Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Adaptive mesh refinement and automatic remeshing in crystal plasticity finite element simulations
 
research article

Adaptive mesh refinement and automatic remeshing in crystal plasticity finite element simulations

Resk, H.
•
Delannay, L.
•
Bernacki, M.
Show more
2009
Modelling and Simulation in Materials Science and Engineering

In finite element simulations dedicated to the modelling of microstructure evolution, the mesh has to be fine enough to: (i) accurately describe the geometry of the constituents; (ii) capture local strain gradients stemming from the heterogeneity in material properties. In this paper, 3D polycrystalline aggregates are discretized into unstructured meshes and a level set framework is used to represent the grain boundaries. The crystal plasticity finite element method is used to simulate the plastic deformation of these aggregates. A mesh sensitivity analysis based on the deformation energy distribution shows that the predictions are, on average, more sensitive near grain boundaries. An anisotropic mesh refinement strategy based on the level set description is introduced and it is shown that it offers a good compromise between accuracy requirements on the one hand and computation time on the other hand. As the aggregates deform, mesh distortion inevitably occurs and ultimately causes the breakdown of the simulations. An automatic remeshing tool is used to periodically reconstruct the mesh and appropriate transfer of state variables is performed. It is shown that the diffusion related to data transfer is not significant. Finally, remeshing is performed repeatedly in a highly resolved 500 grains polycrystal subjected to about 90% thickness reduction in rolling. The predicted texture is compared with the experimental data and with the predictions of a standard Taylor model. © 2009 IOP Publishing Ltd.

  • Details
  • Metrics
Type
research article
DOI
10.1088/0965-0393/17/7/075012
Author(s)
Resk, H.
Delannay, L.
Bernacki, M.
Coupez, T.
Logé, R.  
Date Issued

2009

Published in
Modelling and Simulation in Materials Science and Engineering
Volume

17

Issue

7

Article Number

075012

Subjects

Adaptive mesh refinement

•

Anisotropic mesh refinement

•

Computation time

•

Crystal plasticity finite element

•

Crystal plasticity finite element method

•

Data transfer

•

Deformation

•

Deformation energy

•

Experimental data

•

Finite element method

•

Finite element simulations

•

Forecasting

•

Grain boundaries

•

Grain size and shape

•

Level measurement

•

Level set

•

Level set framework

•

Local strains

•

Material property

•

Mesh distortion

•

Mesh generation

•

Mesh sensitivity

•

Microstructure evolutions

•

Plasticity

•

Polycrystalline aggregates

•

Remeshing

•

Sensitivity analysis

•

Simulators

•

State variables

•

Taylor models

•

Text processing

•

Thickness reduction

•

Three dimensional

•

Unstructured meshes

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
LMTM  
Available on Infoscience
November 14, 2014
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/108779
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés