Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Tp63-expressing adult epithelial stem cells cross lineages boundaries revealing latent hairy skin competence
 
research article

Tp63-expressing adult epithelial stem cells cross lineages boundaries revealing latent hairy skin competence

Claudinot, Stephanie  
•
Sakabe, Jun-Ichi
•
Oshima, Hideo
Show more
November 6, 2020
Nature Communications

The formation of hair follicles, a landmark of mammals, requires complex mesenchymal-epithelial interactions and it is commonly believed that embryonic epidermal cells are the only cells that can respond to hair follicle morphogenetic signals in vivo. Here, we demonstrate that epithelial stem cells of non-skin origin (e.g. that of cornea, oesophagus, vagina, bladder, prostate) that express the transcription factor Tp63, a master gene for the development of epidermis and its appendages, can respond to skin morphogenetic signals. When exposed to a newborn skin microenvironment, these cells express hair-follicle lineage markers and contribute to hair follicles, sebaceous glands and/or epidermis renewal. Our results demonstrate that lineage restriction is not immutable and support the notion that all Tp63-expressing epithelial stem cells, independently of their embryonic origin, have latent skin competence explaining why aberrant hair follicles or sebaceous glands are sometimes observed in non-skin tissues (e.g. in cornea, vagina or thymus). Adult stem cells are thought to be fate restricted to lineages distinct to their tissue of origin. Here, the authors demonstrate that Tp63 expressing epithelial stem cells from several disparate tissues can respond to skin morphogenetic signals and contribute to hair follicles, sebaceous glands and/or epidermis.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

s41467-020-19485-3.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

8.55 MB

Format

Adobe PDF

Checksum (MD5)

994384fea9faab3019b278e4960b2f35

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés