Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Printed ecoresorbable temperature sensors for environmental monitoring
 
research article

Printed ecoresorbable temperature sensors for environmental monitoring

Fumeaux, Nicolas Francis  
•
Kossairi, Melissa
•
Bourely, James Alec Pierce  
Show more
May 26, 2023
Micro and Nano Engineering

Electronic waste has become a pressing issue, necessitating sustainable solutions for the disposal of electronic devices. While the development of environmentally degradable electronics has gained attention, the fabrication of stable and performant sensors from biodegradable materials remains challenging. We present printed degradable resistance temperature detectors (RTDs) based on the photonic sintering of a zinc microparticles ink on a cellulosic substrate. Efficient sintering is attained via a two-step process involving electrochemical oxide removal and pulsed light exposure using a xenon lamp. By optimizing the pulse energy and pulse count, we obtain highly linear zinc-based RTDs with a high temperature coefficient of resistance (TCR). The printed zinc reaches a TCR value of 3160 ppm/K, which represents about 80% of the value of the bulk material. The dynamic response of the sensors in a range from −20 to 40 °C closely matches the temperature signal recorded by a commercial sensor. The encapsulation of the screen-printed sensors on paper substrate with a biodegradable beeswax coating ensures protection against the interference of moisture. These printed RTDs, fully made of degradable materials, pave the way to the cost-effective manufacturing of eco-friendly yet performant sensors for environmental monitoring

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

1-s2.0-S2590007223000485-main.pdf

Type

Publisher

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY-NC-ND

Size

6.19 MB

Format

Adobe PDF

Checksum (MD5)

b6bdaf13610ca6db57d93523b2f6b16d

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés