Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Sintering of NaCl powder: Mechanisms and first stage kinetics
 
research article

Sintering of NaCl powder: Mechanisms and first stage kinetics

Goodall, R.  
•
Despois, J. F.  
•
Mortensen, A.  
2006
Journal Of The European Ceramic Society

Isothermal NaCl sintering experiments are conducted between 500 and 790 degrees C on powders 75, 100, 150 and 400 mu m in average diameter. Along with literature data, the results are compared with theoretical predictions for the initial stage of sintering, to draw a general picture of the process over a wide spectrum of temperatures and particle sizes. Where densification is observed, the mechanism is grain boundary diffusion of material from boundary sources. As observed in previous work, there is a transition in dominance between this mechanism and the alternative, non-densifying, mechanism of evaporation-condensation. More detailed analysis shows that, after initial and effectively instantaneous plastic yielding driven by the surface energy, boundary diffusion will always dominate the initial stage of sintering for the conditions of this investigation, leading to some (possibly very small) degree of densification. For particles above about 150 mu m at temperatures within 300 degrees C of the melting point of NaCl this mechanism will rapidly be displaced by evaporation-condensation, halting densification. An approximate equation is derived for the rate of sintering by evaporation-condensation in the presence of a finite-pressure inert atmosphere; the rate of this mechanism is found to be significantly reduced when sintering is carried out at pressures approaching atmospheric.

  • Details
  • Metrics
Type
research article
DOI
10.1016/j.jeurceramsoc.2005.12.020
Web of Science ID

WOS:000241841300001

Author(s)
Goodall, R.  
Despois, J. F.  
Mortensen, A.  
Date Issued

2006

Published in
Journal Of The European Ceramic Society
Volume

26

Issue

16

Start page

3487

End page

3497

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LMM  
Available on Infoscience
January 7, 2009
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/33223
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés