Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Convergence analysis for sequential Monte Carlo receivers in communications applications
 
conference paper

Convergence analysis for sequential Monte Carlo receivers in communications applications

Ozgur, Soner
•
Cevher, Volkan  orcid-logo
•
Williams, Douglas B.
Show more
2006
2006 IEEE 12th Digital Signal Processing Workshop & 4th IEEE Signal Processing Education Workshop
IEEE DSPWorkshop

Recently, sequential Monte Carlo methods have been used in the telecommunications field, finding application in receiver design. Several properties of these receivers make their designs very attractive. These receivers do not require channel state information or training. Therefore, they are bandwidth efficient and no communication bandwidth needs to be wasted on training. The receivers are optimal in the sense that they achieve a minimum symbol error rate regardless of the noise distribution, nonlinearities in the system, or distribution of the transmitted symbol. Moreover, these receivers are capable of producing soft-information outputs, which enables the designer to utilize iterative receiver architectures for near-optimal performance. In this work we investigate the convergence properties of these algorithms when utilized in various types of receivers. We quantify the convergence rate. We describe how various parameters (e.g., noise power, channel fading rate, etc) and factors (e.g., state-space model mismatch) affect the convergence rate and point out the factors that should be improved first to gain speed and accuracy in the convergence.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

CONVERGENCE ANALYSIS FOR SEQUENTIAL MONTE CARLO RECEIVERS IN.pdf

Access type

openaccess

Size

147.73 KB

Format

Adobe PDF

Checksum (MD5)

64f8664022f356c40780dace2adc557b

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés