Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Top-k/w publish/subscribe: A publish/subscribe model for continuous top-k processing over data streams
 
research article

Top-k/w publish/subscribe: A publish/subscribe model for continuous top-k processing over data streams

Pripuzic, Kresimir
•
Zarko Podnar, Ivana
•
Aberer, Karl  
2014
Information Systems Journal

Continuous processing of top-k queries over data streams is a promising technique for alleviating the information overload problem as it distinguishes relevant from irrelevant data stream objects with respect to a given scoring function over time. Thus it enables filtering of irrelevant data objects and delivery of top-k objects relevant to user interests in real-time. We propose a solution for distributed continuous top-k processing based on the publish/subscribe communication paradigm—top-k publish/subscribe over sliding windows (top-k/w publish/subscribe). It identifies k best-ranked objects with respect to a given scoring function over a sliding window of size w, and extends the publish/subscribe communication paradigm by continuous top-k processing algorithms coming from the field of data stream processing. In this paper, we introduce, analyze and evaluate the essential building blocks of distributed top-k/w publish/subscribe systems: first, we present a formal top-k/w publish/subscribe model and compare it to the prevailing Boolean publish/subscribe model. Next, we outline the top-k/w processing tasks performed by publish/subscribe nodes and investigate the properties of supported scoring functions. Furthermore, we explore potential routing strategies for distributed top-k/w publish/subscribe systems. Finally, we experimentally evaluate model properties and provide a comparative study investigating traffic requirements of potential routing strategies.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

1-s2.0-S030643791200049X-main.pdf

Access type

openaccess

Size

939.92 KB

Format

Adobe PDF

Checksum (MD5)

b7d1e626b8b4d853ad9eb1931d69ddf2

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés