Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Dataset Construction via Attention for Aspect Term Extraction with Distant Supervision
 
conference paper not in proceedings

Dataset Construction via Attention for Aspect Term Extraction with Distant Supervision

Giannakopoulos, Athanasios
•
Antognini, Diego
•
Musat, Claudiu
Show more
2017
7th ICDM Workshop on Sentiment Elicitation from Natural Text for Information Retrieval and Extraction (SENTIRE)

Aspect Term Extraction (ATE) detects opinionated aspect terms in sentences or text spans, with the end goal of performing aspect-based sentiment analysis. The small amount of available datasets for supervised ATE and the fact that they cover only a few domains raise the need for exploiting other data sources in new and creative ways. Publicly available review corpora contain a plethora of opinionated aspect terms and cover a larger domain spectrum. In this paper, we first propose a method for using such review corpora for creating a new dataset for ATE. Our method relies on an attention mechanism to select sentences that have a high likelihood of containing actual opinionated aspects. We thus improve the quality of the extracted aspects. We then use the constructed dataset to train a model and perform ATE with distant supervision. By evaluating on human annotated datasets, we prove that our method achieves a significantly improved performance over various unsupervised and supervised baselines. Finally, we prove that sentence selection matters when it comes to creating new datasets for ATE. Specifically, we show that, using a set of selected sentences leads to higher ATE performance compared to using the whole sentence set.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Giannakopoulos2017b.pdf

Access type

openaccess

Size

643.05 KB

Format

Adobe PDF

Checksum (MD5)

09a2bec08b48339f8a4e947967b6c1d6

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés