Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Multistability and Reversibility of Aerobic Granular Sludge Microbial Communities Upon Changes From Simple to Complex Synthetic Wastewater and Back
 
research article

Multistability and Reversibility of Aerobic Granular Sludge Microbial Communities Upon Changes From Simple to Complex Synthetic Wastewater and Back

Adler, Aline  
•
Holliger, Christof  
November 26, 2020
Frontiers in Microbiology

Aerobic granular sludge (AGS) is a promising alternative wastewater treatment to the conventional activated sludge system allowing space and energy saving. Basic understanding of AGS has mainly been obtained using simple wastewater containing acetate and propionate as carbon source. Yet, the aspect and performances of AGS grown in such model systems are different from those obtained in reactor treating real wastewater. The impact of fermentable and hydrolyzable compounds on already formed AGS was assessed separately by changing the composition of the influent from simple wastewater containing volatile fatty acids to complex monomeric wastewater containing amino acids and glucose, and then to complex polymeric wastewater containing also starch and peptone. The reversibility of the observed changes was assessed by changing the composition of the wastewater from complex monomeric back to simple. The introduction of fermentable compounds in the influent left the settling properties and nutrient removal performance unchanged, but had a significant impact on the bacterial community. The proportion of Gammaproteobacteria diminished to the benefit of Actinobacteria and the Saccharibateria phylum. On the other hand, the introduction of polymeric compounds altered the settling properties and denitrification efficiency, but induced smaller changes in the bacterial community. The changes induced by the wastewater transition were only partly reversed. Seven distinct stables states of the bacterial community were detected during the 921 days of experiment, four of them observed with the complex monomeric wastewater. The transitions between these states were not only caused by wastewater changes but also by operation failures and other incidences. However, the nutrient removal performance and settling properties of the AGS were globally maintained due to the functional redundancy of its bacterial community.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Frontiers Microbiol 11-574361 2020.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

3.31 MB

Format

Adobe PDF

Checksum (MD5)

55aa72d747c6eecde3b61800a6f3ca33

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés