Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Reports, Documentation, and Standards
  4. Fuzzynet: Zero-maintenance Ringless Overlay
 
report

Fuzzynet: Zero-maintenance Ringless Overlay

Girdzijauskas, Sarunas
•
Galuba, Wojciech  
•
Darlagiannis, Vasilios  
Show more
2008

Many structured overlay networks rely on a ring invariant as a core network connectivity element. The responsibility ranges of the participating peers and navigability principles (greedy routing) heavily depend on the ring structure. For correctness guarantees, each node needs to eagerly maintain its immediate neighboring links - the ring invariant. However, the ring maintenance is an expensive task and it may not even be possible to maintain the ring invariant continuously under high churn, particularly as the network size grows. Furthermore, routing anomalies in the network, peers behind firewalls and Network Address Translators (NATs) create non-transitivity effects, which inevitably lead to the violation of the ring invariant. We argue that reliance on the ring structure is a serious impediment for real life deployment and scalability of structured overlays. In this paper we propose an overlay called Fuzzynet, which does not rely on the ring invariant, yet have all the functionalities of structured overlays. Fuzzynet takes the idea of lazy overlay maintenance further by dropping any explicit connectivity and data maintenance requirement, relying merely on the actions performed when new Fuzzynet peers join the network. We show that with sufficient amount of neighbors (O(logN), comparable to traditional structured overlays), even under high churn, data can be retrieved in Fuzzynet w.h.p. We validate our novel design principles by simulations as well as PlanetLab experiments and compare it with ring based overlays.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Fuzzynet.pdf

Access type

openaccess

Size

373.1 KB

Format

Adobe PDF

Checksum (MD5)

6291c88b920e9832755cb6aa40a07ab1

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés