Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Why are sec-alkylperoxyl bimolecular self-reactions orders of magnitude faster than the analogous reactions of tert-alkylperoxyls? The unanticipated role of CH hydrogen bond donation
 
research article

Why are sec-alkylperoxyl bimolecular self-reactions orders of magnitude faster than the analogous reactions of tert-alkylperoxyls? The unanticipated role of CH hydrogen bond donation

Lee, Richmond
•
Gryn'Ova, Ganna
•
Ingold, K. U.
Show more
2016
Physical Chemistry Chemical Physics

High-level ab initio calculations are used to identify the mechanism of secondary (and primary) alkylperoxyl radical termination and explain why their reactions are much faster than their tertiary counterparts. Contrary to existing literature, the decomposition of both tertiary and non-tertiary tetroxides follows the same asymmetric two-step bond cleavage pathway to form a caged intermediate of overall singlet multiplicity comprising triplet oxygen and two alkoxyl radicals. The alpha hydrogen atoms of non-tertiary species facilitate this process by forming unexpected CH center dot center dot center dot O hydrogen bonds to the evolving O-2. For non-tertiary peroxyls, subsequent alpha hydrogen atom transfer then yields the experimentally observed non-radical products, ketone, alcohol and O-2, whereas for tertiary species, this reaction is precluded and cage escape of the (unpaired) alkoxyl radicals is a likely outcome with important consequences for autoxidation.

  • Details
  • Metrics
Type
research article
DOI
10.1039/c6cp04670c
Web of Science ID

WOS:000382107200027

Author(s)
Lee, Richmond
Gryn'Ova, Ganna
Ingold, K. U.
Coote, Michelle L.
Date Issued

2016

Publisher

Royal Soc Chemistry

Published in
Physical Chemistry Chemical Physics
Volume

18

Issue

34

Start page

23673

End page

23679

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
ISIC  
Available on Infoscience
October 18, 2016
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/130212
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés