Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Densely crosslinked polymer networks of poly(ethylene glycol) in trimethylolpropane triacrylate for cell-adhesion-resistant surfaces
 
research article

Densely crosslinked polymer networks of poly(ethylene glycol) in trimethylolpropane triacrylate for cell-adhesion-resistant surfaces

Drumheller, P. D.
•
Hubbell, J. A.  
1995
Journal of biomedical materials research

Densely crosslinked semi-interpenetrating polymer networks (semi-IPNs) of poly(ethylene glycol) (PEG) were synthesized by photopolymerizing a melt of PEG of various molecular weights and end-group functionalities in neat trimethylolpropane triacrylate (TMPTA). Increasing the molecular weight of PEG in the matrix from 1000 to 100,000 g/mol reduced the advancing and receding contact angles, contact angle hysteresis, and adsorption of human fibrinogen and bovine serum albumin. Crosslinked TMPTA homonetworks supported human fibroblast adhesion in vitro, whereas the resistance to cell adhesion of the semi-IPNs depended upon PEG molecular weight: Lower molecular weight PEG reduced the number of adherent cells; higher molecular weight PEG further reduced and eliminated cell adhesion, as did networks containing acrylate-functionalized PEG. A polymer system incorporated with PEG throughout a hydrophobic, densely crosslinked matrix, rather than as a blend or surface treatment, may be particularly useful for limiting biologic interactions when bulk material properties must be independent of the solvent environment and where surface abrasion may occur. [on SciFinder (R)]

  • Details
  • Metrics
Type
research article
DOI
10.1002/jbm.820290211
Author(s)
Drumheller, P. D.
Hubbell, J. A.  
Date Issued

1995

Published in
Journal of biomedical materials research
Volume

29

Issue

2

Start page

207

End page

15

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LMRP  
Available on Infoscience
February 27, 2006
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/226489
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés