Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Filter Bank Design based on Minimization of Individual Aliasing Terms for Minimum Mutual Information Subband Adaptive Beamforming
 
conference paper

Filter Bank Design based on Minimization of Individual Aliasing Terms for Minimum Mutual Information Subband Adaptive Beamforming

Kumatani, Kenichi
•
McDonough, John
•
Schacht, Stefan
Show more
2008
2008 IEEE International Conference on Acoustics, Speech and Signal Processing
ICASSP 2008

This paper presents new filter bank design methods for sub- band adaptive beamforming. In this work, we design analysis and synthesis prototypes for modulated filter banks so as to minimize each aliasing term individually. We then drive the total response error to null by constraining these prototypes to be Nyquist(M) filters. Thereafter those modulated filter banks are applied to a speech separation system which extracts a target speech signal. In our system, speech signals are first transformed into the subband domain with our filter banks, and the subband components are then processed with a beamforming algorithm. Following beamforming, post-filtering and binary masking are further performed to remove residual noises. We show that our filter banks can suppress the residual aliasing distortion more than conventional ones. Furthermore, we demonstrate the effectiveness of our design techniques through a set of automatic speech recognition experiments on the multi-channel speech data from the PASCAL Speech Separation Challenge. The experimental results prove that our beamforming system with the proposed filter banks achieves the best recognition performance, a 39.6 % word error rate (WER), with half the amount of computation of that of the conventional filter banks while the perfect reconstruction filter banks provided a 44.4 % WER.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Kumatani_ICASSP_2008.pdf

Access type

openaccess

Size

143.64 KB

Format

Adobe PDF

Checksum (MD5)

9ab1a6fd61d50b638c3d60367263fe9f

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés