Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Second-order sensitivity of parallel shear flows and optimal spanwise-periodic flow modifications
 
conference presentation

Second-order sensitivity of parallel shear flows and optimal spanwise-periodic flow modifications

Gallaire, François  
•
Fani, Andrea  
•
Boujo, Edouard  
2014
67th Annual Meeting of the APS Division of Fluid Dynamics

We perform a second-order sensitivity analysis of the linear temporal stability of a parallel flow subject to small spanwise periodic modification. The need for a second-order analysis results from the fact that spanwise-periodic flow modifications have a quadratic effect on the stability properties of parallel flows (i.e. the first-order eigenvalue variation is zero). From a simple one-dimensional (1D) calculation we compute the second-order sensitivity operator, which allows us to predict the effect on stability of any small modification without computing the eigenmode correction. Comparisons with two-dimensional (2D) stability calculations of modified flows show excellent agreement and validate the method. From the second-order sensitivity operator we optimise the growth rate variation and compute optimal flow modifications, providing lower and upper bounds for the growth rate variation induced by any spanwise-periodic modification of given amplitude. We finally discuss under which conditions a spanwise periodic modulation is more efficient to stabilize/destabilize the flow in comparison to a spanwise homogeneous flow modification.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés