Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Nonreciprocal Gain in Non-Hermitian Time-Floquet Systems
 
research article

Nonreciprocal Gain in Non-Hermitian Time-Floquet Systems

Koutserimpas, Theodoros  
•
Fleury, Romain  
February 22, 2018
Physical Review Letters

We explore the unconventional wave scattering properties of non-Hermitian systems in which amplification or damping are induced by time-periodic modulation. These non-Hermitian time-Floquet systems are capable of nonreciprocal operations in the frequency domain, which can be exploited to induce novel physical phenomena such as unidirectional wave amplification and perfect nonreciprocal response with zero or even negative insertion losses. This unique behavior is obtained by imparting a specific low-frequency time-periodic modulation to the complex coupling between lossless resonators, promoting only upward frequency conversion, and leading to nonreciprocal parametric gain. We provide a full-wave demonstration of our findings in a one-way microwave amplifier, and establish the potential of non-Hermitian time-Floquet devices for insertion-loss free microwave isolation and unidirectional parametric amplification.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

PhysRevLett.120.087401.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

Size

742.96 KB

Format

Adobe PDF

Checksum (MD5)

a422e2a6af5eaffcb05d7e90b9b032a0

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés