Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. A general model for spin coating on a non-axisymmetric curved substrate
 
research article

A general model for spin coating on a non-axisymmetric curved substrate

Shepherd, Ross G.
•
Boujo, Edouard  
•
Sellier, Mathieu
October 31, 2024
Journal of Fluid Mechanics

We derive a generalised asymptotic model for the flow of a thin fluid film over an arbitrarily parameterised non-axisymmetric curved substrate surface based on the lubrication approximation. In addition to surface tension, gravity and centrifugal force, our model incorporates the effects of the Coriolis force and disjoining pressure, together with a non-uniform initial condition, which have not been widely considered in existing literature. We use this model to investigate the impact of the Coriolis force and fingering instability on the spreading of a non-axisymmetric spin-coated film at a range of substrate angular velocities, first on a flat substrate, and then on parabolic cylinder- and saddle-shaped curved substrates. We show that, on flat substrates, the Coriolis force has a negligible impact at low angular velocities, and at high angular velocities results in a small deflection of fingers formed at the contact line against the direction of substrate rotation. On curved substrates, we demonstrate that, as the angular velocity is increased, spin-coated films transition from being dominated by gravitational drainage with no fingering to spreading and fingering in the direction with the greatest component of centrifugal force tangent to the substrate surface. For both curved substrates and all angular velocities considered, we show that the film thickness and total wetted substrate area remain similar over time to those on a flat substrate, with the key difference being the shape of the spreading droplet.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

10.1017_jfm.2024.654.pdf

Type

Main Document

Version

Published version

Access type

openaccess

License Condition

CC BY-NC

Size

1.43 MB

Format

Adobe PDF

Checksum (MD5)

d7d05d78feb9a8a919e36b3377293298

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés