Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Superadiabaticity in magnetic resonance
 
research article

Superadiabaticity in magnetic resonance

Deschamps, Michael
•
Kervern, Gwendal
•
Massiot, Dominique
Show more
2008
Journal of Chemical Physics

Adiabaticity plays a central role in modern magnetic resonance experiments, as excitations with adiabatic Hamiltonians allow precise control of the dynamics of the spin states during the course of an experiment. Surprisingly, many commonly used adiabatic processes in magnetic resonance perform well even though the adiabatic approximation does not appear to hold throughout the process. Here we show that this discrepancy can now be explained through the use of Berry's superadiabatic formalism, which provides a framework for including the finite duration of the process in the theoretical and numerical treatments. In this approach, a slow, but finite time-dependent Hamiltonian is iteratively transformed into time-dependent diagonal frames until the most accurate adiabatic approximation is obtained. In the case of magnetic resonance, the magnetization during an adiabatic process of finite duration is not locked to the effective Hamiltonian in the conventional adiabatic frame, but rather to an effective Hamiltonian in a superadiabatic frame. Only in the superadiabatic frame can the true validity of the adiabatic approximation be evaluated, as the inertial forces acting in this frame are the true cause for deviation from adiabaticity and loss of control during the process. Here we present a brief theoretical background of superadiabaticity and illustrate the concept in the context of magnetic resonance with commonly used shaped radio-frequency pulses.

  • Details
  • Metrics
Type
research article
DOI
10.1063/1.3012356
Web of Science ID

WOS:000262607100013

Author(s)
Deschamps, Michael
Kervern, Gwendal
Massiot, Dominique
Pintacuda, Guido
Emsley, Lyndon  
Grandinetti, Philip J.
Date Issued

2008

Publisher

AMER INST PHYSICS

Published in
Journal of Chemical Physics
Volume

129

Issue

20

Article Number

204110

Subjects

magnetisation

•

nuclear magnetic resonance

•

spin Hamiltonians

•

spin systems

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
LRM  
Available on Infoscience
January 8, 2015
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/110046
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés