Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Structural dynamics in quantum solids. I. Steady-state spectroscopy of the electronic bubble in solid hydrogens
 
Loading...
Thumbnail Image
research article

Structural dynamics in quantum solids. I. Steady-state spectroscopy of the electronic bubble in solid hydrogens

Vigliotti, F.  
•
Cavina, A.  
•
Bressler, Ch  
Show more
2002
The Journal of Chemical Physics

The structural changes due to formation of electronic bubbles in solid D2 are studied by fluorescence, fluorescence-excitation, and fluorescence-depletion spectroscopy of the lowest Rydberg state, A 2S+(3ss), of the NO impurity. The A X band is strongly blue-shifted (.apprx.0.7 eV) with respect to the gas phase and shows a very broad (full width at half max. .apprx.2000 cm-1) and asym. profile. The shift results from the strong repulsion due to the overlap of the extended Rydberg orbital with the matrix species, while the width and asymmetry are governed by quantum effects on the ground-state intermol. wave function. Fluorescence occurs with large absorption-emission Stokes shifts, bringing the A-state emission energy to its gas-phase value, which indicates a very loose cavity around the excited mol. A line-shape anal. of the A-X absorption and emission bands allows one to ext. 1-dimensional intermol. NO-matrix potentials of both involved states. The authors est. the bubble radius to .apprx.5 .ANG., in good agreement with values from the literature for the bubble radius of the solvated electron. Fluorescence-depletion spectra of the A state are also presented along with the ground-state transitions to the higher C 2P(3pp) and D 2S+(3ps) states. They are used to generate intermol. potentials for the C and D states, which are essential ingredients for ultrafast pump-probe expts. of the bubble dynamics. The results obtained for D2 matrixes are compared with those previously published for H2 matrixes. [on SciFinder (R)]

  • Details
  • Metrics
Type
research article
DOI
10.1063/1.1449945
Author(s)
Vigliotti, F.  
•
Cavina, A.  
•
Bressler, Ch  
•
Lang, B.
•
Chergui, M.  
Date Issued

2002

Published in
The Journal of Chemical Physics
Volume

116

Issue

11

Start page

4542

End page

4552

Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LSU  
Available on Infoscience
February 27, 2006
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/225813
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés