Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Effect of voltage source converters with electrochemical storage systems on dynamics of reduced-inertia bulk power grids
 
research article

Effect of voltage source converters with electrochemical storage systems on dynamics of reduced-inertia bulk power grids

Zuo, Yihui  
•
Paolone, Mario  
•
Sossan, Fabrizio
August 14, 2020
Electric Power Systems Research

A major concern associated to the massive connection of distributed energy resources is the increasing share of power electronic interfaces resulting in the global inertia reduction of power systems. The recent literature advocated the use of voltage source converter (VSC) interfaced battery energy storage system (BESS) as a potential way to counterbalance this lack of inertia. However, the impact of VSCs on the dynamics of reduced-inertia grids is not well understood especially with respect to large transmission grids interfacing a mix of rotating machines and resources interfaced with power electronics. In this regard, we propose an extension of the IEEE 39-bus test network to quantify the impact of VSCs on reduced-inertia grids. In this respect, a reduced-inertia 39-bus system is obtained by replacing 4 synchronous generators in the original 10-synchronous machine system, with 4 wind power plants modeled as aggregated type-3 wind turbines. Then, a large-scale BESS is integrated into the reduced-inertia network via a three-level neutral-point clamped (NPC) converter, thereby to be used for studying the impact of VSC on the dynamics of the inertia-reduced power system, as well as for comparing different VSC controls. The proposed models are implemented on a real-time simulator to conduct post-contingency analysis, respectively, for the original power system and the reduced-inertia one, with and without the BESS-VSC.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

187.pdf

Type

Preprint

Version

http://purl.org/coar/version/c_71e4c1898caa6e32

Access type

openaccess

Size

1.82 MB

Format

Adobe PDF

Checksum (MD5)

ebd7c2d541c9b525b7a21d59fe7beb62

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés