Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Adapting Fine-Grained Cross-View Localization to Areas Without Fine Ground Truth
 
conference paper

Adapting Fine-Grained Cross-View Localization to Areas Without Fine Ground Truth

Xia, Zimin  
•
Shi, Yujiao
•
Li, Hongdong
Show more
Leonardis, Aleš
•
Ricci, Elisa
Show more
2025
Computer Vision – ECCV 2024 - 18th European Conference, Proceedings
18th European Conference on Computer Vision

Given a ground-level query image and a geo-referenced aerial image that covers the query’s local surroundings, fine-grained cross-view localization aims to estimate the location of the ground camera inside the aerial image. Recent works have focused on developing advanced networks trained with accurate ground truth (GT) locations of ground images. However, the trained models always suffer a performance drop when applied to images in a new target area that differs from training. In most deployment scenarios, acquiring fine GT, i.e. accurate GT locations, for target-area images to re-train the network can be expensive and sometimes infeasible. In contrast, collecting images with noisy GT with errors of tens of meters is often easy. Motivated by this, our paper focuses on improving the performance of a trained model in a new target area by leveraging only the target-area images without fine GT. We propose a weakly supervised learning approach based on knowledge self-distillation. This approach uses predictions from a pre-trained model as pseudo GT to supervise a copy of itself. Our approach includes a mode-based pseudo GT generation for reducing uncertainty in pseudo GT and an outlier filtering method to remove unreliable pseudo GT. Our approach is validated using two recent state-of-the-art models on two benchmarks. The results demonstrate that it consistently and considerably boosts the localization accuracy in the target area.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

978-3-031-72751-1.pdf

Type

Main Document

Version

Accepted version

Access type

openaccess

License Condition

CC BY

Size

109.69 MB

Format

Adobe PDF

Checksum (MD5)

38637157c090a07ed9dd66c85ba2a78a

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés