Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. A Smooth CH3NH3PbI3 Film via a New Approach for Forming the PbI2 Nanostructure Together with Strategically High CH3NH3I Concentration for High Efficient Planar-Heterojunction Solar Cells
 
research article

A Smooth CH3NH3PbI3 Film via a New Approach for Forming the PbI2 Nanostructure Together with Strategically High CH3NH3I Concentration for High Efficient Planar-Heterojunction Solar Cells

Zhang, Hong
•
Mao, Jian
•
He, Hexiang
Show more
2015
Advanced Energy Materials

The photovoltaic performance of perovskite solar cells (PVSCs) is extremely dependent on the morphology and crystallization of the perovskite film, which is affected by the deposition method. In this work, a new approach is demonstrated for forming the PbI2 nanostructure and the use of high CH3NH3I concentration which are adopted to form high-quality (smooth and PbI2 residue-free) perovskite film with better photovoltaic performances. On the one hand, self-assembled porous PbI2 is formed by incorporating small amount of rationally chosen additives into the PbI2 precursor solutions, which significantly facilitate the conversion of perovskite without any PbI2 residue. On the other hand, by employing a relatively high CH3NH3I concentration, a firmly crystallized and uniform CH3NH3PbI3 film is formed. As a result, a promising power conversion efficiency of 16.21% is achieved in planar-heterojunction PVSCs. Furthermore, it is experimentally demonstrated that the PbI2 residue in perovskite film has a negative effect on the long-term stability of devices.

  • Details
  • Metrics
Type
research article
DOI
10.1002/aenm.201501354
Web of Science ID

WOS:000367199600012

Author(s)
Zhang, Hong
Mao, Jian
He, Hexiang
Zhang, Di
Zhu, Hugh L.
Xie, Fengxian
Wong, Kam Sing
Graetzel, Michael  
Choy, Wallace C. H.
Date Issued

2015

Publisher

Wiley-VCH Verlag Berlin

Published in
Advanced Energy Materials
Volume

5

Issue

23

Article Number

1501354

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LPI  
Available on Infoscience
February 16, 2016
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/123911
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés