Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Stochastic Second-Order Methods Improve Best-Known Sample Complexity of SGD for Gradient-Dominated Function
 
Loading...
Thumbnail Image
conference paper not in proceedings

Stochastic Second-Order Methods Improve Best-Known Sample Complexity of SGD for Gradient-Dominated Function

Masiha, Saeed
•
Salehkaleybar, Saber  
•
He, Niao
Show more
September 14, 2022

We study the performance of Stochastic Cubic Regularized Newton (SCRN) on a class of functions satisfying gradient dominance property with $1\le\alpha\le2$ which holds in a wide range of applications in machine learning and signal processing. This condition ensures that any first-order stationary point is a global optimum. We prove that the total sample complexity of SCRN in achieving $\epsilon$-global optimum is $\mathcal{O}(\epsilon^{-7/(2\alpha)+1})$ for $1\le\alpha< 3/2$ and $\mathcal{\tilde{O}}(\epsilon^{-2/(\alpha)})$ for $3/2\le\alpha\le 2$. SCRN improves the best-known sample complexity of stochastic gradient descent. Even under a weak version of gradient dominance property, which is applicable to policy-based reinforcement learning (RL), SCRN achieves the same improvement over stochastic policy gradient methods. Additionally, we show that the average sample complexity of SCRN can be reduced to ${\mathcal{O}}(\epsilon^{-2})$ for $\alpha=1$ using a variance reduction method with time-varying batch sizes. Experimental results in various RL settings showcase the remarkable performance of SCRN compared to first-order methods.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Cubic_regularized_under_PL_condition__Copy_.pdf

Type

Preprint

Access type

openaccess

License Condition

copyright

Size

5.66 MB

Format

Adobe PDF

Checksum (MD5)

8c42bfaf3a5fd7821635b8fcfe8ce754

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés