Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Intermediate Variable Elimination in a Global Context for a 3D Multimedia Application
 
conference paper

Intermediate Variable Elimination in a Global Context for a 3D Multimedia Application

Leeman, Marc
•
Atienza, David  
2003
Proceedings of the International Conference on Multimedia and Expo (ICME 03)
IEEE International Conference on Multimedia and Expo (ICME 03)

The 3D multimedia applications have been experiencing recently a tremendous growth in number and complexity. Such applications mainly consist of complex algorithms that process extensive amounts of data to create 3D images and results. For quick access, data need to be stored in small and expensive memories near the processor. Due to the increasing memory-processor gap in speed and the characteristics of multimedia applications (with highly power- and space- consuming data sets), software transformations are required to decrease memory requirements. In this paper, we propose a method to reduce the indirections of data types in real 3D multimedia applications. It is based on software transformations of the original algorithm to minimize the intermediate assignments and, as such, the required data types. To assess the performance of our method, we apply it to a relatively new 3D image reconstruction application. As a result, for this multimedia application, our method reduces 50× the amount of memory accesses, 30× the normalized memory footprint and 67× the energy consumption compared to a manually well-optimized version of the algorithm. Finally, compared to the original application, the overall performance improves by 40% on a PC.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

ICME2003-01221556.pdf

Access type

openaccess

Size

373.24 KB

Format

Adobe PDF

Checksum (MD5)

7aaabd16f85023ce0ac57133979fe7a5

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés