Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Modeling cost/performance of a parallel computer simulator
 
research article

Modeling cost/performance of a parallel computer simulator

Falsafi, Babak  
•
Wood, David A.
1997
ACM Transactions on Modeling and Computer Simulation

This article examines the cost/performance of simulating a hypothetical target parallel computer using a commercial host parallel computer. We address the question of whether parallel simulation is simply faster than sequential simulation, or if it is also more cost-effective. To answer this, we develop a performance model of the Wisconsin Wind Tunnel (WWT), a system that simulates cache-coherent shared-memory machines on a message-passing Thinking Machines CM-5. The performance model uses Kruskal and Weiss's fork-join model to account for the effect of event processing time variability on WWT's conservative fixed-window simulation algorithm. A generalization of Thiebaut and Stone's footprint model accurately predicts the effect of cache interference on the CM-5. The model is calibrated using parameters extracted from a fully parallel simulation (p = N), and validated by measuring the speedup as the number of processors (p) ranges from 1 to the number of target nodes (N). Together with simple cost models, the performance model indicates that for target system sizes of 32 nodes and larger, parallel simulation is more cost-effective than sequential simulation. The key intuition behind this result is that large simulations require large memories, which dominate the cost of a uniprocessor; parallel computers allow multiple processors to simultaneously access this large memory.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

tomacs97.pdf

Access type

openaccess

Size

309.4 KB

Format

Adobe PDF

Checksum (MD5)

a57e03f6f76daba69893c62b0749cb86

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés