Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Frequency comb generation in the green using silicon nitride microresonators
 
Loading...
Thumbnail Image
research article

Frequency comb generation in the green using silicon nitride microresonators

Wang, Leiran
•
Chang, Lin
•
Volet, Nicolas
Show more
2016
Laser & Photonics Reviews

Optical frequency combs enable precision measurements in fundamental physics and have been applied to a growing number of applications, such as molecular spectroscopy, LIDAR and atmospheric trace-gas sensing. In recent years, the generation of frequency combs has been demonstrated in integrated microresonators. Extending their spectral range to the visible is generally hindered by strong normal material dispersion and scattering losses. In this paper, we report the first realization of a green-light frequency comb in integrated high-Q silicon nitride (SiN) ring microresonators. Third-order optical non-linearities are utilized to convert a near-infrared Kerr frequency comb to a broadband green light comb. The 1-THz frequency spacing infrared comb covers up to 2/3 of an octave, from 144 to 226 THz (or 1327-2082 nm), and the simultaneously generated green-light comb is centered around 570-580 THz (or 517-526 nm), with comb lines emitted down to 517 THz (or 580 nm) and up to 597 THz (or 502 nm). The green comb power is estimated to be as high as -9.1 dBm in the bus waveguide, with an on-chip conversion efficiency of -34 dB. The proposed approach substantiates the feasibility of on-chip optical frequency comb generation expanding to the green spectral region or even shorter wavelengths.

  • Details
  • Metrics
Type
research article
DOI
10.1002/lpor.201600006
Web of Science ID

WOS:000379958800008

Author(s)
Wang, Leiran
•
Chang, Lin
•
Volet, Nicolas
•
Pfeiffer, Martin H. P.  
•
Zervas, Michael  
•
Guo, Hairun  
•
Kippenberg, Tobias J.  
•
Bowers, John E.
Date Issued

2016

Publisher

Wiley-VCH Verlag Berlin

Published in
Laser & Photonics Reviews
Volume

10

Issue

4

Start page

631

End page

638

Subjects

Optical frequency comb

•

Silicon nitride

Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LPQM  
Available on Infoscience
October 18, 2016
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/129873
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés