Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Theoretical Studies of the Reductive C-S Bond Cleavage in Complexes of the Form [M(9S3)2]2+ (M = Re, Tc, and Ru; 9S3 = 1,4,7-Trithiacyclononane)
 
research article

Theoretical Studies of the Reductive C-S Bond Cleavage in Complexes of the Form [M(9S3)2]2+ (M = Re, Tc, and Ru; 9S3 = 1,4,7-Trithiacyclononane)

Maurer, Patrick
•
Magistrato, Alessandra
•
Rothlisberger, Ursula  
2004
The Journal of Physical Chemistry A

We have applied D. Functional Theory (DFT) at the generalized gradient approxn. (GGA) level to investigate the C-S bond cleavage in hexathioether complexes of the form [M(9S3)2]n+ (with 9S3 = 1,4,7-trithiacyclononane and M = Re, Tc; n = 1, 2; as well as M = Ru; n = 2, 3). The exptl. trends in C-S bond lengths of the different compds. are reproduced faithfully. Redn. leads to a lowering of the calcd. reaction energies by ~20 kcal/mol to values of 4, 10, and 44 kcal/mol for M = Re, Tc, Ru, resp. The corresponding values for the activation energy are 10, 15, and 44 kcal/mol, which is in agreement with the exptl. observation that the rhenium and technetium compds. lose an ethene mol. immediately after redn., while the ruthenium compd. is stable toward such a loss. Our calcns. suggest that the unique reactivity of the reduced rhenium and technetium complexes is a result of the higher energies of metal t2g-orbitals, resulting from the lower overall charge of the complex. p-Back-donation from t2g-orbitals into C-S s*-orbitals is another important effect, leading to low activation barriers, as only little electronic rearrangement is necessary upon cleavage of the C-S bonds. [on SciFinder (R)]

  • Details
  • Metrics
Type
research article
DOI
10.1021/jp045615n
Web of Science ID

WOS:000225924800004

Author(s)
Maurer, Patrick
Magistrato, Alessandra
Rothlisberger, Ursula  
Date Issued

2004

Published in
The Journal of Physical Chemistry A
Volume

108

Issue

52

Start page

11494

End page

11499

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LCBC  
Available on Infoscience
February 27, 2006
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/226209
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés