Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Precision electroweak measurements on the Z resonance☆☆☆
 
research article

Precision electroweak measurements on the Z resonance☆☆☆

Schael, S.
•
Barate, R.
•
Brunelière, R.
Show more
2006
Physics Reports

We report on the final electroweak measurements performed with data taken at the Z resonance by the experiments operating at the electron-positron colliders SLC and LEP. The data consist of 17 million Z decays accumulated by the ALEPH, DELPHI, L3 and OPAL experiments at LEP, and 600 thousand Z decays by the SLD experiment using a polarised beam at SLC. The measurements include cross-sections, forward-backward asymmetries and polarised asymmetries. The mass and width of the Z boson, mZ Z, and ΓZ, its couplings to fermions, for example the ρ parameter and the efffective electroweak mixing angle for leptons, are precisely measured: mZ = 91.1875 ± 0.0021 GeV, ΓZ = 2.4952 ± 0.0023 GeV, ρℓ = 1.0050 ± 0.0010, sin2 θeff lept = 0.23153 ± 0.00016. The number of light neutrino species is determined to be 2.9840 ± 0.0082, in agreement with the three observed generations of fundamental fermions. The results are compared to the predictions of the Standard Model (SM). At the Z-pole, electroweak radiative corrections beyond the running of the QED and QCD coupling constants are observed with a significance of five standard deviations, and in agreement with the Standard Model. Of the many Z-pole measurements, the forward-backward asymmetry in b-quark production shows the largest difference with respect to its SM expectation, at the level of 2.8 standard deviations. Through radiative corrections evaluated in the framework of the Standard Model, the Z-pole data are also used to predict the mass of the top quark, mt = 173-10 +13 GeV, and the mass of the W boson, mW = 80.363 ± 0.032 GeV. These indirect constraints are compared to the direct measurements, providing a stringent test of the SM. Using in addition the direct measurements of mt and mW, the mass of the as yet unobserved SM Higgs boson is predicted with a relative uncertainty of about 50% and found to be less than 285 GeV at 95% confidence level. © 2006 Elsevier B.V. All rights reserved.

  • Details
  • Metrics
Type
research article
DOI
10.1016/j.physrep.2005.12.006
Author(s)
Schael, S.
Barate, R.
Brunelière, R.
Buskulic, D.
de Bonis, I.
Decamp, D.
Ghez, P.
Goy, C.
Jézéquel, S.
Lees, J.-P.
Show more
Date Issued

2006

Published in
Physics Reports
Volume

427

Issue

5-6

Start page

257

End page

454

Editorial or Peer reviewed

NON-REVIEWED

Written at

EPFL

EPFL units
LPHE  
Available on Infoscience
November 5, 2010
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/57065
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés