Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Singular SPDEs in domains with boundaries
 
journal article

Singular SPDEs in domains with boundaries

Gerencser, Mate
•
Hairer, Martin  
April 1, 2019
PROBABILITY THEORY AND RELATED FIELDS

We study spaces of modelled distributions with singular behaviour near the boundary of a domain that, in the context of the theory of regularity structures, allow one to give robust solution theories for singular stochastic PDEs with boundary conditions. The calculus of modelled distributions established in Hairer (Invent Math 198(2):269-504, 2014. 10.1007/s00222-014-0505-4) is extended to this setting. We formulate and solve fixed point problems in these spaces with a class of kernels that is sufficiently large to cover in particular the Dirichlet and Neumann heat kernels. These results are then used to provide solution theories for the KPZ equation with Dirichlet and Neumann boundary conditions and for the 2D generalised parabolic Anderson model with Dirichlet boundary conditions. In the case of the KPZ equation with Neumann boundary conditions, we show that, depending on the class of mollifiers one considers, a boundary renormalisation takes place. In other words, there are situations in which a certain boundary condition is applied to an approximation to the KPZ equation, but the limiting process is the Hopf-Cole solution to the KPZ equation with a different boundary condition.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

s00440-018-0841-1.pdf

Type

Main Document

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

862.18 KB

Format

Adobe PDF

Checksum (MD5)

def46cbdca0d36da0536e3a84f885654

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés