Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Spatial structure facilitates evolutionary rescue by drug resistance
 
research article

Spatial structure facilitates evolutionary rescue by drug resistance

Fruet, Cecilia  
•
Müller, Ella Linxia  
•
Loverdo, Claude
Show more
April 1, 2025
PLoS Computational Biology

Bacterial populations often have complex spatial structures, which can impact their evolution. Here, we study how spatial structure affects the evolution of antibiotic resistance in a bacterial population. We consider a minimal model of spatially structured populations where all demes (i.e., subpopulations) are identical and connected to each other by identical migration rates. We show that spatial structure can facilitate the survival of a bacterial population to antibiotic treatment, starting from a sensitive inoculum. Specifically, the bacterial population can be rescued if antibiotic resistant mutants appear and are present when drug is added, and spatial structure can impact the fate of these mutants and the probability that they are present. Indeed, the probability of fixation of neutral or deleterious mutations providing drug resistance is increased in smaller populations. This promotes local fixation of resistant mutants in the structured population, which facilitates evolutionary rescue by drug resistance in the rare mutation regime. Once the population is rescued by resistance, migrations allow resistant mutants to spread in all demes. Our main result that spatial structure facilitates evolutionary rescue by antibiotic resistance extends to more complex spatial structures, and to the case where there are resistant mutants in the inoculum.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

journal.pcbi.1012861.pdf

Type

Main Document

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

738.11 KB

Format

Adobe PDF

Checksum (MD5)

a578cc6382df6580e255171d92e81d6d

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés