Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Lewis' law revisited: the role of anisotropy in size–topology correlations
 
research article

Lewis' law revisited: the role of anisotropy in size–topology correlations

Kim, Sangwoo  
•
Cai, Muyun
•
Hilgenfeldt, Sascha
2014
New Journal of Physics

Since F T Lewis' pioneering work in the 1920s, a linear correlation between the average in-plane area of domains in a two-dimensional (2D) cellular structure and the number of neighbors of the domains has been empirically proposed, with many supporting and dissenting findings in the ensuing decades. Revisiting Lewis' original experiment, we take a larger set of more detailed data on the cells in the epidermal layer of Cucumis, and analyze the data in the light of recent results on size–topology correlations. We find that the correlation between the number-of-neighbor distribution (topology) and the area distribution is altered over that of many other 2D cellular systems (such as foams or disc packings), and that the systematic deviation can be explained by the anisotropic shape of the Cucumis cells. We develop a novel theory of size–topology correlation taking into account the characteristic aspect ratio of the cells within the framework of a granocentric model, and show that both Lewis' and our experimental data is consistent with the theory. In contrast to the granocentric model for isotropic domains, the new theory results in an approximately linear correlation consistent with Lewis' law. These statistical effects can be understood from the increased number of configurations available to a plane-filling domain system with non-isotropic elements, for the first time providing a firm explanation of why Lewis' law is valid in some systems and fails in others.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Kim_2014_New_J._Phys._16_015024.pdf

Type

Publisher

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

1.48 MB

Format

Adobe PDF

Checksum (MD5)

3099b61bc45de6bd57cab65c19fb0274

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés