the slope, where the flow height and
flow velocity are consistent with the flow from the inlet. All the
debris mass in group III comes from the inlet without an initial
prismatic sample (Fig. 7(b)). Initial debris samples with a
velocity from 0·2 to 8·25 m/s are adopted in groups I and II to
obtain flows with relatively small Froude numbers. In group
III, the inlet injects flows of an initial velocity from 14·0 to
22·0 m/s to produce flows with large Froude numbers. Note
that it is challenging to obtain flows with small Froude
numbers by using injecting flowswith very small velocity from
the inlet, since the flow height decreases during the propa-
gation along the channel. Therefore, the initial sample is
placed close to the barrier in groups I and II where the
propagation phase is disregarded (Ceccato et al., 2017). In
addition, both the fluid and solid phases of a debris mixture
are varied to reproduce debris flows with distinct constituents.
The initial solid fractions of the debris mixture are 63·36%,
42·53% and 36·91% in group I, group II and group III,
respectively, in reference to real debris flows (Coussot &
Meunier, 1996; Takahashi, 2014). Bi-disperse particles are
used for debris flows in all three groups to save computational
cost. The fraction of the large (dp¼ 0·02 m) and small
(dp¼ 0·012 m) particles in the granular system are 70% and
30% for groups I and II, and 50% and 50% for group III,
respectively. Water is considered as the debris fluid in groups I
and II. However, the use of water in group III may possibly
induce inhomogeneous flows due to high velocity; a mud flow
with higher density and viscosity is adopted (Huang &Garcia,
1998) by using a Herschel–Bulkley fluid model. The contact
parameters for debris particles refer to Byerlee (1978), Zhao &
Shan (2013) and Hurley et al. (2016). Detailed parameters
employed in the simulations are summarised in Table 1.

Comparison between analytical predictions with
numerical simulations
Relevant parameters required for the analytical model,

including u0, h0, ρ0, θ, β and κ, are extracted from the
CFD–DEM results for calculating the peak impact pressure,
which is further compared against the simulated values.
A representative case in group III is presented in Fig. 8 to
illustrate the extraction of relevant parameters for comparison.
Before the simulated debris mixture impacts on the barrier, the
velocity and height of the incoming flow (i.e. u0 and h0) are

0

Fr

0

k

k = cosθ

α = 1

α

Fig. 6. Relation of hydrostatic coefficient k, hydrodynamic coefficient
α and Froude number Fr. Assuming a horizontal channel (θ=0°), the
projected curves on k–Fr and α–Fr planes follow equations (21) and
(22), respectively. The projected curve on the α–k plane satisfies
equation (23). Faces parallel to the α–Fr and k–Fr planes are k= cos θ
and α=1, respectively
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determined within a section of debris mass (between the two
dashed lines in Fig. 8). This section is selected to reflect both
the front velocity (Hu et al., 2011; Scheidl et al., 2013) and the
height of the main body. The size of section 0·1 m is

determined to have sufficient particles along the flow direction
(� 5 in this study) for obtaining representative data, and to
include complete CFD cells for convenient data extraction
from the CFD. Note the simulated flows are rather uniform as
shown in Fig. 8, thus the extracted values do not have any

Table 1. Selected parameters for the three groups of coupled CFD–DEM simulations

Group I Group II Group III

Geometry
Lc: m 2 2 3
l: m 1·9 1·9 0
h:m 0·4 0·4 0·4
θ: degrees 0 0 35

Initial velocity
u: m/s 0·2–2·65 3·0–8·25 14·0–22·0

Debris fluid
Density: kg/m3 1000 1000 1235
Consistency, κc: Pa sn 0·001 0·001 1·7
Flow index, n 1 1 0·36
Yield stress, τc: Pa 0 0 2·91

Debris particle
Diameter, dp: m 0·02, 0·012 0·02, 0·012 0·02, 0·012
Density: kg/m3 2500 2500 2500
Young’s modulus: GPa 70 (particle–particle) 70 (particle–particle) 70 (particle–particle)
Young’s modulus: GPa 700 (particle–wall) 700 (particle–wall) 700 (particle–wall)
Poisson’s ratio 0·3 0·3 0·3
Restitution coefficient 0·7 0·7 0·7
Inter-particle friction coefficient 0·7 0·7 0·7
Particle–wall friction coefficient 0·7 0·7 0·7
Rolling friction coefficient 0·1 0·1 0·1

Simulation control
DEM time step: s 5� 10�7 5� 10�7 5� 10�7

CFD time step: s 5� 10�5 5� 10�5 5� 10�5

CFD cell size: m3 1
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Fig. 7. Model set-ups of coupled CFD–DEM simulations for
(a) groups I and II and (b) group III (the thickness of the
three-dimensional model set-ups is 0·3 m)
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Fig. 8. A representative case (group III, u =20 m/s) in determining
the height and velocity of the incoming flow. The bottom panel shows
the debris mixture before the impact, which is composed of a liquid,
particles with a diameter of 0·02 m, and particles with a diameter of
0·012 m; the middle and upper panels show the velocity fields of the
liquid phase and the particles, respectively. The two dashed lines define
the selected section to determine parameters before the impact. The
cuboid at the bottom of the barrier shows the position of debris mass
used to calculate the parameters after the impact. The size of the
cuboid is determined according to the space extracting the impact
pressure. Unit of length: m
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notable change if the section is shifted to the left or the size of
the section is increased bymoving its left bound to the left. For
debris flows in laboratory experiments (Hu et al., 2011),
large-scale tests (Bugnion et al., 2012) and real-scale measure-
ments (Hu et al., 2011), the front velocity is commonly
suggested as the velocity of the incoming flow. The density of
the incoming flow ρ0 is determinedwith the selected section as
well. The slope angle θ is known from the model set-up. To
obtain the density ratio β and the pressure coefficient κ, the
density of the reflected flow ρ1 as well as the tangential and
normal stresses in the reflected flow (σ3 and σ1) at the instant of
peak impact pressure should be determined. Since the peak
impact pressure occurs at the bottom of the barrier, as demon-
strated in Fig. 9, a cuboid of debris mass at the bottom of the
barrier (see Fig. 8) is used to calculate the density and the
stresses of the reflected flow. The peak impact pressure is extr-
acted from the bottom section of the barrier with dimensions
0·125 m� 0·3 m. Correspondingly, the size of the cuboid
debris mass is determined as 0·125� 0·125� 0·3 m. Note it is
assumed that the cuboid debris mass is within the reflected
flow and its properties and stresses are representative at
the instant of peak impact pressure. After ρ1 is obtained,
the density ratio β can be calculated as ρ1/ρ0. Referring to the
directions of tangential and normal stresses in Fig. 2, the
tangential stress of the cuboid debris mass σ3 is back-
calculated as the pressure on the bottom section of the
barrier, while its normal stress σ1 is back-calculated as the
pressure on the section of the channel bed below the cuboid
debris mass. The pressure coefficient κ can then be readily
obtained (σ3/σ1).
To facilitate the following analyses and comparison, the

peak impact pressure, either predicted by the analytical
model in equation (3) or obtained from the numerical
simulations, will be normalised by the static component
ρ0gh0 and the dynamic component ρ0u0

2, respectively, accord-
ing to equations (15) and (16). Consequently, the normalised
quantities provide equivalences that are comparable to k and
α in conventional hydraulic models.
Figures 10 and 11 compare the variations of k and α with

Froude number Fr predicted by the analytical solutions and
the simulation results. In total, 29 simulations have been
conducted (eight in group I, 16 in group II and five in group
III) for the data points in Figs 10 and 11, covering different
flow regimes from subcritical flows (Fr, 1) to supercritical
flows (Fr. 1). Notably, the range of Froude number
reported in the literature for real observations and exper-
iments is typically from 0 to 12 (Hübl et al., 2009). Three

analytical solutions are demonstrated in both figures. Based
on the extracted σ1, σ3, ρ0 and ρ1 from the simulations, the
average pressure coefficients κ in the three groups are cal-
culated as 1·895, 1·800 and 1·316, and their average density
ratios β are 0·995, 1·017 and 1·016, respectively. Having these
average parameters, h1/h0 values derived from the energy
conservation approach are more conservative compared to
those from the mass and momentum conservation approach.
Hence the three analytical solutions in both figures have
been based on h1/h0 derived from energy conservation. At a
given Froude number, the distinction in the three analytical
solutions of k in Fig. 10 stems from the slope angle θ (see
equation (21)). A steeper slope results in a smaller empirical
hydrostatic coefficient, k. This explains why the horizontal
channels in groups I and II lead to identical solutions, while
the steeper channel in group III results in a smaller k in
Fig. 10. As the empirical hydrodynamic coefficient α in
equation (22) is exclusively dependent on Froude number, the
analytical solutions for three simulation groups coincide
entirely with one another in Fig. 11.
From Figs 10 and 11, reasonable consistency between

analytical predictions and the simulation data is observed.
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The differences between the analytical predictions and the
simulation results for groups I and II in both figures are
relatively more obvious comparedwith that for group III. One
reason for this may be the artificially generated debris flows in
groups I and II at small Froude number. It is known that
small-scale tests normally generate flows with a Froude
number higher than 2 (Scheidl et al., 2013). The initial pris-
matic debris samples in both group I and group II are assigned
with variable initial flow velocities to extend the range of
Froude number to small values, but the flows in both groups
are assumed to have a fixed initial height. In reality and in the
present authors’ simulations, the initial height may change
(typically decrease) when the flow approaches the barrier.
Consequently, the calculated k based on the current simu-
lations (i.e. filled circle and triangle symbols in Fig. 10) will be
larger (due to using a smaller normaliser) than the analytical
predictions (i.e. solid and dashed curves in Fig. 10).

In the small Froude number regime, the simulated α (i.e.
filled circle and triangle symbols in Fig. 11) is also slightly
higher than the analytical solutions (i.e. solid and dashed
curves in Fig. 11). This may be due to the influence of
interparticle friction and particle-wall friction in conjunction
with the high solid fraction in groups I and II, which can
quickly and significantly decrease the overall flow velocity.
Indeed, the experimental results by Song et al. (2017)
show that the velocity reduction of debris mixtures with
higher solid fractions tends to be faster than that with lower
solid fractions, which is related to the effect of grain contacts.
As a result, the normalised α obtained from the simulations
will be larger than the analytical predictions where a fixed
incoming velocity is used for normalisation.

Validation by experiment and field data reported in
the literature

The proposed analytical model is further validated by
experimental data and real observations of debris flows
in conjunction with the previous CFD–DEM simulation
results. Table 2 summarises the collected data from the
literature for the validation. In view of the heterogeneity of
datawith different natures, two bounding analytical solutions
(‘U’ for upper and ‘L’ for lower) are presented and compared
in Figs 12 and 13 along with the data. In addition, a design
analytical solution (‘D’ for design) is also suggested based on
parameters derived from the CFD–DEM simulations.

The rationale on parameter selection in plotting the
analytical solutions in Figs 12 and 13 is as follows.

(a) β. In plotting analytical solutions U and L, the present
authors have chosen β¼ 1. Indeed, their numerical
simulations on debris mixtures across various flow
regimes indicate a rather stable value for β around 1,
with a maximum variation of 3·1%.

(b) θ and κ. In plotting the analytical solution U, a slope
angle θ¼ 0° and a pressure coefficient κ¼ 0·15 have been
adopted. The analytical solution L in Figs 12 and 13

Table 2. Collected data from the literature for comparison in Figs 12 and 13

Relation Study Extracted data Calculated data Note

k against Fr Scheidl et al. (2013) k, Fr N/A Small-scale tests
Cui et al. (2015) p, ρ0, u0, h0, θ k, Fr Small-scale tests
Hübl et al. (2009) k, Fr N/A Field events
Hong et al. (2015) p, ρ0, u0, h0, θ=5·1° from Cui et al. (2005) k, Fr Field events

α against Fr Scotton (1996) α, Fr N/A Small-scale tests
Scheidl et al. (2013) α, Fr N/A Small-scale tests
Cui et al. (2015) p, ρ0, u0, h0, θ α, Fr Small-scale tests
Bugnion et al. (2012) α, u0, h0, θ Fr Large-scale tests
Hübl et al. (2009) α, Fr N/A Field events
Hong et al. (2015) p, ρ0, u0, h0, θ=5·1° from Cui et al. (2005) α, Fr Field events
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Fig. 12. The relation between the hydrostatic coefficient k and Froude
number Fr, including data from small-scale experiments denoted by
empty symbols (Scheidl et al., 2013; Cui et al., 2015), data from real
debris flows denoted by solid symbols (Hübl et al., 2009; Hong et al.,
2015), CFD–DEM simulation results and analytical solutions
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2015), CFD–DEM simulation results and analytical solutions
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adopts a slope angle θ¼ 60° and a pressure coefficient
κ¼ 5·0. The slope angle from 0° to 60° refers to normal
cases of debris flow (Takahashi, 2014; Nandi &
Shakoor, 2017). The pressure coefficient range is close to
the typical value for dry, granular flows (i.e. 0·2–5·0
recommended by Hungr (1995)). Instead of using 0·2
for the dry, granular flows, a smaller pressure coefficient
0·15 has been adopted in Figs 12 and 13 to cover more
data of debris mixtures. A combination of θ¼ 0° and
κ¼ 0·15 offers the largest coefficients k and α within the
considered range of θ and κ, which is therefore used for
plotting the analytical solution U as an upper bound,
and a combination of θ¼ 60° and κ¼ 5·0 is adopted for
analytical solution L as the lower bound.

(c) Fr. The Froude number of real debris flows is normally
smaller than 2 (Hübl et al., 2009). The density ratio and
pressure coefficient for analytical solution D are the
average value from ten simulation cases with a Froude
number smaller than 2 (eight cases in group I and two
cases in group II), which are β¼ 0·997 and κ¼ 1·873,
respectively. According to equations (21) and (22), when
the density ratio, pressure coefficient and Froude number
are all fixed, the ratio of the maximum run-up height to
the height of incoming flow h1/h0 stays constant. A
smaller slope angle leads to a larger k but does not affect
α. Hence, the smallest slope angle 0° is adopted in the
analytical solution D for conservative reasons.

Figure 12 in terms of k shows a good performance of the
analytical solutions U and L in bounding the majority of
data from a wide range of debris flows, including those from
simulations, small-scale experiments and real observations.
The few data above the analytical solution Umay correspond
to cases with pressure coefficients smaller than 0·15,
indicating very low tangential stresses of the flows compared
with their normal stresses. The data below the analytical
solution L are consistent with highly converging flows, whose
pressure coefficients may be larger than 5·0.
In terms of α, Fig. 13 demonstrates that the analytical

solution U largely serves as a reasonable upper bound,
whereas the analytical solution L is not necessarily lower
than some of collected data, especially when the Froude
number is larger than 2. This may be due to the overestimated
h1/h0 in the calculation of α using equation (22). The adopted
h1/h0 in the analytical solution L has been based on energy
conservation, as it is more conservative compared with the
one from mass and momentum conservation. Notably, the
study has adopted parameters based on CFD–DEM simu-
lations and with relatively conservative consideration. This is
due to a lack of experimental measurements on the changes
of flow density (β) and stresses along different directions (κ)
during the impact. More accurate (and/or economical)
analytical models need rigorous calibration of parameters
based on carefully designed experimental data and well-
instrumented observations of real debris flows.

Further comparison with empirical predictions
In addition to the experimental and field data reported

in the literature, predictions of k and α by empirical relations
are plotted as gray dashed curves in Figs 12 and 13. The
relation between the empirical hydrostatic coefficient k and
the Froude number Fr in Fig. 12 has been developed based
on data from small-scale experiments and field-scale obser-
vations of debris flows (Hübl et al., 2009; Proske et al., 2011;
Scheidl et al., 2013), which presents a linear relation as
follows

k ¼ aFrþ b ð25Þ

A power law correlation has been established between
the empirical hydrodynamic coefficient α and the Froude
number Fr as follows (Hübl et al., 2003, 2009; Proske et al.,
2011; Scheidl et al., 2013; Cui et al., 2015)

α ¼ cFr�d ð26Þ
where a, c and d are positive constants and b is a coefficient
which may be zero (Scheidl et al., 2013) or non-zero (Hübl
et al., 2009).
The present authors’ finding of non-linear dependence

of k on the Froude number Fr deviates apparently from
the conventional linear fitting curve (k¼ 4·18Fr� 2·18) in
Fig. 12 (note the double-log plot changes the line into a
curve). The present authors’ non-linear analytical solutions
(U, L and D) in Fig. 12 all show an increasing rate of increase
in k with Fr, which shares a similar characteristic with the
impact model considering drag force by Vagnon & Segalini
(2016). In particular, k begins to grow significantly when
Froude number goes beyond 1, the boundary between sub-
critical and super-critical flows. Evidently, flow inertia is
more dominant over gravitational force in a super-critical
flow (Fr. 1), leading to increasingly less weight of the static
component in the overall pressure compared to the dynamic
part. Fig. 12 demonstrates that the non-linear analytical
solution D agrees better with the collected data when com-
pared with the linear fitting curve, especially when the
Froude number is smaller than one.
The empical power law relation plotted in Fig. 13 has been

based on the study by Cui et al. (2015) with an expression
of α¼ 5·3Fr�1·5, whose trend differs essentially from the
present authors’ new analytical solution, especially at the tail
part when Froude number is high. The traditional power law
relation for α and Fr predicts that α¼ 0 at an infinite Froude
number, indicating an apparently unrealistic zero impact
pressure at very large flow velocity. In contrast, the present
authors’ new relation reasonably indicates a positive impact
pressure at infinitely large flow velocity, which agrees with the
relation proposed by Wang et al. (2018). It is interesting to
observe a stagnant stage when Fr is high, which corresponds
well to the stage of the sharp increase in k (see Fig. 12).
Indeed, after the flow inertia dominates over the gravitational
force, k needs to grow rapidly due to less weight of the static
component, while α decreases due to the increasing weight of
the dynamic component. The reduction of α in Fig. 13 is
constrained by 1, as indicated by equation (23).

CONCLUSIONS AND DISCUSSION
A new analytical model has been proposed to predict

the peak impact pressure of debris flow on a rigid barrier.
It is expressed in an additive form of a static part and a
dynamic part in calculating the peak impact pressure. The
dynamic pressure is derived according to the Bernoulli
equation to consider the dynamic impact of an incoming
flow. Accounting for the accumulation of flow on the barrier,
the static pressure is calculated by the maximum run-up
height obtained from a conservative solution of two sets of
governing equations (mass and momentum conservation and
energy conservation). Conventional pure hydraulic models
have been re-evaluated, correlated and linked with the key
parameters of the new model and Froude number, Fr. A
simple reciprocal relationship has been established for
conventional hydrostatic and hydrodynamic coefficients k
and α, revealing an interesting competing mechanism of the
hydrostatic and hydrodynamic components in understanding
the impact of debris flow.
The new proposal has further been validated by collective

data from small-scale experimental tests and real-scale
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observations, as well as coupled CFD–DEM simulations of
debris flow impact on a rigid barrier. A coupled CFD–DEM
modelling has been conducted to simulate a debris mixture
consisting of solid particles and fluid, to assess realistically
the impact of a two-phase debris flow. The numerical tool
also enables convenient simulation of debris flows with a
wide range of Froude numbers, covering those obtained in
laboratory tests and field observations. It is demonstrated
that the predictions by the new model offer reasonable
consistency with all three datasets (numerical, experimental
and field). In particular, suitable model parameters are cali-
brated from the numerical simulations and are used to
provide upper and lower bounding solutions to cover the
full-range of datasets available. A design solution is further
offered for possible practical design.

The study offers a physically based consideration of debris
flow impact, notwithstanding some oversimplified assump-
tions. Real debris flows are considerably more complicated
than what the present authors have assumed. For example,
turbulence and secondary surges in a debris flowmay notably
affect its impact behaviour. The liquid and solid phases
in a debris mixture may have non-negligible separations,
which may affect the flows. Further improvements can be
achieved by considering heterogeneous incoming flow
(e.g. more coarse solids and boulders) rather than a homo-
geneous flow. Detail governing the interaction mechanisms
during the impact, such as the cushion effect of the dead
zone, can also be included in future considerations. To render
the model useful, it is also essential to develop practical ways
to calibrate the model parameters accurately from exper-
iments and field observations for a specific debris site.
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APPENDIX 1. DERIVATION FROM EQUATION (5)
TO EQUATION (6)

From the mass conservation

ρ0h0u0 þ ρ0h0u1 ¼ ρ1h1u1 ð27Þ

ρ0h0u0 ¼ u1 ρ1h1 � ρ0h0ð Þ ð28Þ

u1 ¼ ρ0h0u0
ρ1h1 � ρ0h0

¼ h0u0
βh1 � h0

ð29Þ

From the momentum conservation

1
2
κ ρ0h

2
0 � ρ1h

2
1

� �
g cos θ ¼ ρ1h1u

2
1 � ρ0h0 u0 þ u1ð Þ2 ð30Þ

κg cos θ

2
h20 � βh21
� � ¼ βh1u21 � h0 u20 þ 2u0u1 þ u21

� � ð31Þ

κg cos θ

2
h20 � βh21
� � ¼ u21 βh1 � h0ð Þ � 2u1u0h0 � u20h0 ð32Þ

Substituting equation (29) into equation (32), the following are
obtained

κg cos θ

2
h20 � βh21
� � ¼ h0u0

βh1 � h0

� �2

βh1 � h0ð Þ � 2
h0u0

βh1 � h0

� �
u0h0 � u20h0

ð33Þ

κg cos θ

2
h20 � βh21
� � ¼ u20h

2
0

βh1 � h0
� 2

u20h
2
0

βh1 � h0

� �
� u20h0 ð34Þ

κg cos θ

2
h20 � βh21
� � ¼ u20h

2
0

h0 � βh1
� u20h0 ð35Þ

κg cos θ
2

1� β
h21
h20

� �
¼ u20

h0 � βh1
� u20
h0

ð36Þ

κg cos θ

2
1� β

h21
h20

� �
¼ u20h0

h0 � βh1ð Þh0
� u20 h0 � βh1ð Þ

h0 � βh1ð Þh0 ¼
βu20h1

h0 � βh1ð Þh0

ð37Þ

κg cos θ

2
1� β

h21
h20

� �
¼ βu20h1

h0 � βh1ðh0=h0Þ½ �h0 ¼
βu20h1

1� βðh1=h0Þ½ �h20
ð38Þ

1� β
h21
h20

� �
1� β

h1
h0

� �
¼ 2βu20h1

κh20g cos θ

¼ 2β
u20

κgh0 cos θ

h1
h0

¼ 2β
Fr2

κ

h1
h0

ð39Þ

β
h1
h0

� �2

� 1

" #
β
h1
h0

� 1
� �

¼ 2β
Fr2

κ

h1
h0

ð40Þ

β2
h1
h0

� �3

�β
h1
h0

� �2

�β
h1
h0

þ 1 ¼ 2β
Fr2

κ
h1
h0

ð41Þ

β2
h1
h0

� �3

�β
h1
h0

� �2

�β 1þ 2Fr2

κ

� �
h1
h0

þ 1 ¼ 0 ð42Þ

β
h1
h0

� �3

� h1
h0

� �2

� 1þ 2Fr2

κ

� �
h1
h0

þ 1
β
¼ 0 ð43Þ

APPENDIX 2. DEPENDENCY BETWEEN
EMPIRICAL COEFFICIENTS k AND α

From conventional hydraulic models (equations (15) and (16))

ρ0gh0 ¼
p
k

ð44Þ

ρ0u
2
0 ¼

p
α

ð45Þ

Substituting equations (44) and (45) into equation (3)

p ¼ α1
p
k
þ 0�5 p

α
ð46Þ

which can be simplified as

α1
k
þ 0�5

α
¼ 1 ð47Þ

From the definition of Froude number equation (7), the following
is obtained

Fr2 ¼ u20
gh0 cos θ

¼ ρ0u
2
0

ρ0gh0

1
cos θ

ð48Þ

Substituting equations (44) and (45) into equation (48)

Fr2 ¼ p=α
p=k

1
cos θ

¼ k
α

1
cos θ

ð49Þ
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Substituting the h1/h0 from energy conservation (equation (14))
into equation (4)

α1 ¼ h1
h0

cos θ ¼ 1þ 0�5Fr2� �
cos θ ð50Þ

Substituting equation (49) into equation (50)

α1 ¼ 1þ 0�5 k
α

1
cos θ

� �
cos θ ¼ cos θ þ 0�5 k

α
ð51Þ

Substituting equation (51) into equation (47), a reciprocal relation
between k and α can be obtained

cos θ

k
þ 1
α
¼ 1 ð52Þ

If the h1/h0 from mass and momentum conservation is applied in
equation (4), the following expression of α1 is obtained, instead of
equation (50)

α1 ¼ h1
h0

cos θ ¼ 2
ffiffi
r3

p
cos ζ þ 1

3β

� �
cos θ ð53Þ

where r and ζ are correlated with pressure coefficient κ, density ratio
β and Froude number Fr according to equations (9)–(12).

Substituting equation (53) into equation (47)

2
ffiffi
r3

p
cos ζ þ 1

3β

� �
cos θ

k
þ 0�5

α
¼ 1 ð54Þ

where r and ζ can be denoted with the following expressions by
combining equations (9)–(12) and equation (49)

r ¼ 1
3β

þ 2k
3βακ cos θ

þ 1

9β2

� �3=2

ð55Þ

ζ ¼ 1
3
arccos

�ð2=3β2Þ þ ð2k=3β2ακ cos θÞ þ ð2=27β3Þ
2 ð1=3βÞ þ ð2k=3βακ cos θÞ þ ð1=9β2Þ	 
3=2

2
4

3
5

ð56Þ
Based on equations (54)–(56), k and α can be determined from

each other, giving κ, β and θ.

NOTATION
a, b coefficients in the empirical correlation between k and Fr
c, d coefficients in the empirical correlation between α and Fr
dp particle diameter

e, q, r, ζ constants in Cardano’s solution of a cubic equation
Fr Froude number
g gravitational acceleration
h initial flow height
h0 height of incoming debris flow
h1 maximum run-up height of debris flow
k empirical hydrostatic coefficient
Lc channel length
l initial length of debris sample
m mass of considered flow point in energy conservation

n, κc, τc flow index, consistency and yield stress of debris fluid
p peak impact pressure
ps static pressure
u initial flow velocity
u0 velocity of incoming debris flow
u1 velocity of reflected debris flow

x, y coordinate axes
α empirical hydrodynamic coefficient
α1 static coefficient
β density ratio
θ slope angle
κ pressure coefficient
ρ0 density of incoming debris flow
ρ1 density of reflected debris flow
σ1 normal stress of debris flow
σ3 tangential stress of debris flow
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