Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Preprints and Working Papers
  4. Drone Shadow Tracking
 
working paper

Drone Shadow Tracking

Zhou, Ruofan  
•
El Helou, Majed  
•
Süsstrunk, Sabine  
Show more
2019

Aerial videos taken by a drone not too far above the surface may contain the drone's shadow projected on the scene. This deteriorates the aesthetic quality of videos. With the presence of other shadows, shadow removal cannot be directly applied, and the shadow of the drone must be tracked. Tracking a drone's shadow in a video is, however, challenging. The varying size, shape, change of orientation and drone altitude pose difficulties. The shadow can also easily disappear over dark areas. However, a shadow has specific properties that can be leveraged, besides its geometric shape. In this paper, we incorporate knowledge of the shadow's physical properties, in the form of shadow detection masks, into a correlation-based tracking algorithm. We capture a test set of aerial videos taken with different settings and compare our results to those of a state-of-the-art tracking algorithm.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Drone_Shadow_Tracking.pdf

Access type

openaccess

Size

2.31 MB

Format

Adobe PDF

Checksum (MD5)

453b2ed5b57dccdd73723f10cc0ea3b9

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés