Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Nonparametric inference of higher order interaction patterns in networks
 
research article

Nonparametric inference of higher order interaction patterns in networks

Wegner, Anatol E.
•
Olhede, Sofia C.  
December 1, 2024
Communications Physics

Local interaction patterns play an important role in the structural and functional organization of complex networks. Here we propose a method for obtaining parsimonious decompositions of networks into higher order interactions which can take the form of arbitrary motifs. The method is based on a class of analytically solvable generative models which in combination with non-parametric priors allow us to infer higher order interactions from dyadic graph data without any prior knowledge on the types or frequencies of such interactions. We test the presented approach on simulated data for which we recover the set of underlying higher order interactions to a high degree of accuracy. For empirical networks the method identifies concise sets of atomic subgraphs from within thousands of candidates that cover a large fraction of edges and include higher order interactions of known structural and functional significance. Being based on statistical inference the method also produces a fit of the network to analytically tractable higher order models opening new avenues for the systematic study of higher order interactions.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

10.1038_s42005-024-01736-0.pdf

Type

Main Document

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

2.97 MB

Format

Adobe PDF

Checksum (MD5)

c5e1e13fbf007a7b7087524d5e9efacb

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés