Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Online Extreme Evolutionary Learning Machines
 
conference paper

Online Extreme Evolutionary Learning Machines

Auerbach, Joshua E.  
•
Fernando, Chrisantha
•
Floreano, Dario  
2014
Artificial Life 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems
Artificial Life 14: International Conference on the Synthesis and Simulation of Living Systems

Recently, the notion that the brain is fundamentally a prediction machine has gained traction within the cognitive science community. Consequently, the ability to learn accurate predictors from experience is crucial to creating intelligent robots. However, in order to make accurate predictions it is necessary to find appropriate data representations from which to learn. Finding such data representations or features is a fundamental challenge for machine learning. Often domain knowledge is employed to design useful features for specific problems, but learning representations in a domain independent manner is highly desirable. While many approaches for automatic feature extraction exist, they are often either computationally expensive or of marginal utility. On the other hand, methods such as Extreme Learning Machines (ELMs) have recently gained popularity as efficient and accurate model learners by employing large collections of fixed, random features. The computational efficiency of these approaches becomes particularly relevant when learning is done fully online, such as is the case for robots learning via their interactions with the world. Selectionist methods, which replace features offering low utility with random replacements, have been shown to produce efficient feature learning in one class of ELM. In this paper we demonstrate that a Darwinian neurodynamic approach of feature replication can improve performance beyond selection alone, and may offer a path towards effective learning of predictive models in robotic agents.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

978-0-262-32621-6-ch076.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

Size

1.61 MB

Format

Adobe PDF

Checksum (MD5)

420f8d4f4c4d04d725dd77508343c4f5

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés