Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Reports, Documentation, and Standards
  4. Partitioning Datasets Based on Equalities Among Parameters
 
research report

Partitioning Datasets Based on Equalities Among Parameters

Porreca, R.
•
Ferrari-Trecate, G.
2009

When a phenomenon is described by a parametric model and multiple datasets are available, a key problem in statistics is to discover which datasets are characterized by the same parameter values. Equivalently, one is interested in partitioning the family of datasets into blocks collecting data that are described by the same parameters. Because of noise, different partitions can be consistent with the data, in the sense that they are accepted by generalized likelihood ratio tests with a given confidence level. Given the fact that testing all possible partitions is a computationally unaffordable task, in this paper we propose an algorithm for finding all acceptable partitions while avoiding to test unnecessary ones. The core of our method is an efficient procedure, based on partial order relations on partitions, for computing all partitions that verify an upper bound on a monotone function. The reduction of the computational burden brought about by the algorithm is analyzed both theoretically and experimentally. Applications to the identification of switched systems and the reconstruction of genetic regulatory networks are also presented.

  • Details
  • Metrics
Type
research report
Author(s)
Porreca, R.
Ferrari-Trecate, G.
Date Issued

2009

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
SCI-STI-GFT  
Available on Infoscience
January 10, 2017
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/132618
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés