Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Alternative Plasmonic Materials for Fluorescence Enhancement
 
research article

Alternative Plasmonic Materials for Fluorescence Enhancement

Athanasiou, Stavros  
•
Martin, Olivier J.F.  
October 31, 2024
The Journal of Physical Chemistry C

Noble metals such as gold and silver have been used extensively for a range of plasmonic applications, including enhancing the fluorescence rate of a dye molecule, as evidenced by numerous experiments over the past two decades. Recently, a variety of doped semiconductors have been proposed as alternative plasmonic materials, exhibiting plasmonic resonances from ultraviolet to far-infrared. In this work, we investigate the suitability of these alternative materials for enhancing the fluorescence of a molecule. Considering nanosized spheres, we study their response under plane wave illumination and the resulting enhancement factors when coupled to a quantum emitter. Comparisons with standard plasmonic metals reveal that semiconductor materials lead to a significantly reduced, and often strongly quenched, emission of light caused by their dominant absorption, which hinders fluorescence enhancement. However, we show that enhancement may be obtained when considering poor emitting dyes and high refractive index environments. Our findings demonstrate that these alternative materials result in weaker fluorescence enhancement compared to their plasmonic counterparts. Nonetheless, there are means to compensate for this, and a reasonable enhancement can be achieved for dyes in the infrared spectrum.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Alternative Plasmonic Materials for Fluorescence Enhancement.pdf

Type

Main Document

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

2.48 MB

Format

Adobe PDF

Checksum (MD5)

028d3ce16114c96f9b7c59b625291656

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés