Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Large-eddy simulation of stably stratified atmospheric boundary layer turbulence: A scale-dependent dynamic modeling approach
 
research article

Large-eddy simulation of stably stratified atmospheric boundary layer turbulence: A scale-dependent dynamic modeling approach

Basu, S.
•
Porté-Agel, F.  
2006
JOURNAL OF THE ATMOSPHERIC SCIENCES

A new tuning-free subgrid-scale model, termed locally averaged scale-dependent dynamic ( LASDD) model, is developed and implemented in large-eddy simulations ( LES) of stable boundary layers. The new model dynamically computes the Smagorinsky coefficient and the subgrid-scale Prandtl number based on the local dynamics of the resolved velocity and temperature fields. Overall, the agreement between the statistics of the LES-generated turbulence and some well-established empirical formulations and theoretical predictions ( e. g., the local scaling hypothesis) is remarkable. Moreover, the simulated statistics obtained with the LASDD model show relatively little resolution dependence for the range of grid sizes considered here. In essence, it is shown here that the new LASDD model is a robust subgrid-scale parameterization for reliable, tuning-free simulations of stable boundary layers, even with relatively coarse resolutions.

  • Details
  • Metrics
Type
research article
DOI
10.1175/JAS3734.1
Author(s)
Basu, S.
Porté-Agel, F.  
Date Issued

2006

Published in
JOURNAL OF THE ATMOSPHERIC SCIENCES
Volume

63

Issue

8

Start page

2074

End page

2091

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
WIRE  
Available on Infoscience
February 23, 2010
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/47631
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés