Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Datasets and Code
  4. Task-driven neural network models predict neural dynamics of proprioception: Synthetic muscle spindle datasets
 
dataset

Task-driven neural network models predict neural dynamics of proprioception: Synthetic muscle spindle datasets

Marin Vargas, Alessandro  
•
Bisi, Axel  
•
Chiappa, Alberto Silvio  
Show more
2024
Zenodo

Here we provide the synthetic spindle datasets of our article "Task-driven neural network models predict neural dynamics of proprioception". It contains the synthetic generated training dataset of simulated muscle spindles during arm passive movements generated with either character writing (PCR) or with 3D target reaching using reinforcement learning (RL). The overall structure of the data is: └── spindle_datasets ├── pcr_dataset - Contains PCR synthetic training dataset └── rl_dataset - Contains RL-generated synthetic training dataset The code to generate the PCR synthetic spindle dataset is available at: https://github.com/amathislab/Task-driven-Proprioception/tree/master/PCR-data-generation The code to generate the RL-generated synthetic spindle dataset is available at: https://github.com/amathislab/Task-driven-Proprioception/tree/master/RL-data-generation

  • Details
  • Metrics
Type
dataset
DOI
10.5281/zenodo.10530013
ACOUA ID

68575885-2865-4428-8fb3-16b8137489c1

Author(s)
Marin Vargas, Alessandro  
Bisi, Axel  
Chiappa, Alberto Silvio  
Versteeg, Christopher
Miller, Lee E.
Mathis, Alexander  
Date Issued

2024

Version

v1

Publisher

Zenodo

Subjects

proprioception

•

task-driven models

•

neural networks

•

somatosensory cortex

•

cuneate nucleus

•

state-estimation

•

efference copy

•

goal-driven models

•

biomechanics

EPFL units
UPAMATHIS  
FunderGrant NO

FNS

A theory-driven approach to understanding the neural circuits of proprioception (212516)

RelationURL/DOI

IsSupplementTo

https://infoscience.epfl.ch/record/307946?&ln=fr
Available on Infoscience
February 16, 2024
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/203762
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés