Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Broadband Noise Characterization of SiGe HBTs Down to 4K
 
research article

Broadband Noise Characterization of SiGe HBTs Down to 4K

Benserhir, Jad
•
Zou, Yating  
•
Han, Hung Chi  
Show more
2025
IEEE Journal of the Electron Devices Society

This paper provides a comprehensive analysis of the DC and RF behavior of HBTs, spanning temperatures from 350 to 3.8 K. It underscores the necessity of detailed studies for the design of RF circuits for quantum computing, including LNAs, VCOs, and mixers, due to the absence of cryogenic models. The DC gain shows betas of 800 at room temperature (RT) and 3000 at 3.8 K. RF characterization indicates a maximum fT of 500 GHz at 3.8 K and 300 GHz at RT. The proposed figure-of-merit, (gm.fT/Ic), typically used in CMOS design, is explored across the temperature range. The study reveals a noise equivalent temperature of sub-1 K at 3.8 K with source matching. The noise behavior of Si/SiGe:C HBTs within 0.13μ m BiCMOS technology is characterized over 293 to 4 K and 10 kHz to 12 GHz. The analysis shows a significant increase in the flicker noise coefficient, K, and corner frequency reduction at 4 K. The high frequency parameter fT reaches 500 GHz, demonstrating better performance compared to advanced CMOS nodes. This research supports the modeling of HBTs that are critical for circuits operating at cryogenic temperatures. These models are particularly beneficial for designing classical-to-quantum interfaces.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

10.1109_jeds.2025.3595576.pdf

Type

Main Document

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

11.04 MB

Format

Adobe PDF

Checksum (MD5)

48adbb7abe89b92c3efb1dbab52b688b

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés